Simple Racks over the Alternating Groups

Joseph Vulakh

Under the mentorship of Prof. Julia Plavnik and Dr. Héctor Peña Pollastri

October 14, 2023 MIT PRIMES Conference

Permutations

$$\bullet \ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$

$$\bullet \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix}$$

•
$$\sigma \pi = \sigma \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3 \end{pmatrix}$$

•
$$\pi \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix} \neq \sigma \pi$$

$$\bullet \ \pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$

The Symmetric Group

 \mathbb{S}_n denotes the set of permutations of $\{1,\ldots,n\}$.

Properties of Permutations

For all π , σ , τ in \mathbb{S}_n :

- $\pi \circ (\sigma \circ \tau) = (\pi \circ \sigma) \circ \tau$
- $\pi \circ id = id \circ \pi = \pi$
- There exists π^{-1} with $\pi \circ \pi^{-1} = \pi^{-1} \circ \pi = \mathrm{id}$

Any set with a operation satisfying these properties is called a group.

Parity of Permutations

Every permutation can be written as a product of transpositions

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = \tau_{12}\tau_{23}\tau_{45}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1 \end{pmatrix} = \tau_{12}\tau_{25}$$

- The parity of the permutation is the parity of the number of transpositions
- $\pi = \tau_{12}\tau_{23}\tau_{45} = \tau_{13}\tau_{12}\tau_{45} = \tau_{13}\tau_{12}\tau_{34}\tau_{34}\tau_{45}$
- π is odd, σ is even
- The product of even permutations is even

The Alternating Group

- \mathbb{A}_n denotes the set of even permutations of $\{1,\ldots,n\}$
- \mathbb{A}_n is a group!
- For $n \ge 5$, the group \mathbb{A}_n is simple
 - A simple group is a group with no nontrivial quotients
 - ▶ No nontrivial subgroup of \mathbb{A}_n is preserved by conjugation

Conjugation

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5 \end{pmatrix}$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5 \end{pmatrix}$$

•
$$\pi'(\sigma(x)) = \sigma(\pi(x))$$

- \bullet $\pi' = \sigma \pi \sigma^{-1}$
- Elements of this form are conjugates of π

Conjugation Rack

Let
$$\sigma \rhd \pi = \sigma \pi \sigma^{-1}$$
. Then $\tau \rhd (\sigma \rhd \pi) = \tau \sigma \pi \sigma^{-1} \tau^{-1}$

$$= \tau \sigma \tau^{-1} \tau \pi \tau^{-1} \tau \sigma^{-1} \tau^{-1}$$

$$= \tau \sigma \tau^{-1} \tau \pi \tau^{-1} \tau \sigma^{-1} \tau^{-1}$$

$$= (\tau \rhd \sigma) \rhd (\tau \rhd \pi).$$

Properties of ⊳

- For all π , σ , τ , $\tau \rhd (\sigma \rhd \pi) = (\tau \rhd \sigma) \rhd (\tau \rhd \pi)$
- For all σ , τ , there is a unique π such that $\sigma \rhd \pi = \tau$

Any set with a operation satisfying these properties is called a rack.

Conjugacy classes of a group form racks.

Racks in Research

- Pointed Hopf algebras are important algebraic structures
- Research aims to classify finite-dimensional pointed Hopf algebras
- Racks are important!
- Pointed Hopf algebras can be constructed from finite racks

Question

Can we easily determine whether a pointed Hopf algebra constructed from a rack is finite-dimensional?

Type D

- If a rack is of type D, pointed Hopf algebras constructed from it are infinite-dimensional
- It makes sense to attempt to classify finite racks of type D
- Simple racks are "building blocks" for racks
 - A simple rack is a rack with no nontrivial quotients
- Simple racks can be constructed from simple groups

Question

Can we determine whether a simple rack constructed from \mathbb{A}_n is of type D?

Previously Unsolved Cases

п	ℓ	Cycle type of ℓ	t
any	id	(1^n)	odd,gcd(t,n!)=1
5		(1^5)	4
5	involution	$(1,2^2)$	4, odd
6		$(1^2, 2^2)$	odd
8		(2^4)	odd
any	order 4	$(1^{r_1}, 2^{r_2}, 4^{r_4})$ with $r_4 > 0$, $r_2 + r_4$ even	2

n	Cycle type of $\ell(1\ 2)$	t
any	$(1^{s_1}, 2^{s_2}, \dots, n^{s_n})$ with $s_1 \leq 1$, $s_2 = 0$,	any
	$s_h \ge 1$ for some h with $3 \le h \le n$	
	(15) Q52 A5A):+L - / Q \ 1	
	$(1^{s_1}, 2^{s_2}, 4^{s_4})$ with $s_1 \leq 2$ or $s_2 \geq 1$,	2
	$\mathit{s}_2 + \mathit{s}_4$ odd, $\mathit{s}_4 \geq 1$	
5	$(1^3, 2)$	2, 4
6	$(1^4, 2)$	2
	(2^3)	2
7	$(1,2^3)$	2, odd
8	$(1^2, 2^3)$	odd
10	(2^5)	odd

Our Results

n	ℓ	Cycle type of ℓ	t
any	id	(1^n)	odd,gcd(t,n!)=1
5		$ (1^5) $	4
5	involution	$(1,2^2)$	4, odd
6		$(1^2, 2^2)$	odd
8		(2 ⁴)	odd
any	order 4	$(1^{r_1}, 2^{r_2}, 4^{r_4})$ with $r_4 > 0$, $r_2 + r_4$ even	2

n	Cycle type of $\ell(1\ 2)$	t
any	$(1^{s_1}, 2^{s_2}, \dots, n^{s_n})$ with $s_1 \leq 1$, $s_2 = 0$,	any
	$s_h \ge 1$ for some h with $3 \le h \le n$	
	$(1^{s_1}, 2^{s_2}, 4^{s_4})$ with $s_1 \leq 2$ or $s_2 \geq 1$,	2
	$\mathit{s}_{2}+\mathit{s}_{4}$ odd, $\mathit{s}_{4}\geq1$	
5	$(1^3, 2)$	2, 4
6	$(1^4, 2)$	2
	$(2^3)^{'}$	2
7	$(1,2^3)$	2, odd
8	$(1^2, 2^3)$	odd
10	(2^5)	odd

Acknowledgements

- Prof. Julia Plavnik and Dr. Héctor Peña Pollastri
- MIT PRIMES
- My family

References

- [1] Nicolás Andruskiewitsch and Hans-Jürgen Schneider. "Pointed Hopf Algebras". In: *New Directions in Hopf Algebras*. Cambridge University Press. 2002, pp. 1–68.
- [2] Nicolás Andruskiewitsch et al. "Finite-dimensional pointed Hopf algebras with alternating groups are trivial". In: *Annali di Matematica Pura ed Applicata* 190.2 (2011), pp. 225–245.
- [3] Nicolás Andruskiewitsch et al. "On twisted homogeneous racks of type D". In: *Revista de la Union Matematica Argentina* 51.2 (2010), pp. 1–16.
- [4] Joseph Vulakh. "Twisted homogeneous racks over the alternating groups". In: AMS Contemporary Mathematics (to appear). URL: https://arxiv.org/abs/2305.19136.