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Abstract. In this paper, we present a unified study of the limiting density in
one-dimensional random sequential adsorption (RSA) processes where segment lengths are
drawn from a given distribution. In addition to generic bounds, we are also able to char-
acterize specific cases, including multidisperse RSA, in which we draw from a finite set of
lengths, and power-law RSA, in which we draw lengths from a power-law distribution.

1. Introduction

The field of random sequential adsorption (RSA) studies processes in which particles
are sequentially adsorbed onto a substrate such that the particles do not overlap. Known
also as simple sequential inhibition, on-line packing, and the hard-core model, RSA is a
fundamental process that has been studied in mathematics and statistical physics. RSA
also has many applications to biology and chemistry: for example, reactions on polymer
chains have been modelled with RSA, along with various chemisorption (chemical adsorption)
processes. See [1, 2] for surveys of RSA and its applications.

Meanwhile, the theoretical study of RSA has proven difficult. Higher dimensional RSA has
scarcely been studied mathematically [3,4], and even in one dimension, only a small number
of RSA processes are rigorously understood, despite the large amount of interest in them. In
statistical physics, many papers study RSA with empirical Monte-Carlo simulations [5, 6].

The mathematical study of RSA began with the Rényi parking problem, first proposed by
Alfred Rényi [7] in 1958. On the interval [0, L], we randomly park a length-1 segment by
choosing its left endpoint uniformly at random from [0, L − 1]. Then, we randomly park
a second length-1 segment. If the second segment intersects the first, we discard it and
randomly choose a new length-1 segment until it does not overlap with the first. In this way,
we continue parking length-1 segments by randomly choosing them on [0, L] and discarding
them if they overlap with any previously parked segments. We repeat this process until the
gaps between segments are too small for any more segments to be parked, at which point we
say the process has reached saturation.

Figure 1. Rényi’s parking problem.
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Multidisperse RSA with lengths 1 and 3.

RSA with convergent ldf ν(ℓ) = ℓ
−2.

RSA with divergent ldf ν(ℓ) = 1.

Figure 2. Different RSA processes.

Rényi studied the number of segments parked at saturation, given by the random variable
NL. He first derived an integral recurrence equation for E[NL], the expected value of NL:

E[NL+1] = 1 + 2

∫ L

0

E[Nt] dt.

Then, using Laplace transforms and a Tauberian theorem, he proved that E[NL] grew
linearly in L:

Theorem 1.1 (Rényi). Let NL be defined as above. Then,

lim
L→∞

E[NL]

L
= α,

where α is the Rényi parking constant, given by

α =

∫ ∞

0

exp

(

−2
∫ t

0

1− e−u

u
du

)

dt ≈ 0.747598.

In this paper, we study generalizations of Rényi’s parking problem in which we park
segments of varying lengths. These processes are also known as cooperative and competitive
RSA. One such process we study is known as multidisperse RSA, in which there are n different
possible lengths, each with a different probability. In other words, when we randomly choose
a segment to park, we first randomly choose its length from the n different lengths. Then,
we choose a random location for the segment on the interval by choosing its left endpoint
uniformly at random from [0, L]. If the segment is not fully contained within the interval
[0, L], or if it overlaps with another segment, we discard it and choose a new segment with a
new random length and position. Multidisperse RSA has been widely studied in statistical
physics [5, 6, 8, 9] and is motivated by many chemisorption processes in which a mixture of
chemicals are absorbed onto a substrate [10,11].

In this paper, we study the total number of each type of segments parked at saturation.
In particular, let the total number of parked type-k segments be Nk,L. We first prove an
integral recurrence equation for E[Nk,L], and similarly to Rényi’s original analysis, we use
Laplace transforms with a Tauberian theorem to prove that E[Nk,L] grows linearly in L. In

Theorem 4.5, we derive an exact analytical expression for the limit limL→∞
E[Nk,L]

L
.

Moreover, we study another generalization of the Rényi parking problem given by choosing
segment lengths from a continuous distribution of lengths. We describe the distribution of
lengths with a length distribution function (ldf) ν : [1,∞)→ R, which describes the relative
probabilities of choosing each length. When

∫∞
1

ν(ℓ) dℓ <∞, we call ν convergent, and when
the integral diverges, we call ν divergent. Intuitively, convergent ldfs tend to weight small
segment lengths more, whereas divergent ldfs tend to weight large segment lengths more (c.f.
Figure 2).
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(a) Convergent ldf ν(ℓ) = ℓ
−2.
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(b) Divergent ldf ν(ℓ) = 1.

Figure 3. Growth of E[SL] with various length distributions.

In our analysis, we study SL, the empty space on the interval not covered by segments
at saturation, and we find that convergent and divergent ldfs yield fundamentally different

behavior. Define Zν(L) =
∫ L

0
ν(ℓ) dℓ to be the normalizing constant of ν. We again derive a

general integral recurrence equation for E[SL]:
(∫ L

0

Zν(t) dt

)

E[SL] = 2

∫ L

0

E[St]Zν(L− t) dt.

When ν is convergent, we then prove that E[SL] grows linearly with L, under a general
condition on ν (c.f. Theorem 5.3). In the proof, we first derive inequalities from the integral
recurrence equation, which we use to derive differential inequalities on the Laplace transform
of E[SL]. We then use a novel analysis to characterize the asymptotic behavior of the Laplace
transform of E[SL] around 0, which we use with a Tauberian theorem to prove our result.

Meanwhile, when ν is divergent, we use an inductive argument to prove, under a general
condition on ν, that E[SL] grows sublinearly with L (c.f. Theorem 5.5).

Different RSA processes in which lengths are drawn from a distribution have been pre-
viously considered by mathematicians [12, 13], which our work generalizes. Moreover, only
distributions with a maximum segment length have been studied before, but we allow arbi-
trarily large segment lengths, which yields a different, more complicated analysis.

Finally, we consider a class of ldfs given by power-law functions. Various power-law size
distributions have been considered in RSA processes before [14]. Using bounding techniques,
we are able to prove tight bounds on E[SL] to show that it grows roughly asymptotic to a
specific power function (c.f. Theorem 6.3). We are also able to characterize the uniform
length distribution as a special case of our work.

In this paper, we provide formal definitions of the processes we study in Section 2. In
Section 4, we study multidisperse RSA processes. In Section 5, we consider RSA with a
general length distribution, and in Section 6, we study power-law length distributions.

2. Preliminaries

2.1. Notation. Throughout this paper, we always park segments on an interval. We always
use L to denote the length of interval, T to denote time in RSA processes, ν to denote length
distribution functions (c.f. Definition 2.1), and Zν to denote the normalizing constant of ν
(c.f. Definition 2.2). We use [n] to denote the set {1, 2, · · · , n}. To write that x is a real

number drawn uniformly at random from an interval [a, b], we write x
R←− [a, b].
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We use R
>0 to denote the positive reals and R

≥0 to denote the nonnegative reals. We
define the function Γ : R>0 → R as the Gamma function, given by

Γ(z) =

∫ ∞

0

tz−1et dt.

We use Ein : R→ R to denote the modified exponential integral function, defined as

(2.1) Ein(z) =

∫ z

0

1− e−t

t
dt.

Finally, we use the following symbols for asymptotic notation (always taken as L→∞):

• f = o(g) and f ≪ g denote limL→∞ f(L)/g(L) = 0.
• f(L) ∼ g(L) denotes limL→∞ f(L)/g(L) = 1.

2.2. RSA Processes. We study the ν-RSA process, in which segment lengths are drawn
from a distribution given by a length distribution function. If the distribution of lengths
contained arbitrarily small lengths, then the process would never terminate, as we would
always be able to park more segments. Thus, without loss of generality, we require that the
minimum segment length in the distribution be 1. A formal definition is as follows:

Definition 2.1. A length distribution function (or ldf ) is a nonnegative integrable function

ν : [0,∞) → R
>0 such that ν(ℓ) = 0 for ℓ ∈ [0, 1), and

∫ ℓ

1
ν(t) dt > 0 for all ℓ > 1, which is

the condition that the minimum segment length is equal to 1.

We will construct distributions on [0, L] induced by an ldf ν on [0, L]. To normalize the
distribution, we define a normalizing constant for every ldf:

Definition 2.2. Given ldf ν(ℓ), its normalizing constant is the function Zν : R≥0 → R
≥0

given by

Zν(L) =

∫ L

0

ν(ℓ) dℓ.

We also must make the following distinction between convergent and divergent ldfs:

Definition 2.3. We say an ldf ν(ℓ), with normalizing constant Zν , is convergent if

lim
L→∞

Zν(L) <∞.

Otherwise, ν(ℓ) is divergent.

Given an ldf, we describe an RSA process in which segment lengths are drawn from the
ldf truncated below the interval length L. We call this the ν-RSA process, formally defined
as follows:

Definition 2.4 (RSA Process). Let ν(ℓ) be an ldf. Then, let the ν-RSA process be the
following stochastic process, in which we attempt to park segments on an interval of length
L where the segment lengths drawn are from ν(ℓ):

Initialize

• I0 = [0, L], the empty region not occupied by parked segments,
• P0 = ∅, the set of parked segments.

Then, for T = 1, 2, . . .
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• Choose b
R←− [0, L], and choose a length ℓ ∈ [1, L] according to the probability density

function pL(ℓ), where pL(ℓ) ∝ ν(ℓ), viz. pL(ℓ) =
ν(ℓ)

Zν(L)
.

• If the segment (b, b+ℓ) ⊆ IT−1, let IT = IT−1\(b, b+ℓ) and PT = PT−1∪{(b, b+ℓ)}. We
say the segment (b, b+ ℓ) has been parked. Otherwise, let IT = IT−1 and PT = PT−1,
and we say that the segment (b, b+ ℓ) has been rejected.
• If all connected intervals in IT are of length less than 1, we say the process is at

saturation.

We define the empty space at saturation to be the random variable SL, defined as the total
length not covered by parked segments at saturation, viz.

SL = lim
T→∞

λ(IT ),

where λ(IT ) denotes the Lesbegue measure of IT .

Remark 2.5. Ney in [12] and Ananjevskii in [13] analyze similar processes to the one described
above. However, in their processes, we first choose the segment length and then place the
segment randomly on the interval, with no possibility of rejection. Because of this, their
process tends to weight large segments more than ours. Moreover, they consider length
distributions bounded above by a maximum segment length, whereas we allow arbitrarily
large segments, which yields a different analysis.

A version of the ν-RSA process is the multidisperse process (c.f. Definition 4.1), in which
we draw segment lengths from a discrete set of lengths ℓ1 = 1, ℓ2, · · · , ℓn, according to
probabilities q1, · · · , qn. Informally, the multidisperse process can be though of as the ν-
RSA process with

ν(ℓ) = q1δ(ℓ− ℓ1) + · · ·+ qnδ(ℓ− ℓn),

where δ is the Dirac delta function. We will study multidisperse processes in Section 4.
In Section 3, we study a related collection of processes, known as the “ghost” or “Matérn”

processes, given by an appropriate thinning of RSA processes (see Definition 3.1 for a formal
definition). In general, ghost processes are better understood than RSA processes.

2.3. Analytic Tools. We employ the Laplace transform throughout this paper.

Definition 2.6. The Laplace transform of a function f : R → R is the function L{f} :
R

>0 → R given by

L{f}(s) =
∫ ∞

0

f(x)e−sx dx.

Proposition 2.7 (Laplace Transform Properties). Let F (s), G(s) be the Laplace transforms
of functions f, g, and let ⋆ be the convolution operator, defined as

(f ⋆ g)(x) =

∫ x

0

f(t)g(x− t) dt =

∫ x

0

f(x− t)g(t) dt.

Then, the following well-known properties hold:

(1) (Linearity) For a, b ∈ R, L{af(x) + bg(x)} = aF (s) + bG(s).
(2) (Differentiation) Let f be n-times differentiable. Moreover, let f(0+) denote the

limit limx→0+ f(x), and let f (n) denote the n-th derivative of f . Then, L{f (n)(x)} =
snF (s)−∑n

k=1 s
n−kfk−1(0+).

(3) (Integration) L
{∫ x

0
f(t) dt

}

= F (s)
s
.
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(4) (Translation) For a ∈ R, L{f(x+ a)} = eas
(

F (s)−
∫ a

0
f(x)e−sx dx

)

.

(5) (Time-Multiplication) For n ∈ Z
>0, L{xnf(x)} = F (n)(s).

(6) (Convolution) L{(f ⋆ g)(x)} = F (s)G(s).
(7) (Abelian Final Value Theorem) If f is bounded and there exists a constant C for

which limx→∞ f(x) = C, then lims→0+ sF (s) = C.

Our analysis relies on the Hardy-Littlewood Tauberian Theorem (c.f. [15] p. 30), which
relates the behavior of a function’s Laplace transform around 0 to the behavior of the function
at infinity.

Theorem 2.8 (Hardy-Littlewood Tauberian Theorem). If f : R → R is positive and inte-
grable, e−stf(t) is integrable, and as s→ 0, there exist constants H, β such that L{f}(s) ∼ H

sβ
,

then as x→∞,
∫ x

0
f(t) dt ∼ H

Γ(β+1)
xβ.

We also will require a couple technical propositions, which we will prove here. Analogous
forms of Proposition 2.9 and Proposition 2.10 with the opposite inequality also hold.

Proposition 2.9. Let y, v : [a, b) → R be k-times differentiable functions such that for all
x ∈ [a, b),

y(k)(x) < C(x) +
k−1
∑

i=0

ci(x)y
(i)(x), v(k)(x) = C(x) +

n−1
∑

i=0

ci(x)v
(i)(x),

where each ci(x) is a nonnegative function on [a, b), and C : [a, b) → R. Moreover, let
y(i)(a) = v(i)(a) for each 0 ≤ i < k. Then, for all x ∈ [a, b), y(x) ≤ v(x).

Proof. Consider f(x) = v(x)− y(x). Note that f (k)(a) = 0 for k < n, and

(2.2) f (n)(x) >
n−1
∑

k=0

ck(x)f
(k)(x).

Notably, f (n)(a) > 0. We now claim there exists ǫ such that f (k)(x) is positive on (a, a+ ǫ)
for all k ≤ n. This is because f (k)(x) satisfies

(

f (k)
)(1)

(a) =
(

f (k)
)(2)

(a) = · · · =
(

f (k)
)(n−k−1)

(a) = 0,
(

f (k)
)(n−k)

(a) > 0,

where
(

f (k)
)(i)

is the i-th derivative of f (k). The general derivative test on f (k) then implies

that f (k) is strictly increasing in a small neighborhood [a, a + ǫk) around a. As f (k)(a) = 0,
this implies that f (k)(x) is positive on (a, a+ ǫk). Letting ǫ be the minimum of the ǫk gives
us our desired interval (a, a+ ǫ).

Now, for contradiction, assume there exists x such that f(x) < 0. Then, the following
infimum exists:

m := inf{x ∈ [a, b) : f (k)(x) < 0 for some k < n}.
Note that m ≥ a+ ǫ, as the f (k)’s are nonnegative on [a, a+ ǫ). We claim there exists some
K < n for which f (K)(m) ≤ 0. Otherwise, f (k)(m) > 0 for all k < n, and by continuity of
the f (k)’s, there exists a sufficiently small ǫ′ for which all f (k)(x) are positive on [m,m+ ǫ′],
which contradicts the definition of m.
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Thus, let f (K)(m) ≤ 0, and let xK = m. By the mean value theorem, there exists some
xK+1 in (0,m) such that

f (K+1)(xK+1) =
f (K)(xK)− f (K)(0)

xK − 0
=

f (K)(xK)

xK

≤ 0.

We may repeatedly apply the mean value theorem in this fashion, showing that there ex-
ists xK+2 ∈ (0,m) for which f (K+2)(xK+2) ≤ 0, and so on, until we find xn ∈ (0,m) for
which f (n)(xn) ≤ 0. However, because xn < m, we know f (k)(xn) ≥ 0 for all k < n. By
Equation 2.2, we have

0 ≥ f (n)(xn) >
n−1
∑

k=0

ck(xn)f
(k)(xn) ≥ 0.

Of course, it is impossible for 0 > 0, so f(x) = v(x) − y(x) ≥ 0 on [a, b). This implies the
lemma. �

Proposition 2.10. Let y, v : (a, b]→ R be differentiable functions such that y(b) = v(b) and
for all x ∈ (a, b],

−y′(x) < C(x) + c0(x)y,

−v′(x) = C(x) + c0(x)v,

where c0(x) : (a, b]→ R
≥0 and C : (a, b]→ R. Then, y ≤ v on (a, b).

Proof. Let y⋆(x) = y(−x) and v⋆(x) = v(−x). Using our given conditions, the substitution
x = −z yields

y′⋆(z) < C(−z) + c0(−z)y⋆(−z),
v′⋆(z) = C(−z) + c0(−z)y⋆(−z),

for all z ∈ [−b,−a). This now satisfies Proposition 2.9, which implies that y⋆(z) ≤ v⋆(z) on
[−b,−a), and thus that y(x) ≤ v(x) on (a, b]. �

Proposition 2.11. Let f(x) be a function f : (0, a)→ R. If for all ǫ > 0, there exists lǫ ∈ R

and δǫ ∈ R
>0 such that for all 0 < x < δǫ, we have lǫ < f(x) < lǫ + ǫ, then limx→0+ f(x)

exists.

Proof. Let L = supǫ>0 lǫ, which must be finite: if there existed arbitrarily large lǫ, then f(x)
as x→ 0+ would be unbounded, which contradicts our bound f(x) < lǫ + ǫ.

Fix arbitrary ν > 0. We will find δ for which x < δ implies L− ν < f(x) < L+ ν, proving
that limx→0+ f(x) = L.

First, choose some ǫ1 > 0 for which lǫ1 > L− ν. For x < δǫ1 , we have f(x) > lǫ1 > L− ν,
which completes one direction. Now let ǫ2 = ν. For x < δǫ2 , we have f(x) < lǫ2 + ǫ2 < L+ ν.
Thus, taking δ = inf{δǫ1 , δǫ2} completes the proof. �

3. Warm Up: Multidisperse Ghost Process

Here, we compute the behavior of the expected jamming length of multidisperse ghost
processes, formally defined as follows (this is a slight modification of Definition 4.1):

Definition 3.1 (Multidisperse Ghost Process). Fix lengths ℓ1 = 1, . . . , ℓn ∈ R
>0 and rates

q1, . . . , qn ∈ R
>0 such that ℓ1 < ℓ2 < · · · < ℓn and q1 + · · · + qn = 1. Then, let the

((ℓ1, q1), · · · , (ℓn, qn))-multidisperse ghost process (abbreviated asMG((ℓ1, q1), · · · , (ℓn, qn)))
be the following:

Initialize
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• I0 = [0, L], the empty region not occupied by parked or ghost segments,
• P0 = ∅, the set of parked segments.

Then, at times T = 1, 2, · · ·
(1) Choose segment center b

R←−
[

−1
2
ℓn, L+ 1

2
ℓn
]

, and choose i from [n] with the prob-

ability of choosing i = k as qk. Then, we say that segment
(

b− 1
2
ℓi, b+

1
2
ℓi
)

is a
candidate segment of type i.

(2) If
(

b− 1
2
ℓi, b+

1
2
ℓi
)

⊆ IT−1, let PT = PT−1∪{
(

b− 1
2
ℓi, b+

1
2
ℓi
)

}. We say the candidate
segment has been parked. Otherwise, let PT = PT−1, and we say that the candidate
segment has become a ghost.

(3) Regardless of whether the segment has been parked, let IT = IT−1 \
(

b− 1
2
ℓi, b+

1
2
ℓi
)

.

We define the type-i jamming number as the total number of type i segments parked, viz.

Ni,L = lim
T→∞

|{A ∈ PT : λ(A) = ℓi}|,

where λ(A) again denotes the Lesbegue measure of A. Moreover, let JL be the random
variable representing the total length of parked segments, viz.

JL = lim
T→∞

∑

A∈PT

λ(A).

Remark 3.2. This definition allows segment centers to be parked on [−1
2
ℓn, 0] and [L,L+ 1

2
ℓn]

to avoid different behavior at the ends of the interval [0, L]. Moreover, we use segment centers
in this definition for simplicity in the following proofs, but when we define RSA processes
(c.f. Definition 2.4, Definition 4.1), we use the left endpoints.

For the remainder of the section, the ℓi’s will always be positive reals representing the
segment lengths in the multidisperse ghost process, and the qi’s will always be positive reals
summing to 1 that represent the probabilities of choosing each segment. Moreover, we will
always use σ to denote the average segment length, defined as follows:

Definition 3.3. InMG((ℓ1, q1), · · · , (ℓn, qn)), the average segment length σ is given by σ =
∑n

i=1 qiℓi.

We are now able to derive a simple asymptotic for the multidisperse ghost process.

Proposition 3.4. InMG((ℓ1, q1), · · · , (ℓn, qn)), the type-k jamming number Nk,L (c.f. Def-
inition 3.1) satisfies

lim
L→∞

E[Nk,L]

L
=

qk
σ + ℓk

.

Proof. Fix k ∈ [n]. At time T , we choose a type-k candidate segment with probability
qk, and this segment is entirely contained within [0, L] exactly when the segment center
b ∈

[

1
2
ℓk, L− 1

2
ℓk
]

, which occurs with probability L−ℓk
L+ℓn

.

Now, assume we have chosen candidate segment
(

b− 1
2
ℓk, b+

1
2
ℓk
)

⊆ [0, L], so b is fixed.
Fix time T ′ < T . To compute the probability that the candidate segments at times T and
T ′ intersect, we condition over the type of the candidate segment at time T ′.

Assume that at time T ′, we have chosen a candidate segment of type-i with center b′. The
candidate segments at times T and T ′ do not intersect when |b − b′| > 1

2
(ℓi + ℓk). Since b′

is uniformly distributed on
[

−1
2
ℓn, L+ 1

2
ℓn
]

, the candidate segments do not intersect with

probability L+ℓn−(ℓi+ℓk)
L+ℓn

.
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The probability of choosing type-i at time T ′ is simply qi, so the probability that the
candidate segments at times T and T ′ do not intersect is

n
∑

i=1

qi ·
L+ ℓn − (ℓi + ℓk)

L+ ℓn
= 1− σ + ℓk

L+ ℓn
.

The candidate segments before time T are independently chosen, so in fact, the probability

that the candidate at time T intersects with no previous candidate is
(

1− σ+ℓk
L+ℓn

)T−1

. Thus,

the probability that at time T , we successfully park a type-k segment is

qk ·
L− ℓk
L+ ℓn

·
(

1− σ + ℓk
L+ ℓn

)T−1

.

Summing over times T from 1 to ∞, the expected number of parked type-k segments is

E[Nk,L] =
∞
∑

T=1

qk ·
L− ℓk
L+ ℓn

·
(

1− σ + ℓk
L+ ℓn

)T−1

=
qk(L− ℓk)

σ + ℓk
.

Thus, limL→∞
E[Nk,L]

L
= qk

σ+ℓk
. �

Using Proposition 3.4, we may find that in MG((ℓ1, q1), · · · , (ℓn, qn)), the total jamming
length satisfies

(3.1) lim
L→∞

E[JL]

L
=

n
∑

k=1

qkℓk
σ + ℓk

,

as by definition, JL =
∑n

k=1 ℓkNk,L. We now prove bounds on this expression.

Corollary 3.5. In MG((ℓ1, q1), (ℓ2, q2)), the jamming length satisfies

2
√
ℓ1ℓ2

(
√
ℓ1 +

√
ℓ2)2
≤ lim

L→∞

E[JL]

L
≤ 1

2
.

The maximum is achieved when either q1 = 0 or q2 = 0. The minimum is achieved when
σ =
√
ℓ1ℓ2.

Proof. Fix the lengths ℓ1 < ℓ2, and let F : R2 → R be given as

F (q1, q2) = lim
L→∞

E[JL]

L
=

q1ℓ1
σ + ℓ1

+
q2ℓ2
σ + ℓ2

,

where the last equality is given by Equation 3.1. We wish to bound F in the region R ⊂ R
2

where q1 + q2 = 1 and q1, q2 ≥ 0. If any relative extrema occur in the interior of R, the
method of Lagrange multipliers implies that ∇F = λ〈1, 1〉, or that dF

dq1
= dF

dq2
, viz.

ℓ21 + q2ℓ1ℓ2
(σ + ℓ1)2

− q2ℓ1ℓ2
(σ + ℓ2)2

= − q1ℓ1ℓ2
(σ + ℓ1)2

+
q1ℓ1ℓ2 + ℓ22
(σ + ℓ2)2

.

Rearranging, this becomes ℓ1
(σ+ℓ1)2

= ℓ2
(σ+ℓ2)2

, which precisely holds when σ =
√
ℓ1ℓ2. This

occurs when q1 =
√
ℓ2√

ℓ1+
√
ℓ2

and q2 =
√
ℓ1√

ℓ1+
√
ℓ2

, which together yield F (q1, q2) = 2
√
ℓ1ℓ2

(
√
ℓ1+

√
ℓ2)2

.

This value is also equal to 1
2
−
(√

ℓ1−
√
ℓ2√

ℓ1+
√
ℓ2

)2

, so it is strictly less than 1
2
.
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There are also relative extrema which lie on the boundary of R. In particular, if q1 = 0
or q2 = 0, we are immediately given a value of F (q1, q2) = 1

2
. We have now found all the

relative extrema, which thus bound the value of F between 2
√
ℓ1ℓ2

(
√
ℓ1+

√
ℓ2)2

and 1
2
. �

We now extend our work with the processMG((ℓ1, q1), (ℓ2, q2)) to the more general process
MG((ℓ1, q1), . . . , (ℓn, qn)).

Corollary 3.6. In MG((ℓ1, q1), · · · , (ℓn, qn)), the jamming length satisfies

2
√
ℓ1ℓn

(
√
ℓ1 +

√
ℓn)2

≤ lim
L→∞

E[JL]

L
≤ 1

2
.

Proof. Fix the lengths ℓ1 < · · · < ℓn. We wish to bound the function F : Rn → R, given by

F (q1, . . . , qn) = lim
L→∞

E[JL]

L
=

n
∑

k=1

qkℓk
σ + ℓk

.

Again, we only consider F in the region R ⊂ R
n where q1 + · · ·+ qn = 1 and q1, . . . , qn ≥ 0.

We will induct on the value of n, where the base case with n = 2 is proved in Corollary 3.5
(and the case where n = 1 is trivial).

Assume now that Corollary 3.6 holds for n = M − 1. We will show it holds for n = M ,
where M ≥ 3. We first investigate relative extrema within the region R using Lagrange
multipliers. If such an extrema existed, we must have ∇F = λ〈1, · · · , 1〉, or equivalently,
dF
dq1

= · · · = dF
dqM

.

Fix arbitrary i, j ∈ [M ]. Then, dF
dqi

= dF
dqj

becomes

ℓi





1

σ + ℓi
−
∑

k∈[M ]

qkℓk
(σ + ℓk)2



 = ℓj





1

σ + ℓj
−
∑

k∈[M ]

qkℓk
(σ + ℓk)2



 ,

which simplifies to

σ

(σ + ℓi)(σ + ℓj)
=
∑

k∈[M ]

qkℓk
(σ + ℓk)2

.

The right hand side is a constant expression not depending on i and j. Thus, σ
(σ+ℓi)(σ+ℓj)

too

must be constant for any choice of i and j, which only can occur when all the lengths are
equal, viz. ℓ1 = · · · = ℓM . This cannot happen, as our lengths are all distinct. Thus, F has
no relative extrema in the interior of the region R.

Both the minimum and maximum of F must then lie on the boundary of R, so fix an
arbitrary qi = 0. This now reduces our problem to the case with n = M − 1, and by the
inductive hypothesis, the maximum is always 1

2
.

Meanwhile, if i = 1, the minimum is 2
√
ℓ2ℓM

(
√
ℓ2+

√
ℓM )2

. If i = M , the minimum is
2
√

ℓ1ℓM−1

(
√
ℓ1+
√

ℓM−1)2
.

Otherwise, the minimum is 2
√
ℓ1ℓM

(
√
ℓ1+

√
ℓM )2

. By writing 2
√
ℓ1ℓM

(
√
ℓ1+

√
ℓM )2

as 1
2
−
(√

ℓ1−
√
ℓM√

ℓ1+
√
ℓM

)2

and the

others analogously, it is straightforward to show that 2
√
ℓ1ℓM

(
√
ℓ1+

√
ℓM )2

is the least of the three

minima, which completes the proof. �
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4. Multidisperse Process

Here, we will analyze the behavior of multidisperse processes, defined formally as follows:

Definition 4.1 (Multidisperse Process). Fix lengths ℓ1 = 1, . . . , ℓn ∈ R
>0 and rates

q1, . . . , qn ∈ R
>0 such that ℓ1 < ℓ2 < · · · < ℓn and q1 + · · · + qn = 1. Then, let the

((ℓ1, q1), · · · , (ℓn, qn))-multidisperse process, abbreviated as M((ℓ1, q1), · · · , (ℓn, qn)), be the
following process:

Initialize

• I0 = [0, L], the empty region not occupied by parked segments,
• P0 = ∅, the set of parked segments.

Then, for T = 1, 2, . . .

(1) Choose left endpoint b
R←− [0, L], and choose i from [n] with the probability of choosing

i = k as qk. Then, we say that segment (b, b+ ℓi) is a candidate segment of type i.
(2) If (b, b + ℓi) ⊆ IT−1, let It = IT−1 \ (b, b + ℓi) and PT = PT−1 ∪ {(b, b + ℓi)}. We say

the segment (b, b + ℓi) has been parked. Otherwise, let IT = IT−1 and PT = PT−1,
and we say that the segment (b, b+ ℓi) has been rejected.

We define the type i jamming number to be the random variable Ni,L, defined as the total
number of type i segments parked at saturation, viz.

Ni,L = lim
T→∞

|{A ∈ PT : λ(A) = ℓi}|,

where λ(A) denotes the Lesbegue measure of A.

Like in the multidisperse ghost process, for the remainder of the section, the ℓi’s will
always be positive reals representing the segment lengths, and the qi’s will always be positive
reals summing to 1 that represent the probabilities of choosing each segment. The shortest
segment length, ℓ1, is always implicitly taken to be 1. Moreover, we will always take σ to be
the average segment length, defined exactly as it was for the multidisperse ghost process:

Definition 4.2. In M((ℓ1, q1), · · · , (ℓn, qn)), the average segment length σ is given by σ =
∑n

i=1 qiℓi.

We will study the expected number of type-k segments placed. We begin with the following
integral recurrence formula:

Proposition 4.3. In M((ℓ1, q1), · · · , (ℓn, qn)), for L ≥ ℓn,

E[Nk,L] =
1

L− σ

(

qk(L− ℓk) + 2
n
∑

i=1

qi

∫ L−ℓi

0

E[Nk,t] dt

)

.

Proof. On an interval [0, L] with length L ≥ ℓn, our first attempt to park a segment results
in parking a type i segment with probability qi · L−ℓi

L
, as we must first choose a type i segment

with probability qi, then successfully park it by choosing its left endpoint to be in [0, L− ℓi],
which occurs with probability L−ℓi

L
.

Let Ai be the event that the first segment eventually parked is type i. If no segment is
parked on the first attempt, we repeatedly make new, independent attempts, so P[Ai] ∝
qi · L−ℓi

L
. Renormalizing the probabilities yields P[Ai] =

qi(L−ℓi)
L−σ

.
Given that Ai occurs, let the position of the first segment’s left endpoint be t, which is

a random variable uniformly distributed on [0, L − ℓi]. The interval [0, L] is then broken
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into two subintervals of length t and L − li − t, on which the same multidisperse process
continues. The expected numbers of type-k intervals placed on the two subintervals are then
E[Nk,t] and E[Nk,L−ℓi−t], respectively. Thus, integrating over the random variable t, we have
that when i 6= k,

E[Nk,L | Ai] =
1

L− ℓi

∫ L−ℓi

0

(E[Nk,t] + E[Nk,L−ℓi−t]) dt =
2

L− ℓi

∫ L−ℓi

0

E[Nk,t] dt.

When i = k, we have just placed a type-k segment and must accordingly add 1 to E[Nk,L]:

E[Nk,L | Ak] = 1 +
2

L− ℓk

∫ L−ℓk

0

E[Nk,t] dt.

Finally, conditioning over the Ai and simplifying, we have

E[Nk,L] =
n
∑

i=1

P[Ai]E[Nk,L | Ai] =
1

L− σ

(

qk(L− ℓk) + 2
n
∑

i=1

qk

∫ L−ℓk

0

E[Nk,t] dt

)

.

�

Using this recurrence, we will use Laplace transforms to derive precise asymptotics for
E[Nk,L] as L→∞.

Remark 4.4. The bidisperse process, i.e. the multidisperse process with n = 2 different
segment lengths, has been investigated before by various authors. In particular, Subashiev

and Luryi derive in [8] an exact expression for limL→∞
E[Nk,L]

L
in the bidisperse process. Our

work here extends their work to the multidisperse process, and by choosing n = 2, one
recovers their formula.

Theorem 4.5. Consider M((ℓ1, q1), · · · , (ℓn, qn)), and fix k ∈ [n]. Define functions Pi;k :
R

>0 → R as

(4.1) Pi;k(s) :=

∫ ℓn

ℓn−ℓi

E[Nk,L]e
−sL dL,

and define Gk : R
>0 → R as

(4.2) Gk(s) := e−(ℓn−σ)s
(

qk + s(ℓn − σ)E[Nk,ℓn ]
)

+ 2seσs
n
∑

i=1

qie
−ℓisPi;k(s).

Then,

(4.3) lim
L→∞

E[Nk,L]

L
=

∫ ∞

0

Gk(t) exp

(

−2
n
∑

i=1

qi Ein(ℓit)

)

dt.

Example 4.6. Consider E[N1,L] in the multidisperse process M((1, .5), (1.3, .3), (1.5, .2)),
which has 3 possible segment lengths of 1, 1.3, and 1.5. Note that because E[N1,L] = 0

when L < 1, each Pi;1 is equal to
∫ 1.5

1
E[N1,L]e

−sL dL in this case. To compute Pi;1, we

compute that E[N1,L] is 1 when 1 ≤ L < 1.3 and .5(L−1)
.5(L−1)+.3(L−1.3)

when 1.3 ≤ L < 1.5. Then,

noting σ = .31, we have

G1(s) := e−.31s(.5 + .25s) + 2s(.5e.19s + .3e−.11s + .2e−.31s)

∫ 1.5

1

E[N1,L]e
−sL dL,
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Figure 4. Plots of E[Nk,L] inM((1, .5), (1.3, .3), (1.5, .2)).

and numerically integrating Equation 4.3 yields

lim
L→∞

E[N1,L]

L
=

∫ ∞

0

G1(t) exp
(

−2
(

.5Ein(t) + .3Ein(1.3t) + .2Ein(1.5t)
))

dt ≈ .4204.

That is, E[N1,L] ∼ .4204L. We may similarly compute that E[N2,L] ∼ .1655L and E[N3,L] ∼
0.0949L (c.f. Figure 4). With these values, we see that the total length covered by all
segments grows asymptotically equal to .7778L.

Proof of Theorem 4.5. Fix k ∈ [n]. We first derive a formula for the Laplace transform of
E[Nk,L], which we then use to solve for the behavior of the Laplace transform around 0.
Finally, we use this with Theorem 2.8 to determine the behavior of E[Nk,L] as L→∞.

For brevity, define constants

(4.4) ρ := ℓn − σ and ρi := ℓn − ℓi

for i ∈ [n]. The ρi’s are the differences in length between the largest segment and the other
segments, and ρ is the difference between the largest segment length and the mean. Because
ℓn is the largest segment length, ρ and ρi are all nonnegative.

Finally, let

(4.5) ϕ(s) :=

∫ ∞

ℓn

E[Nk,L]e
−sL dL.

Note ϕ(s) is not exactly the Laplace transform of E[Nk,L]. Notably, we do not include E[Nk,L]
when L < ℓn because the multidisperse process has a fundamentally different behavior then,
as segments of length ℓn are never parked.

With these definitions, we are able to formulate a differential equation for ϕ(s):

Lemma 4.6.1. Let w(s) = eσsϕ(s). Then, with Gk(s) as defined in Theorem 4.5,

w′(s) +
2w(s)

s

n
∑

i=1

qie
−ℓis +

Gk(s)

s2
= 0.

Proof. By Proposition 4.3 with L+ ℓn as the interval length, we have

E[Nk,L+ℓn ] =
1

L+ ρ

(

qk(L+ ρk) + 2
n
∑

i=1

qi

∫ L+ρi

0

E[Nk,t] dt

)

.
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This equation holds for all L ≥ 0. Rearrange and differentiate with respect to L to get

d

dL

[

(L+ ρ)E[Nk,L+ℓn ]
]

= qk + 2
n
∑

i=1

qi E[Nk,L+ρi ],

which has Laplace transform

(4.6)

∫ ∞

0

d

dL

[

(L+ρ)E[Nk,L+ℓn ]
]

e−sL dL = qk

∫ ∞

0

e−sL dL+2
n
∑

i=1

qi

∫ ∞

0

E[Nk,L+ρi ]e
−sL dL.

We integrate the right and left sides separately. Note first

(4.7)

∫ ∞

0

E[Nk,L+ℓn ]e
−sL dL = eℓns

∫ ∞

0

E[Nk,L+ℓn ]e
−s(L+ℓn) dL = eℓnsϕ(s).

Then, by integration by parts, the left side of Equation 4.6 is equivalent to
∫ ∞

0

d

dL

[

(L+ ρ)E[Nk,L+ℓn ]
]

e−sL dL = s

∫ ∞

0

(L+ ρ)E[Nk,L+ℓn ]e
−sL dL− ρE[Nk,ℓn ]

= −s · d
ds

[∫ ∞

0

E[Nk,L+ℓn ]e
−sL dL

]

+ sρ

∫ ∞

0

E[Nk,L+ℓn ]e
−sL dL− ρE[Nk,ℓn ]

= −s · d
ds

[eℓnsϕ(s)] + sρeℓnsϕ(s)− ρE[Nk,ℓn ](By Equation 4.7)

= −seℓns(ϕ′(s) + σϕ(s))− ρE[Nk,ℓn ].(4.8)

The integral on the right side of Equation 4.6 evaluates to
∫ ∞

0

E[Nk,L+ρi ]e
−sL dL = eρis

∫ ∞

0

E[Nk,L+ρi ]e
−s(L+ρi) dL

= eρis
(∫ ℓn

ρi

E[Nk,L]e
−sL dL+

∫ ∞

ℓn

E[Nk,L]e
−sL dL

)

= eρis (Pi;k(s) + ϕ(s)) ,

where Pi;k(s) is as defined in Equation 4.1. The right side of Equation 4.6 then simplifies to

(4.9)
qk
s
+ 2

n
∑

i=1

qie
ρis(Pi;k(s) + ϕ(s)).

Equating Equation 4.8 and Equation 4.9 yields

−seℓns(ϕ′(s) + σϕ(s))− ρE[Nk,ℓn ] =
qk
s
+ 2

n
∑

i=1

qie
ρis(Pi;k(s) + ϕ(s)).

Rearranging and multiplying the equation by e−ρs

s
yields

eσs(ϕ′(s)+σϕ(s))+
2eσsϕ(s)

s

n
∑

i=1

qie
−ℓis+

e−ρs

s2
(qk + sρE[Nk,ℓn ])+

2eσs

s

n
∑

i=1

qie
−ℓisPi:k(s) = 0.
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Define Gk(s) as in Equation 4.2, and note that Gk(s)
s2

is exactly the constant term in this first
order differential equation for ϕ(s). That is,

eσs(ϕ′(s) + σϕ(s)) +
2eσsϕ(s)

s

n
∑

i=1

qie
−ℓis +

Gk(s)

s2
= 0.

Finally, substituting in w(s) = eσsϕ(s) proves our lemma. �

Having derived a differential equation for the Laplace transform of E[Nk,L], we must show
that the integral in Equation 4.3 actually exists.

Lemma 4.6.2. The following integral is finite:

αk :=

∫ ∞

0

Gk(t) exp

(

−2
n
∑

i=1

qi Ein(ℓit)

)

dt.

We omit the proof of this lemma, which is a routine calculus exercise. We now analyze
the behavior of the Laplace transform of E[Nk,L] around s = 0:

Lemma 4.6.3. As s→ 0+, we have that
∫ ∞

0

E[Nk,L]e
−sL dL ∼ αk

s2
.

Proof. Let w(s) = eσsϕ(s), as in lemma 4.6.1. The maximum number of type-k segments we
can place on an interval of length L is L

ℓk
, so E[Nk,L] ≤ L

ℓk
, and

w(s) = eσsϕ(s) ≤ eσs
∫ ∞

ℓn

L

ℓk
· e−sL dL =

e−ρs

ℓk

(

ℓn
s
+

1

s2

)

.

This implies the initial condition that lims→∞ w(s) = 0.

By Lemma 4.6.1, we have the differential equation w′(s) + 2w(s)
s

∑n
i=1 qie

−ℓis + Gk(s)
s2

= 0.
Using our initial condition and the method of integrating factors, we may solve this first
order linear differential equation, which yields

w(s) =
1

s2

∫ ∞

s

Gk(t) exp

(

−2
n
∑

i=1

qi

∫ t

s

1− e−ℓiu

u
du

)

dt.

Thus, as s→ 0+, by dominated convergence we have

w(s) ∼ 1

s2

∫ ∞

0

Gk(t) exp

(

−2
n
∑

i=1

qi

∫ t

0

1− e−ℓiu

u
du

)

dt =
ak
s2
,

with αk defined as the expression in Lemma 4.6.2. Finally, we have the simple bound

0 ≤ E[Nk,L] ≤ L
ℓk
, which implies that as s → 0+, ϕ(s) ≤

∫∞
0

E[Nk,L]e
−sL dL ≤ ℓ2n

2ℓk
+ ϕ(s),

and so
∫∞
0

E[Nk,L]e
−sL dL ∼ αk

s2
. �

Using Theorem 2.8, we may convert the behavior of the Laplace transform of E[Nk,L] into

the behavior of E[Nk,L] as L→∞. In particular, the theorem implies
∫ L

0
E[Nk,t] dt ∼ αk

2
·L2.

Recall that by Proposition 4.3,

E[Nk,L] =
1

L− σ

(

qk(L− ℓk) + 2
n
∑

i=1

qi

∫ L−ℓi

0

E[Nk,t] dt

)

.
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Substituting in our asymptotic for the integral of E[Nk,L] into the right side of this equation
completes the proof that E[Nk,L] ∼ αkL. �

5. General Length Distribution

In this section, we consider general ν-RSA processes (c.f. Definition 2.4). In particular,
we study the behavior of E[SL] as L → ∞, where SL is the random variable representing
the empty space at saturation. Similar to our investigation of multidisperse process, we first
derive a general integral recurrence formula for E[SL].

Remark 5.1. In [16], Burridge and Mao derive a similar recurrence equation for length dis-
tributions with finite support (i.e. there exists C for which ℓ > C implies ν(ℓ) = 0). They
then use it to consider a specific case of bidisperse RSA (c.f. Remark 4.4). Here, we extend
their recurrence to general length distributions, and we provide a proof for completeness.

Proposition 5.2. Let ν(ℓ) be an ldf. Then, in the ν-RSA process, for all L ≥ 0,
(∫ L

0

Zν(t) dt

)

E[SL] = 2

∫ L

0

E[St]Zν(L− t) dt.

Proof. We must have Zν(t) = 0 for t < 1, so when L ≤ 1, the proposition reduces to 0 = 0.
Thus fix the interval length as L > 1.

Let µL(ℓ) be the probability density function for the length of the segment that will be
parked first. In the ν-RSA process, segment lengths are chosen according to a distribution
proportional to ν(ℓ). Moreover, the segment is then parked successfully on the interval with
probability L−ℓ

L
. Thus, µL(ℓ) ∝ ν(ℓ)(L− ℓ). Normalizing this distribution then yields

µL(ℓ) =
(L− ℓ)ν(ℓ)

∫ L

0
(L− t)ν(t) dt

.

We now compute E[SL]. Given the length ℓ of the first segment parked, we use an identical

argument to the proof of Proposition 4.3 to show that E[SL] is 2
L−ℓ

∫ L−ℓ

0
E[St] dt.

Using our probability function µL(ℓ), we now integrate over the possible values of ℓ:

E[SL] =

∫ L

0

(

(L− ℓ)ν(ℓ)
∫ L

0
(L− t)ν(t) dt

· 2

L− ℓ

∫ L−ℓ

0

E[St] dt

)

dℓ,

which simplifies to

(5.1)

(∫ L

0

(L− t)ν(t) dt

)

E[SL] = 2

∫ L

0

∫ L−ℓ

0

ν(ℓ)E[St] dt dℓ.

Switching the order of integration on the right side yields

2

∫ L

0

∫ L−ℓ

0

ν(ℓ)E[St] dt dℓ = 2

∫ L

0

E[St]

∫ L−t

0

ν(ℓ) dℓ dt = 2

∫ L

0

E[St]Zν(L− t) dt.

Meanwhile, by integration by parts,
∫ L

0
(L − t)ν(t) dt =

∫ L

0
Zν(t) dt. Substituting this into

Equation 5.1 then proves the proposition. �

Using Laplace transforms with the recurrence equation in Proposition 5.2, we will later
find that E[SL] grows linearly for a general class of convergent ldfs (c.f. Definition 2.1),
whereas it grows sublinearly for a general class of divergent ldfs.
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Figure 5. E[SL] grows linearly under various convergent ldfs.

5.1. Convergent Length Distributions. We first consider the ν-RSA process for conver-
gent ldfs ν(ℓ) . When considering such ldfs, we always assume

∫∞
1

ν(ℓ) dℓ = 1 without any
loss of generality.

Note as L → ∞, we must have Zν(L) → 1. If Zν(L) = 1 − o(L−ǫ) for any ǫ > 0, the

improper integral
∫∞
1

1−Zν(L)
L

dL must have a finite value. Our analysis will rely on the weak
condition that this integral is finite, which holds for many natural length distributions (c.f.
Example 5.4).

Theorem 5.3. If ν(ℓ) is a convergent ldf such that
∫∞
1

1−Zν(L)
L

dL <∞, then in the ν-RSA
process, there exists positive constant αν such that as L→∞,

E[SL] ∼ ανL.

Example 5.4. In the following cases, Theorem 5.3 applies and E[SL] grows linearly with L:

(1) The ldf ν(ℓ) represents a finite distribution, i.e. there exists some C for which ℓ > C
implies ν(ℓ) = 0.

(2) When ℓ > 1, the ldf ν(ℓ) ∝ ℓp with p < −1.
(3) When ℓ > 1, the ldf ν(ℓ) ∝ e−aℓ for any a > 0.

Proof of Theorem 5.3: Let ϕ := L{E[SL]}, viz.

ϕ(s) :=

∫ ∞

0

E[SL]e
−sL dL.

Define V : R>0 → R as the Laplace transform of 1 − Zν(L), and define the function V⋆ :
R

>0 → R as a modified version of V , viz.

(5.2) V (s) :=

∫ ∞

0

(1− Zν(L))e
−sL dL, V⋆(s) :=

∫ ∞

1

(1− Zν(L))e
−sL dL.

Since Zν(L) = 0 for L < 1, we have V (s) = 1−e−s

s
+ V⋆(s). We will first use these functions

to derive differential inequalities on ϕ(s).

Lemma 5.4.1. The following differential inequalities hold when s > 0:

−ϕ′(s) >
2

s
(e−s − sV⋆(s))ϕ(s), −ϕ′(s) < −

(

V (s)

s

)′

+
2

s
(e−s − sV⋆(s))ϕ(s).
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Proof. By proposition 5.2,

(5.3)

(∫ L

0

Zν(t) dt

)

E[SL] = 2

∫ L

0

E[St]Zν(L− t) dt.

Because Zν(t) ≤ 1, we have
∫ L

0
Zν(t) dt < L, and

(5.4) LE[SL] > 2

∫ L

0

E[St]Zν(L− t) dt = 2

∫ L

0

E[St] dt− 2

∫ L

0

E[St](1− Zν(L− t)) dt,

Taking Laplace transforms, we have that by the time-multiplication property (c.f. Propo-
sition 2.7), L{LE[SL]} = −ϕ′(s). Moreover, the integration property implies

L
{

2
∫ L

0
E[St] dt

}

= 2ϕ(s)
s

, and the convolution property implies

L
{

−2
∫ L

0

E[St](1− Zν(L− t)) dt

}

= −2ϕ(s)V (s).

Taking the Laplace transform of Equation 5.4 now yields −ϕ′(s) > 2ϕ(s)
s

(1 − sV (s)), and
substituting V⋆(s) for V (s) yields the first differential inequality.

To derive the second inequality, we reuse Equation 5.3. This time, we note
∫ L

0
Zν(t) dt =

L−
∫ L

0
(1− Zν(t)) dt, so

LE[SL] =

(∫ L

0

(1− Zν(t)) dt

)

E[SL] + 2

∫ L

0

E[St]Zν(L− t) dt.

By definition, SL ≤ L, so LE[SL] ≤ L
∫ L

0
(1−Zν(t)) dt+2

∫ L

0
E[St]Zν(L−t) dt, or equivalently,

(5.5) LE[SL] ≤ L

∫ L

0

(1− Zν(t)) dt+ 2

∫ L

0

E[St] dt− 2

∫ L

0

E[St](1− Zν(L− t)) dt.

Taking Laplace transforms, we note that

L
{

L

∫ L

0

(1− Zν(t)) dt

}

= − d

ds
L
{∫ L

0

(1− Zν(t)) dt

}

= − d

ds

(

V (s)

s

)

.

Taking the Laplace transform of Equation 5.5 then yields

−ϕ′(s) ≤ −
(

V (s)

s

)′

+
2ϕ(s)

s
− 2ϕ(s)V (s),

and substituting in V⋆(s) as before gives the second differential inequality. �

We now find functions that use the differential inequalities to directly bound ϕ(s). If we
treat the first inequality in Lemma 5.4.1 as an equality, then the solution to the differential
equation is the function b : R>0 → R, given by

(5.6) b(s) :=
r(s)

s2
, where r(s) := exp

(

2

∫ s

1

1− e−t

t
dt+ 2

∫ s

1

V⋆(t) dt

)

.

We will use b(s) as a lower bound of ϕ(s).

Lemma 5.4.2. Fix sufficiently small η > 0. Then, for s ∈ (0, η),

ϕ(s) ≥ ϕ(η)

b(η)
· b(s).
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Proof. Let ϕ⋆(s) =
ϕ(η)
b(η)
· b(s). We may check that ϕ⋆(η) = ϕ(η) and that ϕ⋆ is a solution to

the differential equation

−ϕ′
⋆(s) =

2

s
(e−s − sV⋆(s))ϕ⋆(s).

By Lemma 5.4.1, ϕ(s) satisfies −ϕ′(s) > 2
s
(e−s−sV⋆(s))ϕ(s), and we quickly note V⋆(s) ≤

∫∞
1

1 · e−sL dL = e−s

s
, which implies e−s− sV⋆(s) > 0. Therefore, Proposition 2.10 holds here

and implies that when s ∈ (0, η), ϕ(s) ≥ ϕ⋆(s). �

Define function hη(s) as

(5.7) hη(s) :=

∫ η

s

−
(

V (t)

t

)′

· b(s)
b(t)

dt.

The function hη(s) is the error when approximating ϕ(s) with b(s). By adding hη(s) to b(s),
we will derive an upper bound for ϕ(s).

Lemma 5.4.3. Fix sufficiently small η > 0. Then, for s ∈ (0, η),

ϕ(s) ≤ ϕ(η)

b(η)
· b(s) + hη(s).

Proof. Let ϕ⋆(s) = ϕ(η)
b(η)
· b(s) + hη(s). Because hη(η) = 0, we have ϕ⋆(η) = ϕ(η). Moreover,

ϕ⋆(s) satisfies the differential equation

−ϕ⋆′(s) = −
(

V (s)

s

)′

+
2

s
(e−s − sV⋆(s))ϕ

⋆(s).

Lemma 5.4.1 implies −ϕ′(s) < −
(

V (s)
s

)′
+ 2

s
(e−s − sV⋆(s))ϕ(s). Thus, Lemma 2.10 again

proves that ϕ(s) < ϕ⋆(s) when s ∈ (0, η), completing the lemma. �

We now prove useful results about the functions r(s) and hη(s), which will allow us to
bound ϕ(s).

Lemma 5.4.4. The function r(s) is positive, continuous, and increasing when s ∈ (0,∞).
It also satisfies

lim
s→0+

r(s) = r(0) > 0.

Proof. Recall

r(s) := exp

(

2

∫ s

1

1− e−t

t
dt+ 2

∫ s

1

V⋆(t) dt

)

.

Note r(s) is continuous (increasing) because the integrals are continuous (increasing), and it

is positive by inspection. Moreover, 1−e−t

t
is bounded on (0, 1], so

∫ 1

0
1−e−t

t
dt exists.

Meanwhile, we have assumed that
∫∞
1

1−Zν(L)
L

dL <∞, and

(5.8)

∫ ∞

1

1− Zν(L)

L
dL =

∫ ∞

1

∫ ∞

0

(1− Zν(L))e
−tL dt dL =

∫ ∞

0

V⋆(t) dt,

where the last integral interchange is allowable due to Fubini’s Theorem. Since the limit
lims→0+

∫ 1

s
V⋆(t) dt is strictly less than the above value, it is finite as well, which proves that

lims→0+ r(s) exists and is equal to r(0), which by definition of r must be positive. �
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This lemma will allow us to bound the approximation error hη(s) by a function that
converges to 0 as η becomes small.

Lemma 5.4.5. There exist continuous functions Hη : [0, η]→ R for each η > 0 that satisfy
limη→0+ Hη(0) = 0 and s2hη(s) ≤ Hη(s) when s ∈ (0, η).

Proof. Fix η > 0. First, note −
(

V (s)
s

)′
is positive, as V (s) is a decreasing function (c.f.

Equation 5.2). Then, for all 0 < s < η,

hη(s) =
r(s)

s2

∫ η

s

−
(

V (t)

t

)′

· t2

r(t)
dt(Equations 5.6, 5.7)

≤ r(s)

s2
·
∫ η

s

−
(

V (t)

t

)′

· t2

r(0)
dt,(r(s) is increasing)

hη(s) ≤
1

s2
· r(s)
r(0)

·
∫ η

s

−
(

V (t)

t

)′

· t2 dt.(5.9)

We may use integration by parts on the integral, which yields
∫ η

s

−
(

V (t)

t

)′

· t2 dt = sV (s)− ηV (η) + 2

∫ η

s

V (t) dt ≤ sV (s) + 2

∫ η

s

V (t) dt.

Recall V (t) = 1−e−t

t
+ V⋆(t) ≤ 1 + V⋆(t). Substitution yields

sV (s) + 2

∫ η

s

V (t) dt ≤ sV (s) + 2(η − s) + 2

∫ η

s

V⋆(t) dt.

Substituting this upper bound back into Equation 5.9 yields the estimation hη(s) ≤ Hη(s)

s2
,

with Hη : (0, η]→ R given by

Hη(s) :=
r(s)

r(0)
·
(

sV (s) + 2(η − s) + 2

∫ η

s

V⋆(t) dt

)

.

The continuity of Hη(s) follows by the continuity of r(s) and V (s). Note Hη(s) is not yet
defined at 0 since V is not defined at 0. However, because as L→∞, we have 1−Zν(L)→ 0.
The Abelian Final Value Theorem (c.f. Proposition 2.7) then implies lims→0+ sV (s) = 0.
Moreover, we have previously shown

∫ η

0
V⋆(t) dt is finite (c.f. Equation 5.8). It follows that

lim
s→0+

Hη(s) = 2η + 2

∫ η

0

V⋆(t) dt.

Define Hη(0) to be this value. By inspection of this formula, limη→0+ Hη(0) = 0. �

Finally, we analyze the behavior of ϕ(s) as s→ 0.

Lemma 5.4.6. As s→ 0+, there exists a positive constant αν such that

ϕ(s) ∼ αν

s2
.

Proof. Fix any ǫ > 0. We will now find lǫ, δǫ that satisfy the conditions of Proposition 2.11
for our choice of ǫ, i.e. that for all 0 < s < δǫ, we have lǫ < s2ϕ(s) < lǫ + ǫ.

We use the functions Hη as defined in Lemma 5.4.5. Choose sufficiently small η such that
Hη(0) <

ǫ
3
. Then, choose sufficiently small δ1 such that for all 0 < s < δ1, we have

(5.10) Hη(s) < Hη(0) +
ǫ

3
<

2ǫ

3
.
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Finally, because r(s) is increasing, we may choose δ2 such that for all 0 < s < δ2,

(5.11) r(0) < r(s) < r(0) +
b(η)

ϕ(η)
· ǫ
3
.

Let δ = inf{η, δ1, δ2}. By Lemma 5.4.2, for 0 < s < δ, we have ϕ(s) ≥ ϕ(η)
b(η)
· b(s), so

s2ϕ(s) ≥ ϕ(η)

b(η)
· r(s) > ϕ(η)

b(η)
· r(0).

Meanwhile, by Lemma 5.4.3, for 0 < s < δ, we have ϕ(s) ≤ ϕ(η)
b(η)
· b(s) + hη(s), so

s2ϕ(s) ≤ ϕ(η)

b(η)
· r(s) + s2hη(s) <

ϕ(η)

b(η)
· r(0) + ǫ,

where the second inequality follows from Equation 5.11 and from s2hη(s) ≤ Hη(s) <
2ǫ
3

(c.f.
Lemma 5.4.5 and Equation 5.10).

Define δǫ = δ and lǫ =
ϕ(η)
b(η)
·r(0). We have shown that for 0 < s < δǫ, we have lǫ < s2ϕ(s) <

lǫ+ǫ, which satisfies the conditions of Proposition 2.11 and proves that lims→0+ s2ϕ(s) exists.
Denote this limit αν . Notably, all the lower bounds lǫ are positive, so αν must also be positive,
concluding the lemma. �

By the Hardy-Littlewood Tauberian Theorem (c.f. Theorem 2.8), ϕ(s) ∼ αν

s2
implies that

as L→∞,
∫ L

0

E[St] dt ∼
αν

2
L2.

From here, an analytical argument will complete the proof.

Pick arbitrary ǫ > 0. We will first show there exists Lℓ such that L > Lℓ implies E[SL]
L

>

αν(1− ǫ), and we will later show there exists Lu such that L > Lu implies E[SL]
L

< αν(1 + ǫ),

which will prove that limL→∞
E[SL]
L

= αν .

Begin by choosing L1 for which L > L1 implies
∫ L

0
E[St] dt > (1− ǫ)1/4 · αν

2
L2. Moreover,

choose L2 for which L > L2 implies Zν(L) ≥ (1− ǫ)1/4. By Proposition 5.2,
(∫ L

0

Zν(t) dt

)

E[SL] = 2

∫ L

0

E[St]Zν(L− t) dt.

We always have Zν(L) < 1. Therefore,

LE[SL] ≥
(∫ L

0

Zν(t) dt

)

E[SL] = 2

∫ L

0

E[St]Zν(L− t) dt ≥ 2(1− ǫ)1/4
∫ L−L2

0

E[St] dt,

where the last equality follows by the definition of L2. Then, when L− L2 > L1, we have

2(1− ǫ)1/4
∫ L−L2

0

E[St] dt > (1− ǫ)1/2αν(L− L2)
2.

Choose Lℓ sufficiently large so that L > Lℓ implies (L − L2) > (1 − ǫ)1/4L, and so that
Lℓ > L1 + L2. Then, for L > Lℓ,

(1− ǫ)1/2αν(L− L2)
2 > (1− ǫ)ανL

2.

Thus, for L > Lℓ, we have LE[SL] > (1− ǫ)ανL
2, or E[SL] > (1− ǫ)ανL.
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We now show there exists Lu such that L > Lu implies E[SL]
L

< αν(1 + ǫ). Choose L3 for

which L > L3 implies
∫ L

0
E[St] dt < (1+ ǫ)1/3 · αν

2
L2, and choose L4 for which L > L4 implies

Zν(L) > (1 + ǫ)−1/3. For L > L3 + L4, we have similarly to before that

αν(1 + ǫ)1/3L2 > 2

∫ L

0

E[St] dt ≥ 2

∫ L

0

E[St]Zν(L− t) dt =

(∫ L

0

Zν(t) dt

)

E[SL]

≥
(∫ L

L4

Zν(t) dt

)

E[SL] >
L− L4

(1 + ǫ)1/3
E[SL].

Choose Lu sufficiently large so that L > Lu implies (L − L4) >
L

(1+ǫ)1/3
, and so that Lu >

L3 +L4. Then, L−L4

(1+ǫ)1/3
E[SL] >

LE[SL]

(1+ǫ)2/3
. Thus, for L > Lu, we have αν(1 + ǫ)1/3L2 > LE[SL]

(1+ǫ)2/3
,

or E[SL] < (1 + ǫ)ανL. This completes the proof of the theorem. �

5.2. Divergent Length Distributions. In this section we consider the ν-RSA process for
a divergent ldf ν(ℓ) (c.f. Definition 2.1). For any divergent ldf ν, consider its normalizing
constant Zν . We must have

∫ L

0
tZν(t) dt

∫ L

0
Zν(t) dt

≥ L

2
,

because if we treat Zν as an non-normalized probability distribution on [0, L], and we sample
random variable X from the distribution, the left hand side is simply E[X]. But Zν is a
strictly increasing function, and so E[X] is skewed to above L

2
. The difference between the

left hand side and the right hand side is intuitively a measure of how quickly Zν grows, as
when Zν grows very quickly, E[X] is skewed higher. Our next theorem relies on a condition
related to this fact:

Theorem 5.5. Let ν be a divergent ldf. If there exists ǫ > 0 such that for sufficiently large

L, we have
∫ L
0

tZν(t) dt
∫ L
0

Zν(t) dt
≥ (1 + ǫ) · L

2
, then in the ν-RSA process,

E[SL] = o(L).

We prove the theorem by induction. The inductive step is given by the following lemma:

Lemma 5.5.1. If there exist a lower bound b and a factor r > 0 for which L > b implies
E[SL] < rL, then there exists a lower bound B for which L > B implies E[SL] < r

(

1− ǫ
2

)

L.

Proof. When L > b, we have
(∫ L

0

Zν(t) dt

)

E[SL] = 2

∫ b

0

E[St]Zν(L− t) dt+ 2

∫ L

b

E[St]Zν(L− t) dt(By Prop. 5.2)

< 2r

∫ L

0

tZν(L− t) dt+ 2(1− r)

∫ b

0

tZν(L− t) dt.(5.12)

Note that
∫ L

0
tZν(L− t) dt = L

∫ L

0
Zν(t) dt−

∫ L

0
tZν(t) dt. Let L⋆ be sufficiently large so that

L > L⋆ implies
∫ L
0

tZν(t) dt
∫ L
0

Zν(t) dt
≥ (1 + ǫ) · L

2
, as described by the theorem statement. Then, when

L > L⋆, we may rearrange Equation 5.12 into

E[SL] < 2rL− r(1 + ǫ)L+ 2(1− r) ·
∫ b

0
tZν(L− t) dt
∫ L

0
Zν(t) dt

< r(1− ǫ)L+ 2(1− r)b.
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(b) ν(ℓ) = e
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Figure 6. E[SL] grows sublinearly under various divergent ldfs.

It then follows that E[SL] < r
(

1− ǫ
2

)

L for sufficiently large L. �

Proof of Theorem 5.5: Let b0 = 1. For L > b0, we must place at least one segment of length
at least 1 in the ν-RSA process, so SL ≤ L−1. In particular, E[SL] < L. Then, by induction,
for all integers n > 0, we may construct bn such that L > bn implies E[SL] <

(

1− ǫ
2

)n
L.

The theorem follows. �

Example 5.6. In the following cases, Theorem 5.5 applies and E[SL] grows sublinearly with
L:

(1) When ℓ > 1, the ldf ν(ℓ) = ℓp with p > −1. (We further investigate this case in
Section 6.)

(2) When ℓ > 1, the ldf ν(ℓ) = eaℓ for any a > 0.

6. Power Function Distribution

In this section, we consider the case when the ldf is given by a power-law function, viz.
ν(ℓ) = (ℓ − 1)β−1 with β > 0. The convolution of two power functions is again a power
function, which allows us to derive precise bounds on E[SL]. We begin with this property:

Proposition 6.1. If β, θ ∈ R
>0, then

∫ x

0

tβ(x− t)θ dt =
Γ(β + 1)Γ(θ + 1)

Γ(β + θ + 2)
xβ+θ+1.

This can be directly proven from the fact that L{xβ}(s) = Γ(β+1)
sβ+1 .

Corollary 6.2. Let Θ : R>0 → R
>0 be a function of β > 0, defined as the positive solution

in θ to

Γ(β + θ + 2) = 2Γ(β + 2)Γ(θ + 1).

Then, the function Θ is well-defined and at most 1.

Proof. By Proposition 6.1,
∫ 1

0
tβ(1−t)θ dt = Γ(β+1)Γ(θ+1)

Γ(β+θ+2)
. The left hand side is strictly decreas-

ing in θ, so Γ(β+1)Γ(θ+1)
Γ(β+θ+2)

must also be decreasing in θ. When θ = 0, this expression is equal to
1

β+1
> 1

2(β+1)
. Meanwhile, when θ = 1, the expression is equal to 1

(β+1)(β+2)
< 1

2(β+1)
. By the
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continuity of Γ, there must exist θ with 0 < θ < 1 for which Γ(β+1)Γ(θ+1)
Γ(β+θ+2)

= 1
2(β+1)

. This equa-

tion is equivalent to the condition in the corollary statement. Moreover, because Γ(β+1)Γ(θ+1)
Γ(β+θ+2)

is strictly decreasing in θ, our value of θ is unique, proving that Θ is well-defined. �

Given that ν(ℓ) = (ℓ− 1)β−1, we will prove E[SL] is bounded below by power functions of
the form LΘ(β)−ǫ, and above by LΘ(β).

Theorem 6.3. Fix β > 0 and consider ldf ν(ℓ) = (ℓ − 1)β−1. Then, in the ν-RSA process,
for all ǫ > 0,

LΘ(β)−ǫ ≪ E[SL] ≤ LΘ(β).

Example 6.4. Consider the case when β = 1, with ldf ν(ℓ) = 1. Then, Γ(β + θ + 2) =
2Γ(β + 2)Γ(θ + 1) is simply the polynomial equation

(θ + 1)(θ + 2) = 4,

which has unique positive solution θ = Θ(1) =
√
17−3
2
≈ 0.562. Theorem 6.3 now implies that

for all ǫ > 0,

L(
√
17−3)/2−ǫ ≪ E[SL] ≤ L(

√
17−3)/2.

In general, when β is an integer, the equation Γ(β + θ + 2) = 2Γ(β + 2)Γ(θ + 1) reduces to

the degree-(β + 1) polynomial equation
∏β+1

i=1 (θ + i) = 2(β + 1)!.

Remark 6.5. Similar processes to the ν-RSA process with the uniform length distribution
ν(ℓ) = 1 have been studied before. In particular, Coffman et. al. in [17] analyze a process
in which they park segments with lengths drawn uniformly at random from [0, L]. Instead
of studying the empty space left at saturation (arbitrarily small segments may be parked in
their model, so it never in fact reaches saturation), as we do here, they study the expected
number of parked segments after n attempts to park segments. Using methods different

from ours, they derive that the number of parked segments grows as n(
√
17−3)/2. Notably,

this exponent is exactly the exponent that we derive for the empty space at saturation in
Example 6.4, providing an interesting connection between two distinct processes.

Proof of Theorem 6.3. For brevity in this proof, we take ν(ℓ) = 1
β
(ℓ− 1)β−1 so that Zν(L) =

(L−1)β. Define fθ(L) :=
E[SL]
Lθ . We will prove fΘ(β) is bounded above by 1, and that fθ(L) is

bounded below by a positive constant for all θ < Θ(β). First, define the following function
µ : [0, 1]→ R, viz.

µ(t) :=
Γ(θ + β + 2)

Γ(θ + 1)Γ(β + 1)
· tθ(1− t)β.

By Proposition 6.1, we note
∫ 1

0
µ(t) dt = 1. We now use µ to derive an integral recurrence

relation on fθ.

Lemma 6.5.1. For θ, L > 0,

fθ(L+ 1) =

(

2Γ(θ + 1)Γ(β + 2)

Γ(θ + β + 2)

)

·
(

L

L+ 1

)θ+1

·
∫ 1

0

fθ(Lt)µ(t) dt.

Proof. By Proposition 5.2 with L+ 1 as the length of the interval,
(∫ L+1

0

Zν(t) dt

)

E[SL+1] = 2

∫ L+1

0

E[St]Zν(L+ 1− t) dt.



MULTIDISPERSE RANDOM SEQUENTIAL ADSORPTION AND GENERALIZATIONS 25

Substituting in Zν(L) = (L− 1)β and E[SL] = Lθfθ(L) yields

fθ(L+ 1) =
2(β + 1)Lθ+1

(L+ 1)θ+1
·
∫ L

0

tθ(L− t)β

Lθ+β+1
fθ(t) dt.

Substituting Lt for t and rearranging then proves the lemma. �

We may now prove the first part of the Theorem. By Lemma 6.5.1 with θ = Θ(β) (and

noting 2Γ(Θ(β)+1)Γ(β+2)
Γ(Θ(β)+β+2)

= 1 by the definition of Θ), we have

(6.1) fΘ(β)(L+ 1) =

(

L

L+ 1

)Θ(β)+1 ∫ 1

0

fΘ(β)(Lt)µ(t) dt < sup
0≤t≤L

fΘ(β)(t).

But E[SL] = L for L < 1. Because Θ(β) < 1, we have fΘ(β)(L) = L1−Θ(β) < 1 when L < 1.

Equation 6.1 then implies that fΘ(β)(L) < 1 for all L, and thus that E[SL] ≤ LΘ(β).

Now, fix any θ < Θ(β). Recall 2Γ(θ+1)Γ(β+2)
Γ(β+θ+2)

is decreasing in θ (c.f. Proposition 6.1), so
2Γ(θ+1)Γ(β+2)

Γ(β+θ+2)
> 1. Then, there exists some ǫ > 0 and some lower bound L1 > 0 such that

L > L1 implies
(

2Γ(θ + 1)Γ(β + 2)

Γ(θ + β + 2)

)

·
(

L

L+ 1

)θ+1

> 1 + ǫ,

and thus that fθ(L+ 1) > (1 + ǫ)
∫ 1

0
fθ(Lt)µ(t) dt.

Choose sufficiently large L2 for which
∫ 1

2/L
µ(t) dt > 1

1+ǫ
for all L > L2. Let L⋆ =

sup{L1, L2}, so that for L > L⋆,

(6.2) fθ(L+ 1) > (1 + ǫ)

∫ 1

2/L

fθ(Lt)µ(t) dt ≥ inf
2≤t≤L

fθ(t).

Note that Lemma 6.5.1 implies fθ(L) > 0 for L > 1. Then, by Equation 6.2, for all L > L⋆,
we have fθ(L) > sup2≤t≤L⋆ fθ(t), where sup2≤t≤L⋆ fθ(t) is positive.

Thus, for every θ < Θ(β), we have shown there is a constant c > 0 such that fθ(L) > c
for sufficiently large L, or equivalently that E[SL] > cLθ. This in fact implies E[SL] ≫ Lθ

for all θ < Θ(β), completing the proof of the theorem. �
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