
The PRIMES 2022 problem set
General math problems

G1. Consider a plane passing through the midpoints of two opposite
edges of a regular tetrahedron. The projection of the tetrahedron to
this plane is a quadrilateral of area A with one of the angles 60◦. Find
the surface area of the tetrahedron.

Solution. Let A,B,C and D be the vertices of the tetrahedron and
assume the plane P described in the problem intersects AB and CD
at their midpoints M and N. Let A1, B1, C1 and D1 be the projections
of A,B,C and D to P.

First, we observe that A1B1C1D1 is an isosceles trapezoid. In fact,
since NA = NB and ∠ANA1 = ∠BNB1, we know that NA1 = NB1.
In particular, this implies NM ⊥ A1B1 since M is also the midpoint
of A1B1. Similarly, we can see that MN ⊥ C1D1. As a result, we can
conclude that A1D1 = C1B1.

Next, we denote α := ∠AMA1 and ` := AB. The area of A1B1C1D1

is

A =
MN

2
(A1B1 + C1D1) =

`

2
√

2

(
AB cosα + CD cos

(π
2
− α

))
=

`2

2
√

2
(cosα + sinα),

so the surface area of the tetrahedron is

√
3 · `2 =

2
√

6

cosα + sinα
A.

Finally, we find out the value of cosα + sinα. Since ∠AMA1 = α,
we know ∠DND1 = π

2
− α. Then, we have

A1B1 − C1D1 = ` · cosα− ` · sinα = ` · (cosα− sinα).

On the other hand, using the fact that one of the angles of A1B1C1D1

is 60◦ = π
3
, WLOG say ∠D1A1B1 = π

3
, we can derive

A1B1 − C1D1 = A1D1 =
2√
3
MN =

2`√
6
.

Therefore, we get

cosα− sinα =
2√
6
,

which implies 2 cosα · sinα = 1
3

and hence cosα + sinα = 2√
3
. Conse-

quently, we have that the surface area of the tetrahedron is

√
3 · `2 =

2
√

6

cosα + sinα
A = 3

√
2A.
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G2. For an m-digit number A and (n−m)-digit number B let A◦B
be the n-digit number obtained by concatenation of A and B (where
we allow the leftmost digit to be zero). For example, if m = 2, n = 5,
A = 23, B = 045, then A ◦B = 23045 and B ◦ A = 04523.

From now on assume that m = 2. Let k be a 2-digit number, and
consider the equation

B ◦ A
A ◦B

= k

with A > 0 and any n ≥ 3. It is clear that if X := A◦B is a solution of
this equation then so is X ◦X, X ◦X ◦X, etc. We say that a solution X
is primitive if it is not obtained in this way, by concatenating a smaller
solution with itself several times.

(a) Find all primitive solutions for k = 9 and k = 15.
(b) Describe all primitive solutions for general k. Are there finitely

many?
Solution. Consider the decimal

x = 0.ABAB.... =
A ◦B

10n − 1
.

Then 100x = A.BAB.... So we get

100x− A = kx,

thus

x =
A

100− k
.

So we get
A

100− k
=

A ◦B
10n − 1

.

In particular,
A

100− k
<
A+ 1

100
,

i.e.,
k(A+ 1) < 100.

Thus all solutions are obtained by running through pairs of 2-digit
positive numbers k,A such that k(A+ 1) < 100 and d := 100−k

GCD(100−k,A)
is coprime to 10. For each such k,A, let r be the multiplicative order
of 10 modulo d (i.e., in (Z/dZ)×). Then n = qr, q ≥ 1, so

A ◦B =
A(10qr − 1)

100− k
.

Primitive solutions correspond to q = 1, so there are finitely many.
There is a unique primitive solution for each A, k, which is defined by
the equality A

100−k = 0.X.
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In particular, for k = 9 we have 1 ≤ A ≤ 10, so we have the primitive
solutions A · Y where Y = 010989. For k = 15 we get A = 5 and only
one primitive solution X = 0588235294117647.

G3. Let m be a fixed positive integer, and consider the follow-
ing game. At each move, you pick uniformly at random an integer
0 ≤ k ≤ m. Then you score k points, but only if k does not exceed
the smallest previously picked number (otherwise you don’t score any
points on that move). For example, if m = 3 and your random num-
bers are 2, 3, 1, 2, 1, 0, 3, ... then you score only on the 1st, 3rd and 5th
move and don’t score anything after the 5th move, so you total score
is 2 + 1 + 1 = 4.

(i) How much will you score on average if you play indefinitely?
(ii) Let a(n,m) be the average amount you score in n steps. Find a

closed formula for a(n, 1) and a(n, 2).
(iii) Find a closed formula for a(n,m).
Solution. Let a(n) := a(n,m) and ar(n) be the average amount you

score in n moves if you choose the number s at random from 0, ...,m
but score s points only if s ≤ r. Then we have am(n) = a(n), and

(m+ 1)ar(n) = (m− r)ar(n− 1) +
r∑

k=0

(k + ak(n− 1)) =

(m− r + 1)ar(n− 1) +
r(r + 1)

2
+

r−1∑
k=0

ak(n− 1).

with a0(n) = 0, ar(0) = 0. So for br(n) = r − ar(n) we get the
homogeneous equation

(m+ 1)br(n) = (m− r + 1)br(n− 1) +
r−1∑
k=0

bk(n− 1)

with initial condition br(0) = r. From this it is easy to deduce the
following formula:

br(n) =
r∑
s=1

crs

(
m+ 1− s
m+ 1

)n
for some numbers crs determined recursively. For example, b1(n) =
( m
m+1

)n, so a1(n) = 1− ( m
m+1

)n. In fact, it is easy to show by induction
that crs = 1 for all r, s, so

br(n) =
r∑
s=1

(
m+ 1− s
m+ 1

)n
,
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thus

ar(n) = r −
r∑
s=1

(
m+ 1− s
m+ 1

)n
.

So the answer is

a(n,m) = m−
m∑
k=1

(
k

m+ 1

)n
In particular, am(∞) = m (the average score if you play indefinitely).

G4. A street is lit by n street lights arranged in a row. If one of
them burns out but its neighbors are still working1, the Department
of Public Works (DPW) does not do anything. However, once two
consecutive lights are out of order, the DPW immediately replaces the
light bulbs in all broken lights. For example:

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

do nothing

◦ ◦ • ◦ •
still do nothing

◦ • • ◦ •
replace all

(i) What is the chance that the DPW will have to replace k lights,
if lights break independently and with equal probability?

(ii) What is the average number of lights that they have to replace
in each repair?

Compute the answers for n = 9 and k = 4 with two digits precision
after the decimal point.

Solution. The chance that the arrangement does not require repair
after m lights burn out is

rm =

(
n−m+1

m

)(
n
m

) .

So the chance they have to replace k lights is

pk = rk−1 − rk.
The average number of lights they have to replace is

N =
∑

k(rk−1 − rk) = r0 + r1 + r2 + ...

1Both neighbors, or only one if it is the first or the last light.
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For n = 9, k = 4 we get

p4 =
25

84
≈ 0.297619, N =

93

28
≈ 3.32.

G5. (i) Describe an algorithm to find the closed ball (disk) of small-
est radius containing a given finite set of points (xi, yi), i = 1, ..., n, in
R2.

(ii) Do the same for points (x1, yi, zi), i = 1, ..., n, in R3.
(iii) Show that the ball in (i),(ii) is unique.
Solution. (iii) The ball is unique because the intersection of two

distinct balls of the same radius is contained in a ball of smaller radius.
(i) Run through pairs of points (P,Q) and check if the circle with

diameter PQ contains all other points inside. If so, we are done. Oth-
erwise run through triples of points forming an acute-angled triangle
and check if the circumscribed circle contains all other points. For one
of them it must be so, and this is then the answer.

(ii) Same as (ii) but there is an extra step - need to run through
quadruples of points whose convex hull contains the center of the cir-
cumscribed sphere.
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Advanced math problems

M1. Suppose one picks uniformly at random an n by n matrix (aij)
of zeros and ones with odd determinant. What is the probability p that
a11 = 0?

(i) Compute the answer for n = 2, 3.
(ii) Compute the answer for general n.
Solution. We need to count invertible matrices over F2 with a11 = 0.

The total number of invertible matrices is N = 2n(n−1)/2
∏n

i=1(2
i − 1),

so it suffices to compute the number of matrices in which a11 = 1. Thus

A =

(
1 v
w B

)
,

where v is a row vector, w a column vector, B a matrix (all of size
n− 1). It is easy to see that

detA = det(B − w ⊗ v).

Thus we can choose w, v arbitrarily, then choose B′ = B−w⊗ v to be
invertible. The number of such possibilities is

N1 = 22(n−1)+ (n−1)(n−2)
2

n−1∏
i=1

(2i − 1).

So the number of invertible matrices with a11 = 0 is

N0 = N −N1 = (2n(n−1)/2(2n − 1)− 2(n−1)(n+2)/2)
n−1∏
i=1

(2i − 1) =

(2n−1 − 1)2n(n−1)/2
n−1∏
i=1

(2i − 1).

Thus

p =
2n−1 − 1

2n − 1
.

So for n = 2, 3 we get p = 2/3 and 3/7, respectively.

M2. Let t > 0 and bn be the sequence defined by the recursion

b0 = 1, bn = t−1(bn−1 + 1
2
bn−2 + ...+ 1

n
b0).

(i) Show that there exists

b = lim
n→∞

b1/nn

and compute b.
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(ii) Show that there exists

C = lim
n→∞

bn
bn

and compute C.
(iii) Compute lim supn→∞ |bn − Cbn|1/n.
(iv) Do (i)-(iii) for the recursion

b0 = 1, bn = t−1
n∑
k=1

kk−1

k!
bn−k

with 0 < t < 1.
(v) Compute b for this recursion if t ≥ 1.
Solution. (i)-(iii) Consider the generating function

f(z) :=
∞∑
n=0

bmz
m.

Then the recursion implies that

f(z)(1 + t−1 log(1− z)) = 1.

Thus

f(z) =
1

1 + t−1 log(1− z)
.

This function has a simple pole at the solution of the equation

log(1− z) = −t
which gives

z = 1− e−t.
Thus

b =
1

1− e−t
.

To find C, we need to compute the residue of f at its pole, i.e.,

C = −b lim
z→b−1

z − b−1

1 + t−1 log(1− z)
.

Using L’Hospital’s rule, we get

C = −bb
−1 − 1

t−1
= t(b− 1) =

te−t

1− e−t
=

t

et − 1
.

The function

f∗(z) = f(z)− C

1− bz
has no poles for |z| < 1 but branches at 1. So we get

lim sup |bn − Cbn|1/n = 1.
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(iv) The analysis is similar except

f(z) =
1

1− t−1h(z)
,

where

h(z) =
∞∑
n=1

nn−1

n!
zn = −W (−z),

where W (z) is the Lambert function. So the pole of f is at the
solution z of the equation

h(z) = t.

By the Lagrange inversion theorem, the inverse to w = h(z) is the
function z = we−w, so we get

z = te−t.

Thus

b = t−1et.

Also dz
dw

= (1−w)e−w, so dw
dz

= (1−w)−1ew, and using the L’Hopital’s
rule, we get

C =
b

t−1h′(b−1)
=

tb

(1− t)−1et
= 1− t.

Since the minimal value of the function t−1et for t > 0 is e (at t = 1),
we get

lim sup |bn − Cbn|1/n = e.

(v) For t ≥ 1 the function f(z) is analytic for |z| < e−1 but has a
singularity at z = e−1, so b = e.

M3. Let Sn be the symmetric group on n elements (we agree that
S0 = 1). Compute h(z) :=

∑∞
n=0 anz

n, where an is the number of
conjugacy classes (under Sn) of homomorphisms of φ : G→ Sn, where

(i) G = Z/2× Z/2;
(ii) G = S3.
(iii) Do the same for injective homomorphisms in (i),(ii).
(iv) How many conjugacy classes of subgroups isomorphic to S3 are

there in S10 ? Can you describe all of them? How many are there in
S100?
Solution. A homomorphism G→ Sn is the same as an action of G

on [1, n]. Under such action [1, n] falls into orbits, which are classified
by stabilizers. What types of stabilizers do we have (up to conjugation
in G)?
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(i) The stabilizers are 1, G, and three versions of Z/2. So the number
of conjugacy classes is the number of solutions of the equation

n1 + 2(n2 + n3 + n4) + 4n5 = n.

Thus

h1(z) =
1

(1− z)(1− z2)3(1− z4)
.

(ii) The stabilizers are 1,Z/2,Z/3, G. So

h2(z) =
1

(1− z)(1− z2)(1− z3)(1− z6)
.

(iii) It’s easier to count non-injective homomorphisms. For the group
G = Z/2 × Z/2, they factor through one of the Z/2 or are trivial. So
we get

h∗1(z) =
1

(1− z)(1− z2)3(1− z4)
− 3

(1− z)(1− z2)
+

2

1− z
.

For G = S3 they factor through Z/2 or are trivial, so

h∗2(z) =
1

(1− z)(1− z2)(1− z3)(1− z6)
− 1

(1− z)(1− z2)
.

(iv) Since every automorphism of S3 is inner, it is enough to take
the corresponding coefficient in h∗2(z) which is easy to do by hand or
computer. For S10 one gets 12 and for 100 one gets 5457.

M4. Cubicles in a software company are arranged in n adjacent
rows, 3 cubicles in each or, equivalently, 3 columns with n cubicles
in each (so they look like an n by 3 chessboard). Two cubicles are
adjacent if they share at least one corner. Covid social distancing
protocol prohibits placing people in adjacent cubicles. If the company
has k employees, let a(n, k) be the number of allowable arrangements
of k cubicles to be occupied by employees. For example, a(1, 2) = 1,
a(2, 2) = 4, a(3, 4) = 1, etc.

(i) Find a(5, 3).
(ii) Compute the generating function

A(x, y) :=
∑
k,n≥0

a(n, k)xnyk.

(iii) Find a(10, 5).
(iv) What is the largest number of employees you can seat and how

many ways to do so are there2 (for each n)?

2Here, if two employees switch cubicles with each other, this counts as the same
way of seating.
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Solution. This is equivalent to computing the number of arrange-
ments of unlabeled non-attacking kings. Denote by b(n, k) the number
of arrangements when the first and the second cubicle in the last row
are eliminated. Assume n ≥ 2, k ≥ 2. So we have

b(n+ 1, k) = b(n, k − 1) + a(n, k).

The difference a(n, k)−a(n−1, k) is the number of arrangements so
that at least one employee is seated in the n-th row. This can happen
in several ways:

1) This employee sits in the middle of the row. The number of such
arrangements is a(n− 2, k − 1).

2) Two employees sit in the leftmost and rightmost cubicles of the
n-th row. This gives a(n− 2, k − 2).

3) One employee sits in the leftmost or rightmost position in the last
row, and there is nobody else in that row. This yields 2b(n− 1, k− 1).

Thus we get

a(n, k)−a(n−1, k) = a(n−2, k−1)+a(n−2, k−2)+2b(n−1, k−1).

Substituting, we get

b(n+ 1, k)− b(n, k − 1)− b(n, k) + b(n− 1, k − 1) =

b(n−1, k−1)−b(n−2, k−2)+b(n−1, k−2)−b(n−2, k−3)+2b(n−1, k−1).

Simplifying, we get
b(n+ 1, k) =

b(n, k−1)+b(n, k)+2b(n−1, k−1)−b(n−2, k−2)+b(n−1, k−2)−b(n−2, k−3).

So setting

B(x, y) :=
∑
n,k≥0

b(n, k)xnyk,

we get that

B(x, y)(1− x− xy − 2x2y − x2y2 + x3y2 + x3y3) = 1,

i.e.,

B(x, y) =
1

1− x− xy − 2x2y − x2y2 + x3y2 + x3y3
.

So we get

A(x, y) = x−1((1−xy)f−1) =
1 + 2xy + xy2 − x2y2 − x2y3

1− x− xy − 2x2y − x2y2 + x3y2 + x3y3
.

Expanding this function (using a computer), we find

a(5, 3) = 105, a(10, 5) = 12438.

We also see that the largest number of employees that can be seated
is n for even n and n + 1 for odd n. In the odd case there is only one
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way to put them (at squares whose both coordinates are odd), while
in the even case there are (n

2
+ 1)2 (all are seated in the first and third

column, and there are n/2 + 1 arrangements in each).

M5. An MIT class meets 31 times. In each meeting the professor
divides the students into working groups of 5 so that every two students
are in the same group exactly once.

(i) How many students are there in the class?
(ii) How to make an arrangement as in (i)?
(iii) Another MIT class has 72 students. Each week, the professor

divides the students into working groups of exactly 8 people on some
weeks or exactly 9 people on other weeks, so that every two students
are in the same group exactly once. How many weeks will the class
meet?

(iv) How to make an arrangement as in (iii)?
Solution. (i) Let the number of students in the class be m. The

number of pairs is then m(m−1)
2

. In each meeting 2m pairs are imple-

mented. So the class met m−1
4

times. Thus we get m−1
4

= 31, which
yields m = 125.

(ii) Label the students by vectors in the 3-dimensional space over F5.
For each class choose a different line l through the origin in this space
(there are exactly 31 such lines), and define the groups to be the lines
parallel to l. It is clear that this arrangement is as required.

(iii) The number of pairs of students is 36 · 71. If there are 8 people
in each group then on that week 36 · 7 pairs are formed. If there are 9
people in each group, then on that week 36 · 8 pairs are formed. So if
a is the number of weeks of the first kind and b is the number of weeks
of the second kind then we get 7a+ 8b = 71. There are two solutions,
(9, 1) and (1, 8). But if there is one week with 9-student groups then
the 9 students in any such group will have to be all in different groups
on all other weeks, so there will have to be at least 9 groups, hence
8 students in each. Thus (1, 8) is impossible and the only solution is
(9, 1), so the class lasts 9 + 1 = 10 weeks.

(iv) Label students by points (x, y) in the plane F2
9 over the field F9

such that y 6= 1. Each week choose a line l through the origin and
make the groups consist of points on lines parallel to l.

M6. An even number n of identical metal rods are connected into
a chain of length L by hinges (so the length of each rod is L/n). The
ends of the chain are pinned to a wall at points (x0, y0) = (−D/2, 0)
and (xn, yn) = (D/2, 0), where 0 < D < L; otherwise the chain is
hanging freely. Denote by (xi, yi) the coordinates of the i-th hinge,
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1 ≤ i ≤ n− 1. The potential energy of the chain is then

E =
n−1∑
i=1

yi.

The chain settles in the equilibrium position where E is minimal.
(i) Suppose that y1 = −L/cn for some c > 1. Find D and (xi, yi) of

the equilibrium position for all i.
(ii) Explain what happens when n→∞ when D is fixed.
Solution. It is clear that the equilibrium position will be symmetric.

Let ai = n
L

(xi−xi−1), bi = n
L

(yi−yi−1) for 1 ≤ i ≤ n/2, then ai = an+1−i
and bi = −bn+1−i. We also have a2i + b2i = 1 and

E =
L

n

n/2∑
i=1

(n+ 1− 2i)bi.

We need to minimize E with constraint
n/2∑
i=1

ai =

n/2∑
i=1

√
1− b2i =

nD

2L
.

So using Lagrange multipliers, we get the equations

n+ 1− 2i = − λbi√
1− b2i

.

Thus

(n+ 1− 2i)2(1− b2i ) = λ2b2i

which yields

bi = − n+ 1− 2i√
(n+ 1− 2i)2 + λ2

.

and

ai =
λ√

(n+ 1− 2i)2 + λ2
.

In particular,

−c−1 = b1 = − n− 1√
(n− 1)2 + λ2

which gives

λ = (n− 1)
√
c2 − 1.

Thus

ai =
1√

(n+1−2i)2
(n−1)2(c2−1) + 1

, bi = − 1√
(n−1)2(c2−1)
(n+1−2i)2 + 1

,
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so

xk =
L

n

k∑
i=1

1√
(n+1−2i)2

(n−1)2(c2−1) + 1
, yk = −L

n

k∑
i=1

1√
(n−1)2(c2−1)
(n+1−2i)2 + 1

,

and

D =
2L

n

n/2∑
i=1

ai =
2L

n

n/2∑
i=1

1√
(2i−1)2

(n−1)2(c2−1) + 1
.

In the limit n → ∞, these sums turn into integrals, and we get the
catenary curve.


