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Abstract. In this paper, we deal with a particular sequence associated with a graph,
the gonality sequence. This gonality sequence is a part of a larger topic of the chip-
firing game on a graph G. The gonality sequence of a graph measures how much the
degree of a divisor on that graph needs to change in order to increase its rank. The
portions of the gonality sequence are known for when the input is greater than the
genus. However, there has been little work done to find the first terms of the gonality
sequence. In this paper, we partially compute the first terms of the gonality sequence
for some complete multipartite graphs. In particular, the ones with all but one partite
class having one vertex are analyzed, and here we present some results and further
conjectures.

1. Introduction

The notion of a chip-firing game was first introduced concurrently by many indepen-
dent researchers, including Spencer in [13], Bitar and Goles in [4], and Bak, Tang, and
Wiesenfeld in [2]. This first notion of a chip-firing game, known as either the parallel
chip-firing game or abelian sandpile model, was an autonomous game in which vertices
in a graph G(V,E) are assigned a nonnegative number of chips and fire, or send one chip
to each of its neighbors whenever it is able to. Later, Baker and Norine in [3] extended
this notion to another game, no longer autonomous, in which each vertex could fire at
any time, controlled by an outside entity, and negative chip values were allowed.

This view of the game is much more analogous to real-world examples of similar
phenomena. One such example is a chain of banks, with each having an attached profit
margin, which would correspond to the chip value on the vertices. The branches of
banks additionally have a connection system where some branches are connected to
other branches. Through this connection system, the branches are able to send money
amongst themselves. However, there is a caveat in this system. This caveat is that
when a branch wants to send money to another branch, it must send the same amount
through each of its connections. Through this and similar examples, one can see this
non-autonomous game is a natural extension of the original game and merits studying.

This view of the chip-firing game introduced the notion of divisors in the game, which
represents a configuration of chips on the vertices. These divisors defined a linear system
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on the graph similar to those on algebraic curves, which allowed for theorems from
algebraic geometry to carry over to this combinatorial setting. Some examples of this
include the Riemann-Roch theorem in [3] and Clifford’s theorem in [6]. The definition
of the gonality sequence also comes from this connection in the linear systems, and is
the corresponding definition for most linear systems. We refer to Section 2 for further
details.

Cools and Panizzut classify the exact gonality sequence for complete graphs and
complete bipartite graphs in [5]. This paper continues on that work, seeking to classify
the exact gonality sequence of complete multipartite graphs, the natural extension of
Cools and Panizzut’s work. In particular, this paper focuses on multipartite graphs
with exactly one partite class with size larger than 1. This paper classifies exactly the
gonality sequence for such complete tripartite graphs as well as the majority of the
gonality sequence for such complete 4-partite graphs. This paper also provides some
partial conjectures and progress in further cases.

In Section 2, we discuss the necessary background definitions and information to
understand the problem and begin to dissect the problem. Importantly, we present
three of the most overarching theorems and algorithms used in the computation pro-
cess, namely, Dhar’s burning algorithm, the Riemann-Roch theorem for graphs, and
Clifford’s theorem. In Section 3, we go into more specifics as to the exact processes and
methodology used in the computation process, both using combinatorial approaches as
well as using computers to help aid in forming conjectures. The basic premise for this
methodology is to make use of the great power that Riemann-Roch provides for bound-
ing terms. In fact, Riemann-Roch already gives the terms of the sequence at indicies at
least the genus of the graph. Therefore, there is only a section at the beginning of the
gonality sequence that requires true computation. The idea is then to combinatorially
bound the first few terms of the section, then use Riemann-Roch to provide bounds for
the last few terms of the section, or vice versa, which narrows the unknown section.
This, along with using computer modeling to generate conjectures, is the basic idea of
this section. We conclude the section with the application to the tripartite case and
classify the exact gonality sequence for complete tripartite graphs with at most two
partite classes of size 1. In Section 4, we discuss the application to the 4-partite case
and classify the majority of the gonality sequence for these graphs. We also conclude
the section with a discussion of partial results and conjectures in other multipartite
graphs with exactly one partite class of size greater than 1.

2. Background

We now define the key components necessary for the paper. Let G(V,E) be a con-
nected, undirected graph with the set of vertices V and set of edges E. In the chip-firing
game on G, we assign each vertex in the graph an integer number of chips, and we call
this assignment a divisor. We further define the degree of a divisor to be the total
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number of chips across all vertices. The chip-firing game centers around a move: a
vertex firing. In this move, we select a vertex to fire, and the chosen vertex gives away
one chip to each of its neighbors. In fact, we can also define the opposite operation,
anti-firing, where we do the exact opposite: each of the neighbors gives a chip to the
chosen vertex. We say that two divisors are equivalent if and only if one can be reached
by another using chip-firing moves. In addition to these chip-firing moves, we define
a binary operation on divisors, defining adding two divisors on the same graph to be
adding the number of chips on each corresponding vertex to get a new divisor.

We define the Jacobian of a graph by focusing on degree-0 divisors. Since the sum
of two degree-0 divisors is another degree-0 divisor, and the divisor with 0 chips at
every vertex is the identity element. Since there are also inverses, the degree 0 divisors
form a group under this addition operation. However, the notion of two divisors being
equivalent under chip-firing creates equivalence classes among the degree 0 divisors.
These equivalence classes are what form the Jacobian group of the graph.

Given a graph, there is a second way to define the Jacobian of the graph using only
linear algebra. Given the graph, G(V,E), and an ordering of the vertices, namely v1,
v2, . . ., vn, recall that the degree matrix, denoted D, of the graph is the matrix that has
the degree of vi at its ith entry along the main diagonal and is 0 everywhere else. Again
recall that the adjacency matrix, denoted A, of the graph is the matrix that has the
number of edges connecting vi and vj at the entry in column i and row j. Further recall
that the Laplacian matrix is the difference of these two matrices, D−A. The Jacobian
is then the torsion portion of the cokernel of the Laplacian. To find the structure of
the Jacobian easily, we can use the Smith Normal Form of the Laplacian. The Smith
Normal Form of the Laplacian will have the form of a matrix with only entries along the
diagonal, with these entries being s1|s2| · · · |sL, where L is the rank of the Laplacian.
The Jacobian is then the group (Z/s1Z)⊕ (Z/s2Z)⊕· · ·⊕ (Z/sLZ). This method gives
us a more reasonable way to compute the Jacobian of any given graph without needing
to resort to complex computations with chip-firing.

This paper pertains to the gonality sequence of a given graph. To define the gonality
sequence, we need a few terms. We call a divisor effective if all the vertices have
a nonnegative number of chips on them. We denote the set of effective divisors with
degree r as effr. Furthermore, we say that the set of effective divisors that are equivalent
to a given divisor D is called the linear system of D, and is denoted as |D|. Now, we
define the rank of a divisor D on a given graph G, denoted rkG(D), to be −1 if |D| = ∅,
otherwise rkG(D) = max(r ∈ Z≥0 : |D − E| ≠ ∅, for all E ∈ effr). In other words, the
rank is the largest degree r such that subtracting all effective divisors of degree r from
D results in a divisor that is equivalent to an effective divisor. The gonality sequence
is then as follows: the rth term of the gonality sequence, where r ≥ 0, is the minimum
degree such that there is a divisor with that degree with rank r, which is denoted by
gonr(G). In terms of the bank analogy, this is equivalent to knowing that r dollars will
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be withdrawn across the banks in the future, and being asked to best distribute money
among the banks so that all the banks can be not in debt both today and in the future.

We now discuss a key component of the computational side of this paper, Dhar’s
burning algorithm. The aim of the algorithm is to tell whether a given divisor on a
graph is equivalent to an effective divisor or not. We first provide a few key definitions.
Fixing a vertex v in the graph, we call a given divisor effective away from v if any other
vertex on the graph has a nonnegative number of chips. Furthermore, we call a divisor
v-reduced if it is effective away from v, and for any subset of vertices not containing
v, firing all of the vertices in the subset once will turn the divisor into one that is not
effective away from v. The crux of the algorithm is the following lemma.

Lemma 2.1 ([8], [9]). Given a graph G(V,E), fix a vertex v ∈ V . Then, any divisor is
equivalent to a v-reduced divisor under chip-firing.

The algorithm, given a vertex v and a divisor D, finds this v-reduced divisor, and it
is a simple consequence that the chip count at v is nonnegative in this v-reduced divisor
if and only if D is equivalent to an effective divisor. The algorithm works as follows.

(1) First find a divisor equivalent to D that is effective away from v. The easiest
way to do this is as follows:
(a) Find the size of the Jacobian, and denote it as m.
(b) For every vertex with a negative number of chips that is not v, successively

add m chips to it and take m chips away from v. The reason why this
works is because the order of any element in a finite abelian group divides
the size of the group.

(2) Burn the vertex v.
(3) Iterate through the remaining vertices and burn any vertex that has strictly

more burnt neighbors than number of chips. Repeat until no more vertices
burn.

(4) If the set of unburnt vertices is nonempty, fire each of the vertices in this set,
and restart the process. If the set of unburnt vertices is empty, the v-reduced
divisor is found.

To better visualize how this algorithm works, we provide an example iteration of
steps 2, 3, and 4 in Figure 1 and Figure 2.

This algorithm is the central algorithm for the computational testing, as it can in a
reasonably short time and effort, determine whether the linear system of a given divisor
D is empty or not.

Now, we introduce some more useful terminology and a couple of useful theorems.

Definition 2.2. For a graph G, with set of vertices V and set of edges E, define the
genus g of the graph to be g = |E| − |V |+ 1.

Definition 2.3. We call the canonical divisor on a graph G, denoted as K , as the
divisor where at a vertex V of G, the number of chips at V is deg(V )− 2.
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(a) Step 2 (b) Step 3

Figure 1. Steps 2 and 3 of Dhar’s Visualized

(a) Step 3 (b) Step 4

Figure 2. Steps 3 and 4 of Dhar’s Visualized

Definition 2.4. Given a graph G and a divisor D on G, the support of D, denoted
supp(D), is the set of vertices of G such that D has a positive number of chips on these
vertices.

The following theorem is useful for producing upper bounds on certain portions of
the gonality sequences of a graph G.

Theorem 2.5 (Riemann-Roch for graphs, [3]). For any divisor D on a graph G, we
have that rkG(D)− rkG(K −D) = deg(D)− (g − 1).

The following theorem, paired with Theorem 2.5, is useful in eliminating lots of
possibilities for the gonality sequence for graphs.

Theorem 2.6 (Clifford’s theorem, [6]). If a graph G has genus g ≥ 2, then the r-th
term of the gonality sequence of G is such that gonr G ≥ 2r for 1 ≤ r ≤ g.
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3. Methodology for Calculation

Many of the results and conjectures that we will present in this section come from
extensive testing using computers and Dhar’s burning algorithm. The general premise
of finding the r-th term in the gonality sequence of a graph G with n vertices is to
first guess what the term would be, say this guess is k. Then, we go through all
possible effective divisors of degree k, and for each divisor, subsequently subtract off
each effective divisor of degree r. We then test whether these divisors are equivalent to
an effective divisor using Dhar’s burning algorithm, and if one of the original divisors of
degree k produces all divisors equivalent to an effective divisor, we say that k ≥ gonr(G).
Otherwise, k < gonr(G). Due to the fact that generating all effective divisors of a given
degree is equivalent to generating all partitions of the degree into n parts, this gets
much slower as n gets larger. Thus, we cannot test many graphs.

Now, there is a step in the above that is very hard to do if we do not know the
gonality number, which is guessing k. In addition to Theorem 2.6, there are a few
lemmas that help with this.

Lemma 3.1. The gonality sequence is strictly increasing, that is, gonr(G) < gonr+1(G).

Proof. It is clear that the gonality sequence is nondecreasing. To prove that it is strictly
increasing, assume for contradiction that at some point, gonr(G) = gonr+1(G). Then,
let D be a divisor of degree gonr+1(G) that has rank r + 1. Take a vertex of G that is
in the support of D and take a chip away from that vertex. Then, we have a divisor of
degree gonr+1(G)−1 with rank at most r, which contradicts the minimality of gonr(G).
Thus, the gonality sequence must be strictly increasing. □

Lemma 3.2. The gonality sequence also satisfies gonr+1(G) ≤ gon1(G) + gonr(G).

Proof. It is clear that for two divisors, D1 and D2, rkG(D1)+ rkG(D2) ≤ rkG(D1+D2).
The result follows. □

These two lemmas provide a nice bounding range for the possibilities of k in the
numerical calculations, which is very nice. Now, we apply this to our specific set of
graphs, which is multipartite graphs. In fact, we narrow this set of graphs even further,
down to multipartite classes with exactly one partite class with size greater than one.
We define the following notation:

Definition 3.3. For a multipartite graph Kn,1,...,1, where there are m partite classes of
size 1, we denote this by Kn,(m).

In Lemma 3.2, we also note there is a gon1G term, which is not helpful if we cannot
bound gon1G by itself. Therefore, the following lemma comes in useful in this fact.
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Lemma 3.4 ([1]). The first term of the gonality sequence, gon1(G), is at most the
edge connectivity of G. The edge connectivity is the minimum number of edges one can
remove from the graph to disconnect the graph.

In particular, for our cases of Kn,(m), we have the following:

Lemma 3.5. Denote the complete (m + 1)-partite graph with one partition having n
vertices and the other m having 1 vertex as Kn,(m). Then, the edge connectivity, or the
minimum number of edges needed to remove so that the graph is disconnected, is m.

Proof. The edge connectivity of a graph is equivalent to finding the number of edges
across a given bipartition of a graph, and then taking the minimum of this number across
all bipartitions. Thus, we can do casework on the bipartition. There are two groups of
vertices in a Kn,(m), namely, the group of n vertices, and the group of m vertices. Then,
let us say that our bipartition contains a vertices from the first group, and b vertices
from the second group. Further assume that b ≤ n

2
, as at least one of the halves of the

bipartition must satisfy this. Then, we have that the number of edges between the two
halves of the bipartition is a(m− b)+ b(m− b)+ b(n− a) = am+ bm+ bn− 2ab− b2 =
a(m−2b)+ bm+ bn− b2. Thus, for a given b, as m−2b is positive, in order to minimize
this expression, it is equivalent to minimizing a. Now, if b ̸= 0, then this is achieved
when a = 0, and the expression becomes bm+ bn− b2 ≥ bm ≥ m, as both b and n− b
are nonnegative. Further, if b = 0, then the minimum a is 1, since it is impossible to
take a partition where a and b are both 0. This gives the expression as m, and therefore
the edge connectivity is m, as desired. □

Furthermore, we claim that the first term of the gonality sequence for G = Kn,(m) is
exactly m. In order to show this, we simply take the divisor with m chips on one of the
vertices in the partite set of size n. Note that by firing at this vertex and anti-firing
at another of the vertices in the partite set, we can move these m chips between the
vertices in this partite set. This takes care of subtracting any divisor of degree 1 with
the chip in this partite set. Meanwhile, if the chip is in one of the m other partite sets,
we simply fire at the original vertex, and this takes care of that case as well. Thus, since
the edge connectivity is m and there is a divisor of degree m that works for gon1(G),
gon1(G) = m.

Now, we have an additional problem with the algorithm above. It is unclear which r
we stop running the algorithm at. Thus, the following lemmas are useful.

Lemma 3.6. Any divisor of degree at least g is equivalent to an effective divisor.

Proof. This is clear from the statement of Riemann-Roch. □

Lemma 3.7. Given a graph G with g ≥ 2, for any r ≥ g, gonr(G) = r + g.

Proof. At r = g, Lemma 3.6 and Theorem 2.6 combine to prove that gong(G) = 2g.
After this, the bounds given by Lemma 3.1 and Lemma 3.6 give the result exactly. □
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Now, with the intricacies of the computation methods worked out, we first present
an example of the calculation for the tripartite case. A more general version where the
first gonality number is 2 appears in Proposition 3.6 of [1].

Theorem 3.8 (Kn,1,1, [1]). If G = Kn,1,1 is a complete multipartite graph, then the
gonality sequence is exactly as follows:

gonr(G) =

{
2r r ≤ n
r + n r > n.

Proof. We have a Kn,1,1, and computing, we get g = n. Additionally, we have that
the first term of the gonality sequence is 2, and therefore from iterating Lemma 3.2
multiple times, we get the bound gonr Kn,(2) ≤ 2r. However, for 1 ≤ r ≤ g = n,
Theorem 2.6 also gives us that gonr Kn,(2) ≥ 2r. Therefore, we must have that for
1 ≤ r ≤ g = n that gonr Kn,(2) = 2r, and Lemma 3.7 gives us that for r ≥ g = n,
gonr Kn,(2) = r + g = r + n. □

4. The m = 3 case

Note that by computation, for a Kn,1,1,1, g = 2n+1 and the first gonality is again 3.
From the computational data and analyzing patterns, we conjecture the following for
the gonality sequence of G.

Conjecture 4.1. If G = Kn,1,1,1 is a complete multipartite graph, the gonality sequence
is exactly as follows:

gonr(G) =

 3r r ≤ g
3
= 2n+1

3
⌊3
2
r + g

2
⌋ 2n+1

3
< r ≤ g = 2n+ 1

r + g 2n+ 1 < r.

In order to understand the partial progress for this problem, we need to define some
more terminology, in particular what a rank-determining set is.

Definition 4.2. Let A be a subset of the vertices of G. Then, the A-rank of a divisor D
is defined the same way as the usual rank, except that there is an additional condition
on E: the support of E must be contained in A.

Definition 4.3. A subset A of the vertices of G is known as rank-determining if the
A-rank for any divisor is the same as the rank of the divisor.

Now, this is not too useful in practice, as it is hard to check that A-rank and determine
whether it is the same or not for all divisors. Thus, we use the following definition and
lemma:

Lemma 4.4 ([10], [12]). If a subset A of the vertices of G is such that for any divisor
D with A contained in the support and vertex v, there is a divisor D′ equivalent to D
that contains v in its support, then A is rank-determining.



GONALITY SEQUENCES OF MULTIPARTITE GRAPHS 9

Through this definition of a rank-determining set, we can much more easily find and
make full use of the special rank-determining set on the Kn,(3).
Let G = Kn,1,1,1. Label the n vertices in one partite class by u1, u2, . . . , un, and the

three remaining vertices by v1, v2, v3.

Observation 4.5. Note that we can always move multiples of 3 chips between the ui’s
by performing a firing and then an anti firing move, and we can move multiples of n+3
chips between vi’s by the same method.

Observation 4.6. The set {v1, v2, v3} is rank determining. This is because, given an
effective divisor whose support contains this set, we can perform an anti-fire at any ui

to get an equivalent effective divisor for which ui is in the support.

Observation 4.7. Every divisor of rank at least n on G is equivalent to an effective
divisor whose support contains every ui. This is because we can subtract off the divisor
u1+u2+ · · ·+un which has degree n, and the remainder must be equivalent to something
effective by the rank condition.

Now, with the rank-determining set found, we are able to do a lot of combinatorial
bounding on certain terms of the gonality sequence.

Theorem 4.8. Suppose D is a divisor of rank r on G that contains each ui in its
support. Then D + v1 + v2 + v3 is a divisor of rank at least r + 2 on G.

Proof. By Observation 4.6, we need only consider subtracting off effective divisors with
support contained in {v1, v2, v3}. Suppose E is an effective divisor of degree n+ 2 that
has support on at least two vertices. Then v1+v2+v3−E can be written as E1−E2 for
some effective divisors E1, E2 where E2 has degree at most n. So D+(v1+ v2+ v3−E)
is equivalent to an effective divisor, since we assumed D has rank at least n.
Otherwise suppose E has support only on one vertex, i.e., E = (r + 2)vi. If r > n,

then by Observation 4.5 E is equivalent to an effective divisor of the type handled above,
so we can assume r = n. By Observation 4.7, D is equivalent to an effective divisor
D′ whose support contains every ui. Thus (D′ − E) ∼ (D − E) and D′ + v1 + v2 + v3
contains every vertex in its support, so we can perform an anti-fire at vi to get an
effective divisor. □

Corollary 4.9. Suppose D is a divisor of rank r ≥ n on G. Then D + v1 + v2 + v3 is
a divisor of rank at least r + 2 on G.

Proof. By Observation 4.7, D is equivalent to an effective divisor D′ whose support
contains every ui. So we can apply Theorem 4.8 to D′. □

Corollary 4.10. We have gonr(G) + 3 ≥ gonr+2(G) for r ≥ n.

Lemma 4.11. The divisor D2k =
∑n

i=1 ui + k
∑3

j=1 vj has rank at least 2k.
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Proof. We first check this for k = 1. If 2 chips are subtracted from any vertex, then we
can perform an anti-fire at this vertex since the divisor is positive elsewhere. Otherwise,
we subtract off at most 1 for any vertex, in which case the remainder is effective. So
indeed, the rank is at least 2.

By Theorem 4.8, it follows that Dk+1 = Dk+ v1+ v2+ v3 has rank at least r(Dk)+2.
So the result is obtained via induction. □

Lemma 4.12. The divisor D2k+1 =
∑n

i=2 ui+(k+1)
∑3

j=1 vj =
∑n

i=2 ui+3u1+k
∑3

j=1 vj
has rank at least 2k + 1.

Proof. We first check this for k = 1, restricting to effective divisors on {v1, v2, v3} by
Observation 4.6. If a 3 is subtracted from any vertex vj, then we can perform an anti-fire
at u1 and then an anti-fire at vj since the divisor is positive elsewhere. Otherwise, we
subtract off at most 2 for each vj, in which case the remainder is effective. So indeed,
the rank is at least 3.

By Theorem 4.8, it follows that Dk+1 = Dk+ v1+ v2+ v3 has rank at least r(Dk)+2.
So the result is obtained via induction. □

Theorem 4.13. We have gon2k ≤ n + 3k and gon2k+1 ≤ n + 3k + 2. Moreover, these
inequalities are equalities whenever 2k ≥ n or 2k + 1 ≥ n, respectively.

Proof. The upper bounds are obtained directly from Lemma 4.11 and Lemma 4.12.
Since we know gong+m = 2g + m for m ≥ 0, we can use Corollary 4.9 to show the
corresponding lower bounds when the rank is at least n. □

Importantly, this last result extends the known region of the conjecture, now to all
r ≥ n rather than r ≥ g = 2n+1. Now, we apply the following, slightly modified version
of Riemann-Roch that can be easily derived from the expression in Theorem 2.5.

Lemma 4.14 (Modified Riemann-Roch). For any rank r, we have:
gonr +gonr+(g−1)−gonr

= 2g − 2.

Theorem 4.15. For r ≤ n
2
= g−1

4
, we have gonr = 3r exactly.

Proof. Applying Lemma 4.14 to the equality case for even rank, we have gonk+g−1−gonk
=

2g − 2− (n+ 3k), or gonn−k = 3n− 3k for k ≥ n
2
. □

Now, this narrows down the unkown part of the gonality sequence further to the
section between g

4
≤ r ≤ g

2
. Importantly, one conjecture that is useful seems to be

Question 4.5 in [1]. Moreover, the authors note that the analogous question is solved
as affirmative for smooth curves, however remains open in terms of graphs.

Question 4.16. If there exist r and s such that gonr +gons = gonr+s, is it true that
gonk = k gon1 for all 1 ≤ k ≤ r + s?
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This would simplify and tighten the bounds on the current unknown section in our
study on the m = 3 case, and given that the analogous question is affirmative for
smooth curves, it is reasonable that it would be as well for graphs. Figure 3 depicts
the total progress on the conjecture, with the middle section still unknown, however,
there are some bounds for the middle section in terms of Lemma 3.1 and Lemma 3.2.
The solid lines are the known parts and the dotted and shaded sections represent the
bounds.

Them ≥ 4 case is vastly harder due to the increased computational demand required.
We have made very little headway in this section, mostly due to the vastly larger
amounts of time it takes to run code. We did have a somewhat weak proposition, which
is motivated by the previous results. Note that for both m = 2 and m = 3, the gonality
sequences are formed by lines of slope m, then m

3
, and so on until m

m
= 1. However, this

proposition has broken down quickly with some of the smaller computations in m = 4.
It seems that the last two slopes of m

m−1
and 1 are indeed true as well as the starting

slope of m, however, the others do not seem to hold.
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Figure 3. A depiction of the progress made
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