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Abstract

We study the polynomial representation of the rational Cherednik algebra of type
A in characteristic p = 3 for p dividing n − 2, some parameter t = 0, and generic
parameter c. We describe all the polynomials in the maximal proper graded submodule
kerB, which is the kernel of the contravariant form B, and we use this to find the Hilbert
series of the irreducible quotient for the polynomial representation. We proceed degree
by degree to explicitly determine the Hilbert series and work towards proving Etingof
and Rains’s conjecture in the case that p = 3, t = 0, and n = kp+ 2.
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1 Introduction

In 1993, Cherednik introduced Cherednik algebras, also called Double Affine Hecke Al-
gebras, to use in his proof of Macdonald’s conjectures about orthogonal polynomials for root
systems in [Che93]. Since then, rational Cherednik algebras have been useful in many appli-
cations, ranging from math like topology and elliptic curve theory from [Che05] to physics
models like quantum Calogero-Moser systems seen in [Eti07]. Calogero-Moser systems are
important and connect to mathematical fields including algebraic geometry and deformation
theory as well as physics.

Frobenius first introduced representation theory in 1896, which is explained more in
[Con98]. Representation theory studies symmetry in linear spaces and makes an abstract
object more concrete by studying the ways it acts on vector spaces. As with any abstract
object, we use representation theory to better understand the structure of rational Cherednik
algebras. The representation theory of rational Cherednik algebras over fields of character-
istic 0 has been studied extensively; thus we proceed by considering only those in positive
characteristic.

This paper focuses on studying the rational Cherednik algebra of type A. This restricts
our general rational Cherednik for the symmetric group Sn. The rational Cherednik algebra
of type A has parameters t, c.

This paper explores the representation theory of the rational Cherednik algebra of type A
in characteristic p = 3 for p|n−2, t = 0, and generic parameter c. More specifically, we want
to determine the Hilbert series for the irreducible quotient of the polynomial representation.
Because the polynomial representation is so big, it is more helpful to study its irreducible
quotient. The Hilbert series and Hilbert polynomial help us understand the dimension of the
irreducible quotient for each degree.

In Section 2, we first define some preliminary terms including the polynomial representa-
tion of the rational Cherednik algebra, and we provide a proposition that simplifies the work
in studying rational Cherednik algebras. Then in Section 3, we state an alternate definition
of the polynomial representation through Verma modules and define the contravariant form
B. We also introduce the irreducible quotient of the Verma module, define its Hilbert series,
and state a conjecture about the Hilbert series of the irreducible quotient of the polynomial
representation. In Section 4, we summarize previous results. Our work follows after [DS16],
which studied the case for characteristic p such that p|n, and [CK21], which explored the
case for which p|n − 1. And in Section 5, we prove main results and explicitly analyze the
case in which p|n− 2 for p = 3 and t = 0. Finally, in Section 6, we consider future directions
and possible extensions of our results.

Throughout Sections 2 and 3, we continuously reference the approach and definitions
from [CK21].
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2 Preliminaries

With some motivation to study the representation theory of rational Cherednik algebras,
we begin with preliminary definitions.

We fix an algebraically closed field k of positive characteristic p for some prime p. Also
fix t, c ∈ k and some integer n > 1.

Consider the symmetric group Sn, where σij swaps elements i and j. Let V be the
permutation representation of Sn with basis {y1, . . . , yn}, and let its dual space V ∗ have dual
basis {x1, . . . , xn}. Then we have the subrepresentation

h = span({yi − yj}) =
{∑

λiyi :
∑

λi = 0
}
,

which we call the standard representation. Its dual is
h∗ = V ∗/(x1 + · · ·+ xn = 0).

Denote [x, y] = xy − yx as the commutator of x and y.

Definition 1 (Rational Cherednik Algebra of Type A). A rational Cherednik algebra of type
A, denoted Ht,c(Sn, h), is the quotient of kSn ⋉ T (h⊕ h∗) by the following four relations:

[xi, xj] = 0,

[yi − yj, yℓ − yk] = 0,

[yi − yj, xi] = t− cσij − c
∑
k ̸=j

σik,

[yi − yj, xk] = cσik − cσjk,
where T (h⊕ h∗) is the tensor algebra of h⊕ h∗.

For the rest of the paper, we use Ht,c to denote this rational Cherednik algebra when
clear.

Now consider Sh∗, the symmetric algebra of h∗, which has the structure given by
k[x1, . . . , xn]/(x1 + · · ·+ xn).

We define the Dunkl operators that act on Sh∗ as follows.

Definition 2 (Dunkl Operator). A Dunkl operator is defined by

Dyi = t∂xi
− c

∑
k ̸=i

1− σik

xi − xk

for parameters t, c.

We can define a representation of Ht,c via the following actions: xi 7→ xi acts by multi-
plication, σ 7→ σ acts by permuting the xi, and yi− yj 7→ Dyi−yj acts by Dyi−yj = Dyi −Dyj .
Refer to Section 2.5 from [EM10] for a proof. Because these operators satisfy the relations
from Definition 1, we have a representation ofHt,c.We call this the polynomial representation
of Ht,c.

In this section, we also have the following proposition from [CK21], which generalizes the
PBW theorem and reduces our work in studying rational Cherednik algebras.

Proposition 2.1. We have
Ht,c(Sn, h) ∼= Hat,ac(Sn, h)

for any a ∈ k
×.
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This proposition implies that we only need to study the cases for t = 0 and t = 1, as
everything else follows these cases.

3 Verma Modules and Hilbert Series

We have seen that Sh∗ is a polynomial representation of Ht,c. In this section, we give an
alternative definition of this representation and its irreducible quotient using Verma modules.

Definition 3 (Verma Module). The Verma module is
Mt,c(Sn, h,k) = Ht,c(Sn, h)⊗kSn⋉Sh k.

We just call this Mt,c(h), or if the vector space is clear, Mt,c. Note that Mt,c is isomorphic
to Sh∗ as graded vector spaces and as representations.

Definition 4 (Contravariant Form). The contravariant form B : Mt,c(Sn, h,k)×Mt,c(Sn, h
∗,k) →

k is bilinear and satisfies the following properties:

1. For σ ∈ Sn, f ∈ Mt,c(h), q ∈ Mt,c(h
∗) we have B(σf, σq) = B(f, q).

2. For x ∈ h∗, f ∈ Mt,c(h), q ∈ Mt,c(h
∗), we have B(xf, q) = B(f,Dx(q)).

3. For y ∈ h, f ∈ Mt,c(h), q ∈ Mt,c(h
∗), we have B(f, yq) = B(Dy(f), q).

4. If f ∈ Mt,c(h)i and q ∈ Mt,c(h
∗)j for i ̸= j, then B(f, q) = 0. In other words, the

contravariant form gives 0 for elements of different degrees.

5. If f ∈ Mt,c(h)0 and q ∈ Mt,c(h
∗)0, then B(f, q) = f · q.

We can also see that B defines a bilinear map B : Sh× Sh∗ → k which satisfies B(1, 1) = 1,
B(1, xi) = 0, and B(f(y), q(x)) = B(1, Df(y)(q(x))) = [x0]f(Dy)q(x) where [x0]f(Dy)q(x)
gives the constant term of f(Dy)q(x). More details about the contravariant form can be
found in Section 3.12 of [EM10].

Now, using Definition 3 and Definition 4, we have the following representation of Ht,c.

Definition 5. Define Lt,c = Mt,c/ kerB, where kerB = {x ∈ Sh∗|B(y, x) = 0 for all y ∈ h}.

The representation Lt,c is an irreducible quotient of Mt,c. Our goal is to compute its
Hilbert series, which is defined as follows.

Definition 6 (Hilbert Series). Consider an N-graded module M. To this, we can associate
the Hilbert series

hM(z) =
∑
i≥0

dimM [i]zi,

where M [i] denotes the ith graded component of M.
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Since the quotient Lt,c is graded like Mt,c, its Hilbert series is

hLt,c(z) =
∑
i≥0

dimLt,c[i]z
i.

Etingof and Rains presented a conjecture in the general case. First we introduce the
following notation:

[k]z =
1− zk

1− z
,

[k]z! = [k]z[k − 1]z · · · [1]z,

Qr(n, z) =

(
n− 1

r − 1

)
zr+1 +

r∑
i=0

(
n− r − 2 + i

i

)
zi.

Then we state the conjecture by Etingof and Rains from [CK21].

Conjecture 1 (Etingof, Rains). Let n = kp+ r such that 0 ≤ r < p. The Hilbert series for
Lt,c with some c ∈ k is

hL0,c(z) = [r]z![p]zQr(n, z) for t = 0
and

hL1,c(z) = [p]n−1
z [r]zp ![p]zp !Qr(n, z

p) for t = 1.

Now consider the following definition of a singular polynomial.

Definition 7 (Singular Polynomial). A singular polynomial is a polynomial f ∈ Sh∗ such
that Dyi−yjf = 0 for all i, j.

The singular polynomials generate a submodule that lies in kerB. Thus in analyzing the
singular polynomials, we would understand the generators for kerB in degree i for all i and
therefore also understand the Lt,c[i] for computing the Hilbert series.

The following lemma helps our work as the degree increases. One direction is from [CK21].

Lemma 3.1. For a fixed f ∈ Sh∗ with no constant term, Dyi−yjf ∈ kerB for all i, j, if and
only if f ∈ kerB.

Proof. For the first direction, we want to show that B(y, f) = 0 for all y ∈ Sh given that
B(z,Dyi−yjf) = 0 for all z ∈ Sh. Because y ∈ Sh, there exist polynomials tij ∈ k[y1, . . . , yn]
such that y = c +

∑
i,j(yi − yj)tij for some c ∈ k. We can let z = tij. By linearity of B and

Definition 4, we have B(y, f) = B(c, f) +
∑

i,j B((yi − yj)tij, f) = 0 +
∑

i,j B(tij, Dyi−yjf) =∑
i,j B(z,Dyi−yjf) =

∑
i,j 0 = 0. Thus f ∈ kerB.

For the second direction, we want to show that B(z,Dyi−yjf) = 0 for all z ∈ Sh given
that B(y, f) = 0 for all y ∈ Sh. For all z ∈ Sh, let y = (yi − yj)z ∈ Sh. By Definition 4, we
have B(z,Dyi−yjf) = B((yi − yj)z, f) = B(y, f) = 0 for all i, j, so Dyi−yjf ∈ kerB, and we
are done.

This next lemma extends the previous lemma into a more specific direction.

Lemma 3.2. Let p = {p1, . . . , pn} ⊂ Mt,c[d] be a linearly independent set of polynomials so
that pk /∈ kerB for all k. Then if for some Dunkl operator Dyi−yj , the span of the Dyi−yjpk has
trivial intersection with kerB[d− 1], then the span of p has trivial intersection with kerB[d].
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Proof. We know that pk /∈ kerB[d], so by Lemma 3.1, Dyi−yjpk /∈ kerB[d − 1] for all k =
1, . . . , n. By assumption, we must have

∑n
k=1 Dyi−yjakpk =

∑n
k=1 akDyi−yjpk /∈ kerB[d − 1]

for any constants ak. By Lemma 3.1, this implies that
∑n

k=1 akpk /∈ kerB[d] for all ak, so any
linear combination of the pk does not lie in kerB[d].

In the next section, we briefly describe the Hilbert series for a few known cases, all of
which satisfy Conjecture 1.

4 Summary of Known Cases

The following cases have been studied and have known Hilbert series:

• p|n,

• p|n− 1 for t = 0,

• p|n− 1 for t = 1, p = 2.

For the first case, where p|n, Devadas and Sun showed in [DS16] that the Hilbert series
of L1,c is

h(z) =

(
1− zp

1− z

)n−1

.

For the second case, where p|n− 1 and t = 0, Cai and Kalinov proved in [CK21] that the
Hilbert series of L0,c over a field with prime characteristic p is

h(z) =

(
1− zp

1− z

)
(1 + (n− 2)z + z2).

And finally, for the third case, where p|n− 1 and t = 1, p = 2, Cai and Kalinov showed
in [CK21] that the Hilbert series of L1,c over a field with characteristic 2 is

h(z) = (1 + z2)(1 + z)n−1(1 + (n− 2)z2 + z4),
or alternatively written as

h(z) = (1 + z)n−1(1 + (n− 1)z2 + (n− 1)z4 + z6).

5 The p|n− 2 Case

Our approach in computing the Hilbert polynomial is to analyze Mt,c[d] for each degree
d starting from 0, and for each degree, we look for polynomials that are in or not in kerB.
In other words, we find polynomials that are singular or not. Consider the basis of Mt,c that
consists of elements of Fp[x1, . . . , xn].

In this section, we consider the case for which p = 3, t = 0, and p|n− 2.
Because t = 0, the Dunkl operator is

Dyi−yj = −c
∑
k ̸=i

1− σik

xi − xk

+ c
∑
l ̸=j

1− σjl

xj − xℓ

,

but c does not matter in this case, so let c = 1.
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Conjecture 1 implies that the Hilbert polynomial for p = 3 and p|n− 2 is

[2]z![3]zQr(n, z) =
1− z2

1− z
· 1− z

1− z
· 1− z3

1− z
·Qr(n, z)

= (1 + z)(1 + z + z2)(1 + (n− 3)z +

(
n− 2

2

)
z2 + (n− 1)z3)

= 1 + (n− 1)z +
n2 − n− 2

2
z2 + (n2 − 2n)z3 + (n2 − 2n+ 1)z4

+
n2 − n+ 2

2
z5 + (n− 1)z6.

In the next subsections, we work degree by degree to show that the conjecture holds. We
know the dimension for L0,c[0] of degree 0 is 1 because all elements are constant, so the next
step is to compute the dimension of L0,c[1] of degree 1.

5.1 Degree 1

Theorem 5.1. The dimension of L0,c[1] is n− 1.

Proof. The characteristic p is odd, which implies that xn = −x1 − · · · − xn−1, thus the basis
of M0,c[1] consists of x1, . . . , xn−1.

Suppose that there is a polynomial f =
∑

i<n aixi that is singular, which gives Dyi−yjf =
0 for all i, j. We want to show that f = 0. To do this, we look at how the Dunkl operator
acts on xi, so we compute Dyi(xi) and Dyi(xj) for j ̸= i to get

Dyi(xi) =

(
−
∑
k ̸=i

1− σik

xi − xk

)
(xi)

= −
∑
k ̸=i

xi − xk

xi − xk

= −(n− 1),
while

Dyi(xj) =

(
−
∑
k ̸=i

1− σik

xi − xk

)
(xj)

= −
(
xj − xj

xi − xk

+ · · ·+ xj − xi

xi − xk

+ · · ·+ xj − xj

xi − xk

)
= −(0 + · · ·+ (−1) + · · ·+ 0)

= 1.
We can use the fact that Dyi(xi) = −(n− 1) and Dyi(xj) = 1 when considering Dyn−yif.

Because we assumed that f is singular, we already knew Dyn−yif must be 0, but we can now
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also explicitly compute the result. We have

Dynf = Dyn

(∑
i<n

aixi

)
=
∑
i<n

ai

since f consists of only xi terms where i ̸= n. We also have

−Dyif = −Dyi

(∑
i<n

aixi

)
= (n− 1)ai −

∑
j ̸=i

aj.

Thus adding the results gives
Dyn−yif = nai = 2ai

since p|n−2. Finally, we set this equal to 0 since we assumed that f is a singular polynomial,
giving us 2ai = 0. Because the characteristic p is 3, this implies that ai = 0 for all i, so f = 0.

Therefore there are no nontrivial singular polynomials, which means that the Dunkl
operators act nontrivially on all xi, and the basis for L0,c[1] is x1, . . . , xn−1. So the dimension
of L0,c[1] is n− 1.

5.2 Degree 2

Theorem 5.2. The dimension of L0,c[2] is
n2−n−2

2
.

Proof. Following our strategy, we consider M0,c[2], which has a basis given by all x2
i , xixj

for i, j < n. The dimension of this basis is n − 1 +
(
n−1
2

)
= n2−n

2
. We claim that the kernel

of B has dimension 1.
We compute the action of the Dunkl operators on each degree 2 monomial as follows:

• Dyi−yj(xkxℓ) = 0.

• Dyi−yj(xixℓ) = −xi − xℓ and likewise for xjxℓ.

• Dyi−yj(x
2
k) = xi − xj.

• Dyi−yj(x
2
i ) = −(xi + xj) and likewise for x2

j .

Using these computations, we can show the following lemma:

Lemma 5.3. The polynomial

h :=
∑
i≤j
i,j<n

xixj

is singular, and all singular polynomials are multiples of h.
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Proof. Suppose

g0 :=
∑
i≤j
i,j<n

aijxixj

is singular. Without loss of generality, we can assume that a(1)(n−1) = 0 by subtracting a
multiple of h.

Applying the Dunkl operator Dyn−1−yn , we compute Dyn−1−yng0 =

a(n−1)(n−1)(x1 + · · ·+ xn−2) +
∑

k ̸=n−1

akk(x1 + · · ·+ xn−2 − xn−1) +
∑

k ̸=n−1

a(k)(n−1)(−xk − xn−1).

Analyzing the coefficients of terms, we notice that

• The coefficient of xn−1 is

−
∑

k ̸=n−1

akk −
∑

k ̸=n−1

a(k)(n−1).

• The coefficient of all other xj for 1 ≤ j < n− 1 is∑
k

akk − a(j)(n−1).

Because g0 is assumed to be singular, the action of any Dunkl operator on g0 must give 0
by definition, so each coefficient must be 0. First consider the coefficient of xi for i < n− 1.
Since we assumed that a(1)(n−1) = 0 and we know the x1 coefficient is 0, we have

∑
k akk = 0.

Then for all other xi for i < n− 1, we must have a(i)(n−1) = 0 also. Thus we now have

• The coefficient of xn−1 is

−
∑

k ̸=n−1

akk.

• The coefficient of all other xj for 1 ≤ j < n− 1 can be written as
∑

k akk, or

a(n−1)(n−1) +
∑

k ̸=n−1

akk.

Since both coefficients must be 0, their sum a(n−1)(n−1) must also be 0. This implies that
a(i)(n−1) = 0

for all i.
This means that the polynomial we assume to be singular can be written as

g1 :=
∑
i≤j

i,j<n−1

aijxixj.

Now consider Dyn−2−yng0 which is also 0 by assumption. By the analysis of Dyn−1−yng0, we
have

∑
akk = 0 and a(n−1)(n−1) = 0, which gives

∑
k<n−1 akk = 0 as well. So if we look at the

coefficients of xi for i < n− 2 in Dyn−2−yng0, which must be 0, we conclude that a(i)(n−2) = 0
for all i < n − 2. Then looking at the coefficient of x2, we find that a(n−2)(n−2) = 0 also.
Continuing inductively and considering the Dyj−yn action, we get aij = 0 for all i, j. Thus g0
was in fact a multiple of h.
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Since any singular polynomial we find is a multiple of h, we see that the dimension of
the kernel of B is indeed 1. Therefore the dimension of L0,c[2] is

n2−n
2

− 1 = n2−n−2
2

, which
verifies the conjecture for degree 2.

5.3 Degree 3

Theorem 5.4. The dimension of L0,c[3] is n2 − 2n.

Proof. Consider M0,c[3], which has a basis given by all x3
i , x

2
ixj, xixjxk for i, j, k < n. The

dimension of this basis is n − 1 + (n − 1)(n − 2) +
(
n−1
3

)
= n3−n

6
. We claim that the kernel

of B has dimension n3−6n2+11n
6

.
Recall that Lemma 5.3 gives that

h =
∑
i≤j
i,j<n

xixj

is in the kernel, which means that any multiple of h is also in the kernel of B.
With some computations using general Dunkl operator Dyi−yj , we can show the following:

Lemma 5.5. The polynomial

r :=
∑
i≤j≤k
i,j,k<n

xixjxk

lies in the kernel of B.

As we look for more singular polynomials, we also have as follows:

Lemma 5.6. For all pairwise distinct i, j, k < n, the polynomials

qi,j,k :=
∑

mi+mj+mk=3
0≤mi,mj ,mk≤3

xmi
i x

mj

j xmk
k

are in the kernel of B.

Proof. By Lemma 3.1, if all Dunkl operators Dyℓ send the qi,j,k to a multiple of h, we will
have proven this lemma. To check this, we have two cases.

Case 1: ℓ ̸= i, j, k. Without loss of generality, let ℓ = 1, i = 2, j = 3, k = 4. We want to
find Dy1(q2,3,4). To split this case further, we find that

• Dy1(x
3
2) = x2

1 + x1x2 + x2
2,

• Dy1(x
3
3) = x2

1 + x1x3 + x2
3,

• Dy1(x
3
4) = x2

1 + x1x4 + x2
4,

• Dy1(x
2
2(x3 + x4)) = x1x3 + x1x4 + x2x3 + x2x4 + 2x2

2,

• Dy1(x2(x3x4 + x2
3 + x2

4)) = x2
3 + x2

4 + 2x1x2 + 2x2x3 + 2x2x4 + x3x4,

• Dy1(x
2
3x4) = x2

3 + x1x4 + x3x4,
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• Dy1(x3x
2
4) = x2

4 + x1x3 + x3x4.

In total, we count three of each monomial, which means Dy1(q2,3,4) = 3h. Because the
characteristic is 3, this is just 0.

Case 2: ℓ is one of i, j, k. Without loss of generality, let ℓ = 1, i = 1, j = 2, k = 3. We
want to find Dy1(q1,2,3). Again, we split up this case and find that

• Dy1(x
3
1) = −

∑
i ̸=1(x

2
1 + x1xi + x2

i ),

• if i = 2 or 3, Dy1(x
2
1(x2 + x3)) = −x1x2 − x1x3 − x2x3, so in total we have 2(−x1x2 −

x1x3 − x2x3),

• if i ̸= 2, 3, Dy1(x
2
1(x2 + x3)) = (−xi − x1)(x2 + x3), so in total we have

∑
i ̸=1,2,3((−xi −

x1)(x2 + x3)),

• if i = 2, Dy1(x1(x2x3+x2
2+x2

3)) = x1x2−x2
3 and likewise for i = 3, so in total we have

x1x2 + x1x3 − x2
2 − x2

3,

• if i ̸= 2, 3, Dy1(x1(x2x3+x2
2+x2

3)) = −x2
2−x2

3−x2x3, so in total we have
∑

i ̸=1,2,3(−x2
2−

x2
3 − x2x3).

Combining these with computations from Case 1 and replacing all xn = −x1 − · · · − xn−1

(and thus replacing x2
n =

∑
i<n x

2
i +

∑
i<j<n 2xixj) let us determine the coefficient for each

monomial, listed as follows:

• x2
1 : −n+ 3,

• x2
2 : −n+ 3,

• x2
3 : −n+ 3,

• x2
i : −2 for all i ̸= 1, 2, 3,

• x1x2 : −n+ 3,

• x1x3 : −n+ 3,

• x1xi : −2 for all i ̸= 1, 2, 3,

• x2x3 : −n+ 3,

• x2xi : −2 for all i ̸= 1, 2, 3,

• x3xi : −2 for all i ̸= 1, 2, 3,

• xixj : −2 for all i, j ̸= 1, 2, 3.
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Since p|n − 2, we have 1 of each term in characteristic p = 3, giving Dy1(q1,2,3) = h. Note
that this conclusion does not follow for p > 3, which matches Conjecture 1.

Thus the action of all Dunkl operators Dyℓ on qi,j,k gives a multiple of h, which implies
that qi,j,k ∈ kerB for all pairwise distinct i, j, k.

Now we know that our kernel must contain r and all such qi,j,k, so its minimum dimension

is 1 +
(
n−1
3

)
= n3−6n2+11n

6
.

To prove that this is its exact dimension, we find a basis for L0,c[3].

Proposition 5.7. Consider the set S = {x3
i , x

2
jxk} for all 1 < i < n and for all 1 ≤ j, k < n

such that j ̸= k. Then S is a basis for L0,c[3].

We work towards proving this proposition. From calculations in Cases 1 and 2 above, we
can easily confirm that Dy1−y2s ̸= 0 for all s ∈ S, so no element of S is in kerB.

Then, we want to show that Dy1−y2 does not send any linear combination of S to a
multiple of h. Define

ϕ :=
∑
j,k<n

cjkx
2
jxk − c11x

3
1.

Assume that
Dy1−y2 (ϕ) = k1h

for constant k1, so that we want to show that all cjk are 0. After computing the left hand
side, we have the following:

• The coefficient of x2
1 is

∑
j≥3(cjj − c1j)− c21.

• The coefficient of x2
2 is

∑
j≥3(c2j − cjj)− c22 + c12.

• The coefficient of x2
i for all i ̸= 1, 2 is −c22 + c1i − c2i − ci1 + ci2.

• The coefficient of x1x2 is
∑

j≥3(cj2 − cj1)− c12 + c21.

• The coefficient of x1xi for all i ̸= 1, 2 is −c22 + cii − c1i + c2i +
∑

j ̸=1,2,i cji.

• The coefficient of x2xi for all i ̸= 1, 2 is −c22 − cii − c1i + c2i −
∑

j ̸=1,2,i cji.

• The coefficient of xixj for all i, j ̸= 1, 2 is −c22.

Because we can add any multiple of h, we can let c22 = 0 without loss of generality. Then
since the coefficient of all terms are equal, all coefficients listed above are 0 in this case.

Consider the coefficient of x2
1 and the coefficient of x2

2 which appear very similar. Since
both are 0, plugging in c22 = 0 and adding the two give∑

j≥3

(c2j − c1j) + c12 − c21 = 0.

Then the coefficient of x2
i is 0, so replacing i with j gives and rearranging gives

c2j − c1j = cj2 − cj1

12



for all j ̸= 1, 2. This then implies that∑
j≥3

(cj2 − cj1) + c12 − c21 = 0.

Now we subtract this from the coefficient of x1x2 which is also equal to 0 to get
c21 − c12 − c12 + c21 = 0,

or
c12 = c21.

Because we find that c12 = c21 by adding a multiple of h, this means the constants will be
equal regardless.

Now considering the Dunkl operators Dy1−yℓ for 3 ≤ ℓ ≤ n − 1, we see the same corre-
sponding equation results, so we know that c1i = ci1 for all 3 ≤ i ≤ n−1. Using the coefficient
of x2

i and the original Dunkl operator Dy1−y2 , since c2j − c1j = cj2 − cj1, we now also have
c2i = ci2 for all 3 ≤ i ≤ n− 1. Similarly using Dunkl operators Dy1−yℓ for 3 ≤ ℓ ≤ n− 1, we
find the following:

Lemma 5.8. The coefficients cij = cji when i ̸= j.

Because we cannot deduce more from Dy1−y2 at this point, we consider a different Dunkl
operator. Assume that

Dy1−yn(ϕ) = k2h
for constant k2. For this Dunkl operator, we have the following from the left hand side:

• The coefficient of x2
1 is

∑
j ̸=1(cj1 − c1j).

• The coefficient of x2
i for all i ̸= 1 is

∑
j ̸=1,i(cji − cjj)− c1i − ci1.

• The coefficient of x1xi for all i ̸= 1 is
∑

j ̸=1,i(cjj − cji) +
∑

j ̸=1 cj1.

• The coefficient of xixj for all i, j ̸= 1 is
∑

k ̸=1,i,j ckk +
∑

k ̸=1,i cki +
∑

k ̸=1,j ckj − cii −
cjj + c1i + c1j.

By assumption, all of these coefficients are equal. From Lemma 5.8, we have cij = cji
when i ̸= j, so the coefficient of x2

1 is just 0. Thus the other coefficients must be 0 as well.
Then adding the coefficients of x2

i and x1xi gives∑
j ̸=1

cj1 − c1i − ci1 = 0.

After substituting c1i = ci1 due to Lemma 5.8, we have

2ci1 =
∑
j ̸=1

cj1.

Summing across all i ̸= 1 gives

2
∑
i ̸=1

ci1 = (n− 1)
∑
j ̸=1

cj1.

Therefore
∑

i ̸=1 ci1 = 0, and from above, it follows that ci1 = 0 (and thus c1i = 0) for
all i ̸= 1. Then considering the Dunkl operators Dyℓ−yn for 2 ≤ ℓ < n, we again have
corresponding results, which we put together to see the following lemma:

13



Lemma 5.9. The coefficients cij = 0 for all i ̸= j.

All we have left is to show the following:

Lemma 5.10. The coefficients cii = 0 for all 1 < i < n as well.

Proof. When we go back to the coefficients of terms for Dy1−y2(ϕ), the coefficient of x2xi in
that case now becomes −c22+ cii since the others are 0 due to Lemma 5.9. Because we could
assume that c22 = 0 without loss of generality so that the coefficient of x2xi must be 0 as
well, this implies that

−c22 + cii = 0
for all i ̸= 1, 2. Therefore cii = 0 for all i ̸= 1. The case when i = 1 does not matter because
it cancels out in ϕ.

Thus we have shown that there is no nontrivial ϕ such that Dyi−yn(ϕ) lies in the kernel, so
the span of the Dyi−yns for all s ∈ S has trivial intersection with kerB[2]. Now by Lemma 3.2,
we have that the span of S has trivial intersection with kerB[3]. Hence S is a basis for L0,c[3],
and its dimension is n2 − 2n, as desired.

6 Future Work

Our work covers degrees 0 through 3 of the p|n − 2 case. Future research could look
towards extending this to greater degrees. Although it is not clear that all polynomials that
lie in kerB can be explicitly found as the kernel becomes very large for higher degrees, it
would be helpful to conjecture a basis for the kernel, then use Lemma 3.1 and Lemma 3.2 to
prove that it is indeed a basis. Exploring polynomials similar to the qi,j,k for higher degrees
can help explain how the kernel grows so fast. Finally, note that from Conjecture 1, the
dimension of L0,c[6] should be n− 1, so our approach would follow nicely for that degree.
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