
ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS

DEREK LIU AND YUAN YAO

Abstract. A regular simplex of side length n can be subdivided into multiple polytopes, each

of which is a Minkowski sum of some faces of a unit simplex. Ardila and Billey have shown that

exactly n of these cells must be simplices, and their positions must be in a “spread-out” arrangement.

In this paper, we consider their question of whether every spread-out arrangement of simplices

can be extended into such a subdivision, especially in the three-dimension case. We prove that a

specific class of these arrangements, namely those that project down to a two-dimensional spread-out

arrangement, all extend to a subdivision.

1. Introduction

Take an equilateral triangle of side length n, and remove n equilateral triangles of side length 1 from

it. We want to tile the remaining shape with unit rhombi with angles 60◦ and 120◦. See Figure 1

for an example of such a tiling.

Figure 1. An example of the case n = 4.

This paper will examine the arrangements of the n removed triangles for which such a tiling (called a

fine mixed subdivision) is possible, and the generalization of this problem to higher dimensions (with

arrangements of n removed simplicies). We begin with some preliminary definitions and state the

general problem in Section 2, then provide our own proofs of the two-dimensional case in Section 3.

The remainder of the paper focuses on potential approaches in the three-dimensional case. We

introduce a combinatorial object known as tropical pseudoplanes in Section 4, based on [2], along

with an alternative proof of the two-dimensional case. In Section 5, we show a method of inducting

downwards for some specific arrangements of tetrahedra. In Section 6, we provide a construction of

a subdivision for a specific class of arrangements which stay spread-out under a certain projection

to two dimensions. Finally, in Section 7 we outline a few possible approaches to resolve the

three-dimensional case in general.
1

2 DEREK LIU AND YUAN YAO

2. Preliminaries

We begin by defining a few terms concerning polytopes.

Definition 2.1. A (convex) polytope P is the convex hull of a set of points {v1,v2, . . . ,vk} in

d-dimensional space Rd,

P = conv(v1,v2, . . . ,vk) =

{
n∑

i=1

λivi :

n∑
i=1

λi = 1 and λi ≥ 0 ∀i

}
.

The dimension of a polytope is the dimension of the smallest affine subspace containing it.

Polytopes can also be defined as the bounded intersection of closed half-spaces in Rd.

Definition 2.2. A face of a polytope P is the intersection of P with the boundary of a closed

half-space that contains P , i.e., a hyperplane Ax = z such that all x ∈ P satisfy Ax ≤ z.

Both P and ∅ are faces of P, as seen by the inequalities 0x ≤ 0 and 0x ≤ 1. Here, 0 is the all-0s

matrix. Observe that every face of a polytope is another polytope.

Definition 2.3. A simplex is the convex hull of d affinely independent vertices, i.e., d points that

do not lie in a common (d− 2)-dimensional hyperplane.

It is clear that every face of a simplex is also a simplex. We also denote the standard regular simplex

in Rd by

△d−1 := conv(e1, e2, . . . , ed),

where ei is the unit vector (0, . . . , 0, 1, 0, . . . , 0) with a single 1 in the i-th coordinate. This embedding

is useful for its symmetry, and in our case, the lattice points that it contains. Note that even though

it is embedded in Rd, it is still (d− 1)-dimensional, hence the choice of subscript in the notation.

We will now define the type of polytopes that we consider in this paper.

Definition 2.4. The Minkowski sum of sets P and Q is defined as

P +Q := {p+ q : p ∈ P,q ∈ Q}.

Note that this definition can easily be generalized to three or more summands.

Definition 2.5. A fine mixed cell is a polytope of the form

B1 +B2 + · · ·+Bn,

where the Bi’s are faces of △d−1 that lie in independent affine subspaces such that

n∑
i=1

dim(Bi) = d− 1.

For example, the simplex △d−1 itself is always a fine mixed cell. See Figure 2 for some examples

of fine mixed cells in two and three dimensions. Note that fine mixed cells cannot be rotated or

reflected arbitrarily, and can only be translated by integer vectors.

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 3

Figure 2. Some fine mixed cells in 2D and 3D.

For positive integers n and d, we use n△d−1 to denote conv(ne1, . . . , ned).

Definition 2.6. A fine mixed subdivison of n△d−1 is a decomposition of n△d−1 into fine mixed

cells such that any two cells intersect at a face of both (possibly the empty face).

For example, a fine mixed subdivision when d− 1 = 1 is simply dividing a length-n line segment into

n unit segments, and when d− 1 = 2 it is a tiling with unit equilateral triangles and unit rhombi,

as shown in Figure 1.

Ardila and Billey ([1], Section 8) proved that a fine mixed subdivison of n△d−1 must have exactly

n cells that are (unit) simplices. Moreover, in any smaller simplex of size k (i.e., a translation of

k△d−1), there must be at least k simplices. Let us call an arrangement of exactly n simplices that

satisfies this condition spread-out.

Question 2.7 ([1], Conjecture 7.1). Given a spread-out arrangement of n simplices inside n△d−1,

does there always exist a fine mixed subdivison with simplices only at these positions?

In the same paper, Ardila and Billey ([1]) have shown that the answer to the above question is “yes”

when d− 1 ≤ 2, but the question is still open for d− 1 ≥ 3. The rest of this paper will be dedicated

to the two- and three-dimensional cases of this question.

3. Alternative Proofs of the Two-Dimensional Case

Section 6 of [1] gives an inductive proof that answers Question 2.7 when d− 1 = 2. Here, we provide

two of our own proofs.

Graph Theoretic Proof. Notice that we can subdivide n△2 into n2 unit triangles, with n(n+1)
2 of

them right-side up and the rest upside-down. Call the set of right-side up triangles A and the set of

upside-down triangles B.

Let S ⊂ A be a spread-out set of n triangles. Then, we can consider a bipartite graph between

A \ S and B, where two triangles in the graph are connected if and only if they are adjacent (share

an edge). Every edge in this graph corresponds to a possible placement for a single rhombus, so it

suffices to find a perfect matching on this graph.

We will use Hall’s Marriage Lemma to show such a matching exists. First, we show the following

lemma:

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

4 DEREK LIU AND YUAN YAO

Lemma 3.1. For any connected subset U of k triangles from B, say the smallest triangle containing

all k of them is T, and T has size j. Then, those k triangles collectively have at least j + k distinct

neighbors in A.

Proof. We proceed with strong induction. The base case is k = 1, in which case j = 2 and j+k = 3.

Indeed, any triangle in B has 3 neighbors.

For the induction step, assume our lemma holds for any k ≤ i−1, and consider some U with |U | = i.

Notice U must have at least one triangle on the bottom row of T, otherwise T would be smaller.

Consider removing the rightmost triangle of U on the bottom row, labeled x in Figure 3.

x
y z

v

w

Figure 3. The leftmost triangle in the bottom row, and some of its neighbors.

We consider the following cases:

Case 1: Removing x does not disconnect U and does not make T smaller.

Then, U \ {x} has at least (i − 1) + j neighbors by the induction hypothesis. Furthermore, no

triangle from this set has z as a neighbor, as the only other triangle that has z as a neighbor, apart

from x, is also on the bottom row, on the right of x. As x ∈ U has z as a neighbor, U has at least

(i− 1) + j + 1 = i+ j neighbors.

Case 2: Removing x does not disconnect U but does make T smaller.

As i ≥ 2, x is adjacent to some other triangle in U, which must be in the second-to-bottom row.

Hence, removing x can only move T ’s bottom edge by 1. Notice that even if x touches another

edge of T, its neighbor in U must touch that edge as well, so removing x does not change the

other edges of T. Hence, j decreases by 1, and by the induction hypothesis, U \ {x} has at least

(i− 1) + (j − 1) = i+ j − 2 neighbors.

Furthermore, no triangle in U, except for x, has y or z as a neighbor, as the only triangles with y or

z as a neighbor are in the bottom row. Hence, U has at least (i+ j − 2) + 2 = i+ j neighbors.

Case 3: Removing x disconnects U.

Notice that if the only neighbors of x in U were in the second-to-bottom row, removing x cannot

disconnect U. Hence x is adjacent to some other triangle from U in the bottom row, which by

definition must be on its left. Hence, v ∈ U. In order to split U by removing x, we must have w ∈ U

as well. In particular, removing x will not decrease the size of T.

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 5

Removing x splits U into two components; call them V and W such that v ∈ V and w ∈ W. Say

|V | = k1 and the smallest bounding triangle of V has size j1; define k2 and j2 similarly for W.

Then, by the induction hypothesis, V and W have at least k1+ j1 and k2+ j2 neighbors, respectively.

None of these neighbors are shared, as any two triangles that share a neighbor in A are connected.

Also, k1 + k2 = i− 1.

Notice that V must touch the left edge of T, and W must touch the right edge of T. Furthermore,

as w ∈ W, the bounding triangle of W contains the top-right corner of v, so the bounding triangles

of V and W touch. Hence, j1 + j2 ≥ j.

Finally, z is still a neighbor to no triangle in U other than x. Hence, U has at least

(k1 + j1) + (k2 + j2) + 1 = (k1 + k2 + 1) + (j1 + j2) ≥ i+ j

neighbors, as desired.

This covers every case, completing the proof. □

Hence, if a subset U ⊆ B with size k has smallest bounding triangle T with size j, then U has at

least j + k neighbors in A. Also, S has at most j elements of A in T by the spread-out condition.

Thus, A \ S has at least (j + k)− j = k neighbors of U. As this holds for every subset U of B, by

Hall’s Marriage Theorem, there exists a perfect matching between A \ S and B, as desired. □

Remark. While this proof offers a nice combinatorial representation of the problem in two dimensions,

it does not generalize three or more dimensions, since there is no tiling of a simplex such that every

fine mixed cell is the union of two tiles.

“Sliding Triangles” Proof. We say a triangle T is saturated by a set S of triangles if the number of

elements of S contained in T equals the size of T.

Our goal is to first “slide” each triangle downwards to the bottom row; an example is shown in

Figure 4.

Figure 4. An example of the case n = 5.

We prove the following lemmas.

6 DEREK LIU AND YUAN YAO

Lemma 3.2 ([1], Lemma 4.2). If T1 and T2 are both saturated by a set S0, and their intersection is

nonempty, both T1 ∩ T2 and T1 ∨ T2 (the smallest triangle containing both T1 and T2) are saturated

by S0 as well.

Proof. Say T1 is the set of lattice points in n△2 that majorize (a1, a2, a3) and T2 is the set of lattice

points in n△2 majorize (b1, b2, b3). For convenience, we call (a1, a2, a3) the apex of T1.

Then, their intersection is the set of lattice points that majorizes both triples, or the triangle with

apex (max(a1, b1),max(a2, b2),max(a3, b3)). Furthermore, a triangle T contains T1 if and only if the

apex of T1 majorizes the apex of T, so T1 ∨ T2 has apex (min(a1, b1),min(a2, b2),min(a3, b3)).

The size of a triangle with apex (a1, a2, a3) is n− (a1 + a2 + a3), so

size(T1) + size(T2) = 2n− (a1 + a2 + a3 + b1 + b2 + b3)

= 2n−
3∑

i=1

(max(ai, bi) + min(ai, bi))

= size(T1 ∩ T2) + size(T1 ∨ T2).

In particular, the multiset T1 ∪ T2 (counting the intersection twice) is contained in the multiset

(T1 ∩ T2) ∪ (T1 ∨ T2). The former contains size(T1) + size(T2) elements of S0 (as both triangles are

saturated), while the latter contains at most

size(T1 ∩ T2) + size(T1 ∨ T2) = size(T1) + size(T2).

Hence equality must hold, and both T1 ∩ T2 and T1 ∨ T2 are saturated by S0. □

Lemma 3.3. Given a set S of spread-out triangles (of size n) and a triangle T ∈ S not in the

bottom row, Let T1 and T2 be the triangles on T ’s lower-left and lower-right, respectively. Then at

least one of (S \ {T}) ∪ {T1} and (S \ {T}) ∪ {T2} is spread-out.

In other words, we can “slide” T either down-and-left, or down-and-right.

Proof. Assume for sake of contradiction that neither set is spread-out. Let A1 be a triangle that

violates the spread-out condition for (S \ {T}) ∪ {T1}, and define A2 similarly.

Then, both A1 and A2 are saturated by S \{T}. By Lemma 3.2, A1∨A2 is also saturated by S \{T}.
However, T must be in A1 ∨A2, so A1 ∨A2 violates the spread-out condition for S, contradiction.

Hence the lemma holds. □

To slide each triangle to the bottom row, we will first slide all the triangles in the top row into

the second row. Then, we take all triangles in the second row and slide them into the third row

(in any order), and so on. Note that Lemma 3.3 guarantees that we will always have a spread-out

configuration and can always slide triangle down.

It is clear that the sliding paths are all disjoint, so we can fill each path with “horizontal” rhombi

(each with a pair of horizontal edges), and the rest of the triangle can be filled with “vertical”

rhombi, giving us our desired tiling.

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 7

Figure 5. An example of the case n = 5.

Figure 6. An example of the case n = 5.

□

In fact, this proof extends beyond the specific case in which the shape to be tiled is a triangle.

Theorem 3.4. Let U be a connected set of upside-down equilateral triangles, and let V be the set

of right-side-up triangles adjacent to (sharing an edge with) the triangles of U. Let S be a spread-out

subset of V with size |V | − |U |. Then, the shape formed by (U ∪ V) \ S can be tiled with rhombi.

(Such a set S may not exist.)

Figure 7 shows an example of a set U and the resulting shape.

Figure 7. An example of U and the resulting shape.

Note that it is not guaranteed such an S even exists, in which case the theorem is vacuously true.

8 DEREK LIU AND YUAN YAO

Proof. The previous “Sliding Triangles” proof applies almost verbatim here. We slide each triangle

downwards until its bottom edge is on the boundary of U ∪V , and then tile the path with horizontal

rhombi and the rest with vertical rhombi. □

Motivated by Theorem 3.4, we pose a similar question in three dimensions.

Question 3.5. In a tetrahedral-octahedral honeycomb, let U be a set of upside-down tetrahedra,

let V be the set of octahedra adjacent to U, and let W be the set of right-side-up tetrahedra

adjacent to V (where adjacent means shares a face). Let S be a spread-out subset of W with size

|W |+ |U | − 2|V |. Does there always exist a fine mixed subdivision of (U ∪ V ∪W) with tetrahedra

at S?

4. Tropical Pseudolines and Pseudoplanes

In this section, we introduce the concept of tropical pseudoplanes (tropical pseudolines when

d − 1 = 2), as defined in [2]. We then provide another proof of the two-dimensional case using

pseudolines. For brevity, we will omit the word “tropical” for the remainder of this paper.

First, we define pseudolines when d− 1 = 2. Take a fine mixed subdivision of n△2. For each unit

triangle in the subdivision, draw segments from its centroid to its three edges. Then, for each

rhombus, draw segments connecting each opposite pair of midpoints of edges. The result is an

arrangement of n pseudolines (“bent tropical lines”), as color-coded in Figure 8.

Figure 8. An example of pseudolines when n = 5. Each pseudoline is shown in a
different color.

Pseudolines have some interesting properties. Each one consists of three “branches” emanating

from the center of a triangle meeting a different edge of the triangle. Any two pseudolines intersect

exactly once, and any cell can be defined as the intersection of two pseudolines uniquely (where a

triangle can be thought of as intersecting its pseudoline with itself).

We can similarly define pseudoplanes when d− 1 = 3. Take a fine mixed subdivision of n△3. For

each unit tetrahedron, first draw the segments from its centroid to each of the four faces, then fill

in the planes between these segments to connect the centroid to each of the six edges. For each

triangular prism, first draw the segment connecting the centroids of its two triangular faces, then

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 9

draw planes connecting that segment to the midlines of each of the three rhombus faces. Finally, for

parallelepipeds, draw in the three midplanes.

Figure 9. An example of a pseudoplane colored in red, from two different angles.

Pseudoplanes share very similar properties with pseudolines. Each one consists of four “branches”

and six “sheets.” Each branch intersects a face of n△3, and each component intersects an edge. Any

three pseudoplanes intersect exactly once, and any cell can be defined as the intersection of three

pseudoplanes uniquely (where a tetrahedron is the intersection of its pseudoplane with itself three

times, and a triangular prism is the intersection of the same pseudoplane twice with a different one).

These pseudoplanes and pseudolines give us a combinatorial perspective towards understanding

tilings, and attempting to construct them opens up various methods of creating fine mixed subdivi-

sions, as we will see in the sections below.

Now we provide an alternative proof for Question 2.7 in the d− 1 = 2 case.

Pseudoline Proof. For any set of n spread-out triangles, using Lemma 3.3, we can generate a

pseudoline through one of the triangles with the property that no matter where we move the

triangle along the psuedoline, the resulting configuration is still spread-out. Then, we can delete

that pseudoline and “collapse” the remaining shape, as shown in Figure 10.

Figure 10. Creating and collapsing a pseudoline.

10 DEREK LIU AND YUAN YAO

Figure 11. Adding back a pseudoline, drawn in green. Blue lines show
”corrections”.

Clearly, any triangle that is contained in one of the three “sections” still satisfies the spread-out

condition.

After the collapse, consider a triangle T that overlaps with the pseudoline. Its pre-image from before

the collapse is contained in a triangle T ′ of size one greater than that of T. Consider moving the

unit triangle we removed along the pseudoline into T ′. Then, T ′ must still satisfy the spread-out

condition; removing that triangle, we see that T is also spread-out, because T has size one less than

that of T ′, and has at least one less triangle now.

Hence, our new configuration is still spread-out. We can find a tiling of it, then attempt to add back

the pseudoline. Whenever the pseudoline cuts “through” a rhombus, we can replace it with two

rhombi, as shown in the dashed portions of Figure 11, corrected in blue. The rest of the pseudoline

is shown in green.

Hence, we can reduce the size-n case to the size-(n− 1) case, so we can conclude via induction. □

Unfortunately, this does not fully generalize to d− 1 = 3. The main problem is that when adding

back the pseudoplane, if it cuts through any cells, it is not as apparent how to “fix” these cells,

whereas in two dimensions it was easy to replace them with two rhombi. However, it may be possible

to try to pick a specific pseudoplane, as opposed to arbitrarily choosing one, and attempting to find

a tiling for the resulting size-(n− 1) configuration such that the pseudoplane will not intersect with

any cells.

5. One Tetrahedron in the Bottom Layer

In this section, we will show that in a size-n case with exactly one tetrahedron in the last layer

(along a triangular face), we can always derive a fine mixed subdivision by induction from the

size-(n− 1) case.

First, we tile the top size-(n− 1) tetrahedron, which has n− 1 spread-out tetrahedra in it, by the

induction hypothesis.

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 11

Consider the second-bottom face’s cross section (the bottom of the size-(n− 1) tiling). It must be a

fine mixed subdivision of a size-(n− 1) triangle, where the given tetrahedron in the bottom layer

intersects it at a point (as shown by the dot in Figure 12).

Figure 12. An example of the cross-section when n = 6. Each color represents the
two arrows that point towards the same edge.

Notice the six directions around the dot labelled red, green, and blue. It is impossible for the dot

to have a 180-degree angle around it, so at least one of each color edge must be present in the

subdivision. (In this case, the lower blue edge, the rightwards red edge, and both green edges are

present.) This property holds for every point. Hence, we can find a path from the dot to the lower

edge of the triangle using only red directions, and likewise for the other two edges and colors. (This

path may be non-unique.) The result resembles a pseudoline, as seen in Figure 13.

Figure 13. A pseudoline is drawn, each branch in a different color.

In each face we will draw an arrow to denote the Minkowski sum of the face with an edge in the

arrow’s direction. (While this is an aerial view, each arrow has a downwards component so that the

cells occupy the bottom layer.) Notice how the pseudoline divides the tiling into three sections; we

draw arrows in each one pointing away from the dot, as seen in Figure 14. (Two example cells are

drawn in near the top, where the dotted edges are beneath the dashed edges, which are beneath the

solid edges.)

Each edge along the pseudoline now borders two faces with different arrows. Take the Minkowski

sum of that edge and the triangular face formed by these arrows. Along with the tetrahedron itself,

this is a complete tiling of the bottom layer. This is shown in Figure 15, with dotted edges being on

12 DEREK LIU AND YUAN YAO

Figure 14. We start filling the bottom layer.

the bottom face, dashed in the bottom layer, and solid on top. Combining this with the size-(n− 1)

subdivision earlier, we get a desired size-n subdivision.

Figure 15. The bottom layer is completed.

In fact, we claim that the “converse” holds too:

Theorem 5.1. If a fine mixed subdivision of n△3 has exactly one tetrahedron in the bottom layer,

we can remove the entire bottom layer to obtain a fine mixed subdivision of (n− 1)△3.

Proof. Notice that each pseudoplane has one component that touches each edge, and one branch

that touches each face. Number the tetrahedra 1 through n, with 1 being in the bottom layer. Each

cell can be expressed as the intersection of three pseudoplanes of tetrahedra a, b, c, possibly repeated;

we denote this cell by an unordered triple (a, b, c). (For example, tetrahedron 1 is denoted (1, 1, 1).)

A triangular prism must be of the form (a, a, b) for some a ̸= b.

Assume for sake of contradiction that some triangular prism in the bottom layer is of the form

(a, a, b) for a ̸= 1 and b ≠ 1. Then, it is the intersection of some branch of pseudoplane a with some

component of pseudoplane b. It must be on the downwards branch of pseudoplane a, as that is the

only branch that can extend downwards into the bottom layer. Likewise, the branch of pseudoplane

b must be towards one of the three bottom edges, say towards edge E.

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 13

Now, the components of pseudoplanes a and b towards edge E cannot intersect. However, the

downwards branch of pseudoplane a is part of its component towards E, which means that the

intersection of the components of pseudoplanes a and b towards edge E must contain the triangular

prism, contradiction.

Hence, any triangular prism in the bottom layer is part of pseudoplane 1. In particular, there are

only 2n − 2 such prisms, one for each of the form (1, 1, x) and (1, x, x) for x ̸= 1, so there are at

most 2n− 2 prisms in the bottom layer. Say there are k ≤ 2n− 2 prisms in the bottom layer.

Let us overlay a tetrahedral-octahedral honeycomb with our tiling. Notice that any cell that covers

a right-side-up tetrahedron of this honeycomb in the bottom layer must be wholly contained in the

bottom layer. There are n(n+1)
2 such tetrahedra; one of them is covered by tetrahedron 1, k of them

are covered by prisms, and the remaining n(n+1)
2 − k − 1 must be covered by parallelepipeds.

Each prism covers half an octahedron, while each parallelepiped covers one whole octahedron (or two

halves) and one upside-down tetrahedron. There are n(n−1)
2 octahedra and (n−1)(n−2)

2 upside-down

tetrahedra in the bottom layer; since each of these cells is completely contained in the bottom layer,

we must have

1

2
k +

(
n(n+ 1)

2
− k − 1

)
≤ n(n− 1)

2
and

n(n+ 1)

2
− k − 1 ≤ (n− 1)(n− 2)

2
.

Both of these inequalities simplify to k ≥ 2n − 2. Since we also know k ≤ 2n − 2, we must have

k = 2n − 2, which means both inequalities above satisfy equality. In particular, this means that

the cells covering the right-side-up bottom-layer tetrahedra in the honeycomb also cover all the

octahedra and upside-down tetrahedra in the bottom layer, i.e., they cover the whole bottom layer.

We know these cells are all contained in the bottom layer as well, so they comprise exactly the

bottom layer, and we can remove this layer. □

6. Main Theorem

We prove the following theorem:

Theorem 6.1. Given an arrangement of n tetrahedrons in n△3, consider the triangle formed

by an edge of the n△3 and the midpoint of the opposite edge. Suppose that the projection of the

tetrahedra onto this triangle creates a spread-out configuration of triangles, so that it can be tiled by

a two-dimensional tiling T. Then, there exists a fine mixed subdivision with those tetrahedra where

each cell in the tiling projects to a cell of T.

Proof. We construct such a tiling in three steps. Let E be the edge perpendicular to the plane of

T, and let D be the edge opposite E. We define directions of “top”/“up” and “bottom”/“down”

along edge E. Given a parallelogram in T, call it Type-A if it has an edge parallel to D, and Type-B

otherwise. Define the column of a cell in T to be the portion of the large tetrahedron that projects

to it. Illustrated in Figure 16 is an example of an arrangement of the tetrahedra, with the Type A

and Type-B parallelograms labelled.

Step 1: Constructing Columns

14 DEREK LIU AND YUAN YAO

Figure 16. Left: Top view, with cell type labeled. Right: Side view. Edges D and
E are drawn in purple and orange, respectively.

For each triangular cell in T, we fill the rest of its column (which already has a tetrahedron in it) by

extending triangular prisms parallel to E, as shown in Figure 17.

Figure 17. Constructing columns on each tetrahedron (Step 1).

Step 2: Extending Pseudolines

Consider the pseudolines in T , as shown in Figure 18. For each pseudoline, ignore the branch that

points towards D, and construct triangular prisms from its tetrahedron along the remaining two

branches.

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 15

Figure 18. The pseudolines of T, blue in Type-A cells and red in Type-B cells.

Each Type-A cell in T will only have one branch through it, as we discarded the branch pointing

towards D. Hence, any prism we place that projects to a Type-A cell extends parallel to D.

On the other hand, each Type-B cell is the intersection of two branches. Neither of them are parallel

to D, so any prism we place along these branches can either extend upwards or downwards (in

addition to along the pseudoline). To decide which direction we extend in, the pseudoline which is

currently higher extends upwards, and the lower one extends downwards (so they always extend

away from each other). If they are at the same height, then we arbitrarily pick one to extend

upwards and one to extend downwards.

Figure 19. Extending pseudolines (Step 2). The pseudolines are color-coded based
on their tetrahedron (which are in darker shades of the same color).

We decide when pseudolines extend upwards or downwards starting along D, going by edge layer

until we reach E. (This is because whether a pseudoline goes up or down depends on its current

height, which depends on how it extended in the previous edge layers.)

Step 3: Filling Remaining Columns

16 DEREK LIU AND YUAN YAO

Figure 20. Left: A type-A column. Right: A type-B column. The triangular
prisms in the columns are solid while the parallelepipeds are transparent.

At this point, we claim that we can fill the remaining columns with parallelepipeds.

Each column stemming from a Type-A cell has only one prism in it which runs parallel to D. This

prism’s top face is parallel to the top face of the large tetrahedron, and their bottom faces are also

parallel, so the remaining spaces can be filled with parallelepipeds.

Each column stemming from a Type-B cell has two prisms in it. The lower prism must extend

downwards by our construction, so its bottom face is parallel to the bottom face of the large

tetrahedron, so we can fill the space between them (if there is one) with parallelepipeds. Its top face

and the bottom face of the higher prism are also parallel (both are squares and may coincide), so

we can fill the space between them with parallelepipeds as well. Finally, the top face of the higher

prism is parallel to the top face of the large tetrahedron, so we can fill the space between them with

parallelepipeds as well.

Hence, the whole tetrahedron is tiled. It remains to show that all the cells intersect properly.

Clearly, the cells within a single column all intersect properly with each other. Whenever two

columns meet, they either intersect at a rectangular face or a trapezoidal face. If they intersect at a

rectangular face, it must be subdivided into unit squares on both columns, so they must intersect

properly.

If they intersect at a trapezoidal face, it must be subdivided into one triangle and unit parallelograms

on both columns. Furthermore, the triangular face must be at the same position on both columns,

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 17

Figure 21. Completing the tiling (Step 3).

Figure 22. Two types of column intersections. Left: rectangular intersection.
Right: trapezoidal intersection, where the two prisms with shared triangular face are

highlighted.

because they arose from the pseudolines we constructed in Step 2. Once the triangle is placed, the

remaining unit parallelograms are fixed in the same way on both columns, so they intersect properly.

Hence, this construction always produces a valid subdivision. □

Remark. This theorem covers some special cases for the tetrahedra’s arrangements:

18 DEREK LIU AND YUAN YAO

(1) There is one tetrahedron in each edge layer (layers starting from an edge towards the opposite

edge).

(2) There is one tetrahedron in each face layer (layers starting from a vertex towards the opposite

face).

(3) All the tetrahedra are touching the same face.

The first two cases hold because in the two-dimensional case, one triangle per row automatically

implies a spread-out arrangement. The last case holds because the tetrahedra must form a two-

dimensional spread-out arrangement along that face, which the projection will preserve.

Figure 23. Three special cases of the main theorem. Left: One in each edge layer.
Center: One in each face layer. Right: All on one face.

7. Possible Approaches to Resolve the General d− 1 = 3 Case

Here, we outline possible approaches to the problem in three dimensions.

One idea is to try to generalize our main theorem to “projections” along “bent lines,” instead of

straight edges. This way, the “columns” are not straight columns, but pseudolines, or segments of

pseudoplanes. This could allow our theorem to generalize to more arrangements of tetrahedra.

Another possible approach is to “slide” the tetrahedra (as we did in two dimensions) to a more

favorable arrangement, such as one our main theorem covers. We can find a subdivision with

those tetrahedra, then attempt to “slide” them back to their original positions. However, this is

much more difficult to do in three dimensions than 2 because the cells have to intersect properly –

attempting to slide tetrahedra will disrupt how they intersect with their neighboring cells.

A third approach is similar to the second proof of Section 3. In three dimensions, there are 12

possible “sliding” directions. For each face, three of these directions are towards that face, three are

away, and six are neither.

Select an edge E of the large tetrahedron which borders faces A and B. Of the three sliding

directions towards A, only one of them is away from B, while the other two remain the same

distance from B. Similar to Lemma 3.3, we know that we can pick one of these two directions to

slide a unit tetrahedron in, and we can “by layer” slide all the tetrahedra onto face A this way.

They must still be spread-out. Let us call each path we created a “branch,” which is part of the

pseudoplane we will construct.

ARRANGEMENTS OF SIMPLICES IN FINE MIXED SUBDIVISIONS 19

Then, we can, as above, slide all the tetrahedra onto edge E. This time, though, we do not only

slide triangles; we will slide the whole branch in a similar manner. This gives us a component of a

pseudoplane for each tetrahedron that touches edge E.

This approach has flaws, most notably that one of the pseudoplanes we create may not intersect

properly with a tetrahedra adjacent to it. However, it is a direct and plausible approach to the

problem.

Acknowledgments. I would like to thank my mentor, Mr. Yuan Yao of Massachusetts Institute

of Technology, for suggesting this project and offering me guidance, both in understanding these

mathematical concepts and in writing my report. I would also like to thank the MIT Math

Department and PRIMES program for providing me this invaluable opportunity to pursue a research

project.

20 DEREK LIU AND YUAN YAO

References

[1] Frederico Ardila and Sara Billey, Flag arrangements and triangulations of products of simplices, Advances in

Mathematics. 214 (2007), no. 2, 495–524.

[2] Frederico Ardila and Mike Develin, Tropical hyperplane arrangements and oriented matroids, Mathematische

Zeitschrift. 262 (2008), no. 4, 795-816

[3] Francisco Santos, The Cayley trick and triangulations of products of simplices. Contemporary Mathematics 374

(2005): 151-178.

[4] Günter M. Ziegler, Lectures on Polytopes, Springer Graduate Texts in Mathematics (1995).

Email address: dxliu136@gmail.com

	1. Introduction
	2. Preliminaries
	3. Alternative Proofs of the Two-Dimensional Case
	4. Tropical Pseudolines and Pseudoplanes
	5. One Tetrahedron in the Bottom Layer
	6. Main Theorem
	7. Possible Approaches to Resolve the General d-1=3 Case
	References

	fd@output-3:

