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1 Introduction

Modern personal computers (PCs) often contain numerous security vulnerabilities
due to bugs in their complex operating systems, which have millions of lines
of code [1]. In other words, the size of the Trusted Computing Base (TCB),
or the code assumed to be implemented correctly, is relatively large, and as a
result, writing a bug-free operating system on the scale of Linux or Windows
is nearly impossible. However, many applications that might run on the PC
including cryptocurrency or banking software require strong guarantees to ensure
secure transactions. The security guarantees provided by PCs are insufficient
for these security sensitive operations. Hardware wallets, small devices with an
independent operating system, provide the capabilities to isolate these sensitive
operations and complete them securely. Hardware wallets have a screen and
buttons used to authorize and sign transactions and connect to the PC through
a USB port. This allows for the application to be split into two parts where
the majority of the application still runs on the PC, but the secure transaction
approval step occurs on the hardware wallet. Figure 1 illustrates this process.
The private keys used to sign the transactions are stored solely on the hardware
wallet, completely isolating them from the PC. Because hardware wallets only
need to perform a small subset of the operations that a PC would, they use a
significantly smaller operating system. With a smaller codebase and TCB, there
would be less room for attacks and fewer bugs. Rather than trusting the PC, the
user only needs to trust that the hardware wallet works as intended. For example,
a compromised PC would be unable to steal Bitcoin from a hardware wallet as
it would be unable to access the confidential information stored solely on the
hardware wallet. If the PC tried to perform a malicious action, the hardware
wallet would receive the transaction and then display the exact transaction it
received on the screen. This way if the compromised PC requested a malicious
transaction, for example, the user could decline said transaction. There is no
other method of signing the transaction other than using the private keys, which
reside solely on the hardware wallet.
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Figure 1: A diagram of a hardware wallet receiving and approving a transaction
from the PC after the user has physically confirmed the transaction shown on
the display using the buttons on the hardware wallet.

Although operating systems on hardware wallets are less complex than those on
PCs, they are still prone to error and have many thousands of lines of code [2].
For example, security vulnerabilities have been previously discovered in modern
hardware wallets such as Ledger. These vulnerabilities range from hardware
misconfiguration bugs that can be abused without even leaving user mode to
system call argument validation bugs in the kernel. One method used to eliminate
these sorts of bugs is by using formal verification, a technique used to reason
about the behavior of a program. Prior work such as HV6 [3] and Serval [4]
tackle verifying a desktop-style operating system by using push-button formal
verification. However, these previous works only reason about individual system
calls and do not reason about code that runs between these system calls in
user mode. One bug that Serval would not detect would be a misconfigured
physical memory protection (PMP) register, which would allow user code to
access memory that it should not. We seek to reduce the TCB further by using
formal verification to eliminate certain classes of bugs that could be exploited
while running in user mode. One such security property would be guaranteeing
that user code is unable to modify any memory that it is not permitted to
access. To accomplish this task, we build a kernel in RISC-V, which represents a
simplified version of an actual hardware wallet kernel. In addition, we also build
a QEMU-like symbolic machine emulator to reason about the behavior of our
kernel. This machine emulator differs from QEMU in that it can reason about
symbolic values in the machine state, essentially allowing us to reason about the
execution of arbitrary user code. This enables us to state and prove important
security properties such as the inability of code running in user mode to change
RAM of protected regions. We prove that applications cannot tamper with the
isolation set up while executing in user mode. With proofs further reasoning



about system calls, we could complete an end-to-end proof about the system’s
execution. Although this is not yet an end-to-end correctness proof, we prove
important properties that are also useful.

2 Approach
2.1 Kernel Design

We built a kernel similar to one found in a real hardware wallet. We design
our kernel to have the following features: the ability to download, load, and
run different applications. Also, we use a smaller codebase to make debugging
and reasoning easier. Our target hardware, like other hardware wallets, has no
virtual memory support. To isolate the kernel from the user application we use
RISC-V M-mode as our privileged level with unrestricted access to memory and
use RISC-V U-mode for running user applications, which has only restricted
access to memory due to our PMP register setup. The kernel begins with turning
on and booting the kernel, where several control register configurations occur
to set up proper privilege level settings. These boot-time operations include
configuring the PMP registers in such a way that user applications can only
access a predefined region of memory and giving the user the choice to download
a new application or load an existing application to be run. Then, the kernel
executes the application that was selected by the user during boot time. After
finishing the execution of this program, the kernel stops, and to run another
application, the user must restart the kernel by physically powering off and
on the device; the kernel can only run a single application within a single run.
This simplifies the design of our kernel making it easier to reason about while
maintaining the same functionality. Furthermore, our kernel does not need to
support the same multiplexing functionality that desktop PCs have as we only
ever need to run one cryptocurrency application at one time.

2.2 Verification

Our goal is to prove that our applications are isolated from one another. To
prove this property about our kernel, we must show that we can set up our
kernel in such a way that by the time we enter use mode, the application is
running in user mode and cannot modify confidential memory. We use the PMP
registers to restrict the user application memory access as well as configure other
critical registers at boot time (mtvec, mstatus, etc) at boot time to create this
state, which we will refer to this configuration of kernel registers as being “OK”
(Figure 2).

Also, we must show that after booting up into this “OK” state and switching
to user mode for execution of the application, that any instruction running in
user mode causes exactly one of the following two cases to occur: either the
kernel remains in user mode and the kernel maintains the “OK” property, or the
kernel switches to kernel mode and begins executing at the location predefined
by the mtvec register, which handles system calls (Figure 3). This corresponds



mtvec = 0x0000000080000080

pmpcfg0 = 0x000000000000001f
pmpcfg2 = 0x0000000000000018
pmpaddr0 = 0x000000002000bfff

pmpaddrl = 0x0
pmpaddrl = 0x0
pmpaddr2 = 0x0
pmpaddr3 = 0x0
pmpaddr4 = 0x0
pmpaddr5 = 0x0
pmpaddr6 = 0x0
pmpaddr7 = 0x0
pmpaddr8 = Ox7fffffffffffffff
pmpaddr9 = 0x0
pmpaddrl0 = 0xO0
pmpaddril = 0x0
pmpaddri2 = 0x0
pmpaddr13 = 0x0
pmpaddri4 = 0x0
pmpaddrl5 = 0x0

Figure 2: We define a state to be “OK” if the state has specific registers configured
as shown above.

to a standard inductive proof where the base case is setting up our kernel into
the “OK” state and the inductive step proves that no individual instruction can
tamper with protected RAM.

Though we do not reason about system calls in our work, the system call handler
could be verified similarly to Serval and allows our user application to perform
different operations such as gaining access to the UART, which handles input and
output. Since any application is the composition of many instructions, our proof
covers all possible user applications that could be run on the kernel including
those with illegal instructions. To complete the proof of these properties, we
need to employ symbolic values, which will allow us to reason about unknown
values in our machine. For the base case, only some registers and regions of
memory are defined, which allows us to use symbolic values to represent the rest
of the undefined parts of the machine. In the inductive step, we use symbolic
values to represent key parts of the machine including the program counter and
the user application region of memory. This symbolic memory allows us to read
an arbitrary instruction from an arbitrary address and execute one instruction
from our current state s generating a new state s’ Using these two states, we
can assert that the confidential memory remains unchanged despite running
this arbitrary instruction on the address. If our assertion holds and there exist
no values for which the symbolic variables could be such that the memory is
changed between s and s’, then this implies that it is not possible under any
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Figure 3: A diagram of the workflow of our kernel. The kernel configures during
the boot sequence until it reaches state sg, where sq is the state of the machine
immediately after the kernel boots up. Then the kernel runs for an arbitrary
number of steps n, where it remains in U-mode and “OK” until it reaches state
sn at which point it switches to M-mode and begins executing at the address
defined by mtvec.

circumstance that the memory was changed. Furthermore, we can extend this to
reason about the privilege level. We can assert that either the mode is unchanged
and remains in user mode or exits user mode and begins executing at the address
predetermined by the mtvec register. This proof can be written as a more formal
mathematical formula as shown in Figure 4.

Base Case:

OK (sg), where s0 is the machine state immediately after the boot sequence.

Induction Case:

Vs, s : OK(s) = s = step(s) = is_user(s) NOK(s) = (is_user(s') A
OK(s")) V (is_m(s") A pe(s') = mtvec(s))

Figure 4: The proof expressed in more formal terms using mathematical notation.

2.3 Symbolic RISC-V Machine Emulator

To implement a machine emulator that works with symbolic variables, we turn
to the Rosette language, an extension of the Racket language, which allows us
to lift regular Racket code to be able to operate with symbolic values. We can
write the kernel emulator in Racket and use Rosette to lift that emulator to
function as a symbolic emulator capable of operating on arbitrary instructions.



Mirroring the implementation of a regular machine emulator, the workflow of
the emulator, we separate the execution of each instruction into three functions:
fetch, decode (Figures 5 and 6), execute (Figure 7). The fetch functions extracts
the raw bits that make up the instruction from RAM. The next function, decode,
decodes those raw bits and based on the RISC-V specification, interprets which
instruction and parameters to run. The final function, execute, emulates the
decoded instruction and executes it on our machine state updating all necessary
values such as the program counter. These functions are combined in the step
function (Figure 8) to make up what we refer to as applying one “step” on our
state in Figures 2 and 3.

(define (decode m b_instr)
(define instr null)
(define opcode (extract 6 O b_instr))
(define fmt (get-fmt m opcode))
(cond
[(eq? fmt 'R)
(decode-R m b_instr)]
[(eq? fmt 'I)
(decode-I m b_instr)]
[...]
[else
(illegal-instr m)]))
(provide decode)

Figure 5: A snippet of the decode function used to retrieve the instruction and
parameters from a byte string.

2.4 Challenges

Oftentimes, due to the nature of Rosette, it can be beneficial to express certain
values or data in different ways, which are easier for Rosette to generate simpler
terms. One such example of this is the memory, which the symbolic machine
emulator maintains. At first glance, it might seem intuitive to use an array
representation for the memory, which is actually quite good for quick memory
reads and writes when simulating actual code with concrete values. The major
pitfall with this implementation becomes apparent when proving the unchanged
confidential memory aspect of our proof. To completely verify that the entire
region of confidential memory is unchanged, it is necessary to prove that each
individual address remains unchanged. This results in the time to run our proof
growing linearly with the size of the array and subsequently, the size of the
RAM. Figure 10 demonstrates the issue with writes to memory using symbolic
addresses. When we try to run the proof with 1 MB of RAM, we find that it
takes an unreasonable amount of time to complete the proof and therefore, turn
to an alternative implementation. We instead decide to use an uninterpreted
function representation of memory where memory is represented as a function



(define (decode-R m b_instr)
(define op null)
(define rd (extract 11 7 b_instr))
(define funct3 (extract 14 12 b_instr))
[...]
(define valid null)
(cond
[(and (bveq funct3 (bv #b000 3))
(bveq funct7 (bv #b0000000 7)))
(list 'add rd rsl rs2)]
[(and (bveq funct3 (bv #b000 3))
(bveq funct7 (bv #b0100000 7)))
(list 'sub rd rsl rs2)]
[...]
[else
(illegal-instr m)]))

Figure 6: A snippet of a utility function used by the main decode function to
decode “R-Format” instructions, one of the few types of formats possible.

(define (execute instr m)
(define opcode (list-ref instr 0))
(define pc (get-pc m))
(cond
[(eq? opcode '1b)
(define rd (list-ref-nat instr 1))
(define v_rsl (gprs-get-x m (list-ref-nat instr 2)))
[...]
(define val (sign-extend (machine-ram-read m adj_addr
< 1) (bitvector 64)))
(gprs-set-x! m rd val)
(set-pc! m (bvadd pc (bv 4 64)))
instr]
[(eq? opcode 'sb)
(define v_rsl (gprs-get-x m (list-ref-nat instr 1)))

[...]
(define success (machine-ram-write! m adj_addr v_rs2
-~ 8))

instr])]

Figure 7: A snippet of the execute function, which takes a decoded instruction
and executes it, applying the result on the state of the machine m.



(define (step m)
; fetch raw instruction
(define next_instr (get-next-instr m))
; decode into readable instruction
(define decoded_instr (decode m next_instr))
, execute decoded instruction
(execute decoded_instr m))

Figure 8: The step function is analogous to the step referenced by the proof.
Each step fetches, decodes, and executes one instruction from the machine m

RAM.

that takes an address and returns the value at that address. Then each time we
wish to write a value v to an address a, we essentially wrap our current memory
function in an if case that returns the value v if the user tries to get address
a and the old memory function applied to the address if the address is not a.
The Racket implementation of these two memory representations is described
in Figure 9. Furthermore, the benefits of using uninterpreted function based
memory is illustrated in the constant size term produced even after writing to
an address as shown in Figure 10.

(define (uf-memory-write mem addr val)
(lambda (addr#*)
(if (equal? addr addr*)
val
(mem addr*))))

(define (uf-memory-read mem addr)
(mem addr))

(define (array-memory-write! mem addr val)
(vector-set! mem addr val))

(define (array-memory-read mem addr)
(vector-ref mem addr))

Figure 9: Rosette implementation of read and write for array-based memory and
uninterpreted function (uf) based memory.

3 Evaluation

We evaluate our work on two factors: whether or not the verification terminated
in a reasonable amount of time and which bugs were eliminated by our proof.
For reasonable machine settings, notably 1 MB of RAM, both the base case and
the recursive of the proof finish execution in roughly 25 minutes and 5 seconds
respectively. With respect to the bugs eliminated, we cover a few major cases.



(require syntax/parse/define)
(require (only-in racket/base build-vector))

(define-simple-macro (make-sym-vector n:expr size:expr m:id)
(build-vector n (lambda (i) (define-symbolic* m (bitvector
— size)) m)))

(define-simple-macro (fresh-symbolic name type)
(let () (define-symbolic* name type) name))

(define-symbolic* pos idx (bitvector 2))
(define-symbolic* val (bitvector 8))

(define array_mem (make-sym-vector 4 8 mem))

(printf "Before Write: ~a~n" (array-memory-read array_mem

— (bitvector->integer idx)))

; > Before Write: (itex (/- (= 0 (bitvector->integer idz$0))

< mem$0) (/- (= 1 (bitvector->integer tdz$0)) mem$1) (/- (= 2
< (bitvector->integer 4dz$0)) mem$2) (/- (= 3

< (bitvector->integer idz$0)) mem$3))

(array-memory-write! array_mem (bitvector->integer pos) val)
(printf "After Write: ~a~n" (array-memory-read array_mem

— (bitvector->integer idx)))

; > After Write: (itex (/- (= 0 (bitvector->integer idz$0)) (ite
— (= 0 (bitvector->integer pos$0)) val$0 mem$0)) (/- (= 1

< (bitvector->integer 1dz$0)) (ite (= 1 (bitvector->integer
< pos$0)) val$0 mem$1)) (/- (= 2 (bitvector->integer idz$0))
- (ite (= 2 (bitvector->integer pos$0)) ...)) ...)

(define uf_mem (fresh-symbolic fnmem (~> (bitvector 2) (bitvector
- 8)))

(printf "Before Write: ~a~n" (uf-memory-read uf_mem idx))

; > Before Write: (app fnmem$0 idz$0)

(define uf_mem* (uf-memory-write! uf_mem pos val))

(printf "After Write: ~a~n" (uf-memory-read uf_mem* idx))

; > After Write: (ite (bveq pos$0 idz$0) val$0 (app fnmem$O

<~  1dz$0))

Figure 10: An example demonstrating how terms generated from reading and
writing to array based memory are much larger and complex than those generated
from uninterpreted function based memory. In this example, both memory repre-
sentations can hold 4 bitvectors of size 8. The print statements corresponding to
Before Write and After Write refer to the terms generated by reading from
a symbolic index. The array based memory term grows significantly, while the
uninterpreted function based memory term remains constant.



Most prominently, bugs that occur with misconfigurations in the kernel boot
sequence. These include incorrectly configured PMP registers and incorrect
privilege level set up when entering user application execution, both of these
bugs would allow user mode applications to access confidential memory it should
not have access.

3.1 Limitations

Though our symbolic machine emulator implements enough of the RISC-V
instruction set to boot our simple kernel, we have only implemented 42 of the
100+ instructions in the extended specification. With this added functionality, we
would be able to complete the end-to-end proof by using verification techniques
similar to those in Serval on these system calls. Finally, the emulation of the
boot sequence runs somewhat slowly for large sizes of RAM, which we would
like to investigate further and hope to improve.

4 Related Work

HV6 and Serval use push-button verification to prove properties about system
calls operating in kernel mode for desktop-like operating systems. seld [5] uses
a manual proof with Isabelle, a proof assistant, to prove the correctness of a
microcontroller style kernel for use on an embedded device. CertiKOS [6] is
another recent work that also uses proof assistants to prove security properties
about their kernel, which has the unique capability of supporting concurrent
operations. This technique uses a high level of effort to construct the proof.

5 Conclusion

We make progress on developing a proof of end-to-end correctness for applica-
tion isolation on cryptocurrency hardware wallets by using formal verification
techniques. We build a kernel and symbolic machine emulator, which can reason
about the machine state even when some aspects are unknown, and prove that we
can set up the kernel at boot time in such a way that user applications are prop-
erly isolated and are unable to modify private memory. Our code for this project
can be found at https://github.com/AndrewTShen/riscv-symbolic-emulator.
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