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Fundamental Theorem of Algebra

Notation: C is the set of complex numbers, i.e., numbers of the form
a + bi , where i2 = −1 and a, b are real numbers.

Theorem: Every degree-n polynomial p(x) over C, the field of complex
numbers, has exactly n roots, counted with multiplicities.

Multiplicity of p(x) at c ∈ C: largest k such that p(x) is divisible by
(x − c)k .

This is not true for real numbers, since for example x2 + 1 has no real
roots, even though it has degree 2. However, x2 + 1 has roots i ,−i in
C, each with multiplicity 1.

FTA restated: If nonconstant complex polynomials p(x) and q(x) have the
same preimages of 0 with the same multiplicities, then p(x) = cq(x) for
some constant c.

This talk: generalize this to more complicated functions, and to preimages
of sets, rather than points.
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Shared multisets

Definition: A multiset is like a set, but where each element can occur
multiple times.

Example:{1, 2, 2} is a multiset of size 3.

Write |S | for the size of the multiset S .

For any polynomial p(x), write p−1(a) for the multiset of zeroes of
p(x)− a. Thus |p−1(a)| = deg(p).

For a multiset S , write p−1(S) for the union
⋃
a∈S

p−1(a).

If p(x) = x2 we have p−1({0, 1, 2}) = {0, 0, 1,−1,
√

2,−
√

2}.

Say polynomials p, q share a multiset S if p−1(S) = q−1(S).
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Characteristic polynomials

Definition: For a multiset S , the characteristic polynomial of S is

fS(x) :=
∏
a∈S

(x − a).

Example: If S = {1, 2, 2} then fS(x) = (x − 1)(x − 2)2.

A useful reformulation: p, q share S ⇐⇒ p−1(S) = q−1(S) ⇐⇒
p−1(f −1S (0)) = q−1(f −1S (0)) ⇐⇒ fS ◦ p and fS ◦ q have the same roots,
counting multiplicities.
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Polynomials sharing multisets

Observation: If nonconstant polynomials p, q share two disjoint nonempty
finite multisets S ,T then g ◦ p = g ◦ q for some nonconstant polynomial
g(x).

Proof: For f (x) :=
∏

a∈S(x − a), the roots of f (p(x)) are the p-preimages
of S , counting multiplicities, which equal the roots of f (q(x)). So
f (p(x)) = cf (q(x)), and then use T to show cn = 1 for some n > 0, so
that f n ◦ p = f n ◦ q. Q.E.D.

Remark: if g ◦ p = g ◦ q for some nonconstant g(x) then p, q share each
of the infinitely many multisets g−1(a) with a ∈ C, since

p−1(g−1(a)) = (g ◦ p)−1(a) = (g ◦ q)−1(a) = q−1(g−1(a)).
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Rational functions sharing multisets

Definition: A rational function is one polynomial divided by another.

Definition: Functions p, q are quasi-equivalent if there exists a
nonconstant rational function g such that g ◦ p = g ◦ q.

Observation: If rational functions p, q share disjoint nonempty finite
(multi)sets S1, S2,S3 then they are quasi-equivalent.

Remark: Quasi-equivalent p, q share infinitely many disjoint finite sets.
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Meromorphic functions

Write C∞ := C ∪ {∞} (the “Riemann sphere”).

Meromorphic functions p : C→ C∞ are “well-behaved” functions, i.e.,
ratios of power series that converge everywhere on C.

Example: Rational functions, trigonometric functions, and exponential
functions are meromorphic. On the contrary, |z | is not.

Theorem (Nevanlinna, 1926): Meromorphic functions sharing five points
are the same.

Theorem (Nevanlinna, 1929): If meromorphic p, q share four points then
p = µ(q) for some degree-one rational function µ(x).

Our main result generalizes these results to shared (multi)sets.
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Meromorphic functions sharing sets

Main Theorem: Let p, q be meromorphic functions sharing disjoint
nonempty finite multisets S1,S2, . . . ,Sn, where n ≥ 4. Then there is a
rational function g such that g ◦ p = g ◦ q and

(1) 0 < deg(g) ≤ 1
n−3(−2 +

∑n
i=1|Si |).

(2) If n ≥ 5 then 0 < deg(g) ≤ maxni=1|Si |.

If such g exists then p, q share infinitely many sets of size deg(g).

Four multisets is the best possible, since for example
p := (ex

2 − 1)/(ex − 1) and q := (e−x
2 − 1)/(e−x − 1) share

{0}, {1}, {∞} but are not quasi-equivalent.

The bounds on the degree imply both of Nevanlinna’s results.

Meromorphic functions require more sets than rational functions
because a function’s zeroes and poles don’t uniquely determine it up
to a constant multiple. For example, ex and 1 both have no zeroes or
poles but are not constant multiples of each other.
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Proof of Main Theorem

Lemma (Borel, 1897): If r1, . . . , rk are meromorphic functions with no
zeroes or poles, and r1 + · · ·+ rk = 0, then for some i 6= j , ri is a constant
multiple of rj .

To apply this lemma for p, q sharing S1, . . . ,Sn, we must construct
such r1, . . . , rk from p and q.

If p, q share Si then fSi ◦ p and fSi ◦ q have the same zeroes, but possibly
different poles.

Let gi = f
|S4|
Si

/f
|Si |
S4

. Then gi (p) and gi (q) have the same zeroes and poles,
so gi (p)/gi (q) has no zeroes or poles.

Since we have three such functions g1, g2, g3, there is a polynomial in the
gi (x)/gi (y) equaling 0, hence a polynomial in the gi (p)/gi (q) equaling 0,
where each term has no zeroes or poles. Thus the ratio of two terms is a
constant c , yielding g(p) = cg(q) for a rational function g . With more
work we show c` = 1 for some ` > 0, so g `(p) = g `(q).
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Degree bounds

We have shown that if p, q share S1, . . . ,Sn with n ≥ 4 then g(p) = g(q)
for some nonconstant rational function g(x). Pick one such g(x) of the
smallest possible degree.

We show deg(g) ≤ 1
n−3(−2 +

∑n
i=1|Si |) via the Riemann-Hurwitz

formula, the fact that any meromorphic parametrization of a singular curve
must factor through its normalization, and the fact that there are no
nonconstant holomorphic maps from C to a hyperbolic Riemann surface.

For n ≥ 5 we show deg(g) ≤ maxni=1|Si | by proving that one of the Si ’s
must contain a multiset of the form g−1(a), so that deg(g) ≤ |Si | for
some i . This is hard.
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Minimal shared multisets

Definition: A multiset S shared by p and q is minimal if p and q do not
share any nonempty proper sub-multiset of S .

It’s easy to show that shared multisets are precisely the unions of minimal
shared multisets, so to determine the shared multisets it suffices to
determine the minimal shared multisets:

Theorem: If p, q are quasi-equivalent, and g is of minimal degree such
that g ◦ p = g ◦ q, then all but at most four minimal shared multisets are
of the form g−1(a).

The minimal shared multisets not of the form g−1(a) come from one
of two sources: the “missed values” of p and q, or the possibility that
some ` > 1 divides all multiplicities in g−1(a), e.g.,
(x2)−1(0) = {0, 0}.

Proof uses Galois theory, algebraic topology, and algebraic geometry.
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Other problems

The same methods can be used for other situations:

Theorem: If meromorphic functions p, q are such that there are five pairs
of nonempty disjoint multisets (Si ,Ti ) such that p−1(Si ) = q−1(Ti ), then
there are rational functions g , h such that g ◦ p = h ◦ q.

Theorem: Rational functions on a smooth projective curve C (over an
algebraically closed constant field) which share three nonempty disjoint
multisets are quasi-equivalent.

Theorem: Meromorphic functions on a (complete, algebraically closed)
non-archimedean field which share three nonempty disjoint multisets are
quasi-equivalent.

We have a similar bound on the degree of the algebraic relation in all of
these cases, and characterize the minimal shared multisets.
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Questions

Can similar results be proved for sharing sets ignoring multiplicity?

What can be said about meromorphic functions sharing fewer than 4
multisets?

What other types of functions can the results be generalized to?
meromorphic functions on complex manifolds? rational functions on
varieties? on schemes??
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GCD of multiplicities in g−1(a)

Theorem: If meromorphic p, q are quasi-equivalent, and g(x) is a
minimal-degree rational function with g(p) = g(q), then there are at most
two points a for which the gcd of the multiplicities in g−1(a) is bigger
than 1.

Proof sketch: Show that if the gcd ei of the multiplicities in g−1(ai )
satisfies ei > 1 for i = 1, 2, 3 then g = f (h) where deg(f ) > 1 and
C(x)/C(f (x)) is Galois with non-cyclic group. Thus f (x)− f (y) factors as
a(x) · b(y) ·

∏
j(x − µj(y)) for some a, b, µj ∈ C(x) with deg(µj) = 1.

Hence h(p) = µj(h(q)) for some j , so if C(u(x)) is the subfield of C(x)
fixed by the automorphism σj : x 7→ µj(x) then u(h(p)) = u(h(q)). Since
G := Gal(C(x)/C(f (x))) is non-cyclic, deg(u) = |〈σj〉| < |G | = deg(f ), so
deg(u(h)) < deg(g), contradicting minimality of deg(g).
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Algebraic topology

Suppose the gcd ei of the multiplicities in g−1(ai ) satisfies ei > 1 for
i = 1, 2, 3. View g as a branched covering S2 → S2. Klein (1886)
constructed f (x) with C(x)/C(f (x)) Galois but non-cyclic, where all
multiplicities in f −1(ai ) equal ei . Writing B for the set of branch points of
g , the restrictions of g and f to S2 \ g−1(B) and S2 \ f −1(B) are
topological covers φ and ψ, and any component X of the pullback of φ
along ψ satisfies

X S2 \ f −1(B)

S2 \ BS2 \ g−1(B)

π2

ψπ1
φ

The compactification of π1 yields an unbranched cover of S2, which must
be a homeomorphism since S2 is simply connected, so g = f ◦ h.
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Proof of the degree bound

Theorem: If meromorphic p, q share multisets S1, . . . ,Sn with n ≥ 4 then
deg(g) ≤ 1

n−3(−2 +
∑n

i=1|Si |).

Here is a proof in the easiest case, when each Si contains a minimal shared
multiset of the form g−1(a):

Lemma (Riemann-Hurwitz, 1857): A rational function h of degree `
satisfies

2`− 2 =
∑
a∈C∞

(`− |h−1(a)set|),

where Sset is the underlying set of a multiset S.

Applying the theorem for g with degree k gives

2k − 2 ≥
n∑

i=1

(
k − g−1(ai )

)
≥ nk −

n∑
i=1

|Si |, so k ≤ 1

n − 2

(
−2 +

n∑
i=1

|Si |
)
.
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