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Fundamental Theorem of Algebra

Notation: C is the set of complex numbers, i.e., numbers of the form
a+ bi, where 2 = —1 and a, b are real numbers.

Theorem: Every degree-n polynomial p(x) over C, the field of complex
numbers, has exactly n roots, counted with multiplicities.

e Multiplicity of p(x) at ¢ € C: largest k such that p(x) is divisible by
(x — c)k.
@ This is not true for real numbers, since for example x> + 1 has no real
roots, even though it has degree 2. However, x2 + 1 has roots i,—iin
C, each with multiplicity 1.
FTA restated: If nonconstant complex polynomials p(x) and q(x) have the
same preimages of 0 with the same multiplicities, then p(x) = cq(x) for
some constant c.

This talk: generalize this to more complicated functions, and to preimages
of sets, rather than points.
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Shared multisets

Definition: A multiset is like a set, but where each element can occur
multiple times.

Example:{1,2,2} is a multiset of size 3.

o Write |S| for the size of the multiset S.

For any polynomial p(x), write p~1(a) for the multiset of zeroes of
p(x) — a. Thus [p~*(a)| = deg(p).

For a multiset S, write p~%(S) for the union U p1(a).
acs

If p(x) = x? we have p~1({0,1,2}) = {0,0,1, —1,v2, —/2}.
Say polynomials p, g share a multiset S if p~1(S) = g~1(5).
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Characteristic polynomials

Definition: For a multiset S, the characteristic polynomial of S is

fs(x) := H(X —a).

aesS
Example: If S = {1,2,2} then fs(x) = (x — 1)(x — 2)2.

A useful reformulation: p,q share S <= p~}(S) = ¢ }(S) —
p~1(fs1(0)) = g 1(fs 1(0)) <= fsopand fs o q have the same roots,
counting multiplicities.
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Polynomials sharing multisets

Observation: If nonconstant polynomials p, q share two disjoint nonempty
finite multisets S, T then g o p = g o q for some nonconstant polynomial

g(x).

Proof: For f(x) := [],cs(x — a), the roots of f(p(x)) are the p-preimages
of S, counting multiplicities, which equal the roots of f(g(x)). So

f(p(x)) = cf(q(x)), and then use T to show ¢” =1 for some n > 0, so
that f"op=f"0gq. Q.E.D.

Remark: if g o p = g o g for some nonconstant g(x) then p, g share each
of the infinitely many multisets g~1(a) with a € C, since

p (e Ma)=(gop) (a) =(goq) H(a) =g (g (a)).
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Rational functions sharing multisets

Definition: A rational function is one polynomial divided by another.

Definition: Functions p, g are quasi-equivalent if there exists a
nonconstant rational function g such that gop=goq.

Observation: If rational functions p, q share disjoint nonempty finite
(multi)sets S1, S, S3 then they are quasi-equivalent.

Remark: Quasi-equivalent p, g share infinitely many disjoint finite sets.
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Meromorphic functions

Write Coo := CU {oo} (the “Riemann sphere”).

Meromorphic functions p : C — C,, are “well-behaved” functions, i.e.,
ratios of power series that converge everywhere on C.

Example: Rational functions, trigonometric functions, and exponential
functions are meromorphic. On the contrary, |z| is not.

Theorem ( ): Meromorphic functions sharing five points
are the same.

Theorem ( ): If meromorphic p, q share four points then
p = 1(q) for some degree-one rational function u(x).

Our main result generalizes these results to shared (multi)sets.
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Meromorphic functions sharing sets

Main Theorem: Let p,q be meromorphic functions sharing disjoint
nonempty finite multisets 51, 5>, ...,5,, where n > 4. Then there is a
rational function g such that gop =g o q and

(1) 0 < deg(g) < 13(—2+ XiL4[Si).

(2) If n > 5 then 0 < deg(g) < max?_,|Si|.

@ If such g exists then p, g share infinitely many sets of size deg(g).
@ Four multisets is the best possible, since for example
p:= (e —1)/(e—1) and q := (e —1)/(e ™ — 1) share
{0}, {1}, {00} but are not quasi-equivalent.

@ The bounds on the degree imply both of Nevanlinna's results.

@ Meromorphic functions require more sets than rational functions
because a function's zeroes and poles don’t uniquely determine it up
to a constant multiple. For example, €* and 1 both have no zeroes or
poles but are not constant multiples of each other.
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Proof of Main Theorem

Lemma ( ): If ry, ..., rx are meromorphic functions with no
zeroes or poles, and ri + - -- 4+ r,. = 0, then for some i # j, rj is a constant
multiple of r;.

@ To apply this lemma for p, g sharing S1,...,5,, we must construct
such ri, ..., re from p and q.

If p, q share S; then fs, o p and fs, o g have the same zeroes, but possibly
different poles.

Let g = fS‘iS“‘/fS‘f"L Then gi(p) and gi(g) have the same zeroes and poles,
so gi(p)/gi(q) has no zeroes or poles.

Since we have three such functions g1, g2, g3, there is a polynomial in the
gi(x)/gi(y) equaling 0, hence a polynomial in the gi(p)/gi(q) equaling 0,
where each term has no zeroes or poles. Thus the ratio of two terms is a
constant c, yielding g(p) = cg(q) for a rational function g. With more
work we show ¢ = 1 for some ¢ > 0, so g(p) = g(q).
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Degree bounds

We have shown that if p, g share S1,...,S, with n > 4 then g(p) = g(q)
for some nonconstant rational function g(x). Pick one such g(x) of the
smallest possible degree.

We show deg(g) < -15(—2+ 37,|Si]) via the Riemann-Hurwitz
formula, the fact that any meromorphic parametrization of a singular curve
must factor through its normalization, and the fact that there are no
nonconstant holomorphic maps from C to a hyperbolic Riemann surface.

For n > 5 we show deg(g) < max?_;|S;| by proving that one of the S;’s
must contain a multiset of the form g=1(a), so that deg(g) < |S;| for
some /. This is hard.
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Minimal shared multisets

Definition: A multiset S shared by p and g is minimal if p and g do not
share any nonempty proper sub-multiset of S.

It's easy to show that shared multisets are precisely the unions of minimal
shared multisets, so to determine the shared multisets it suffices to
determine the minimal shared multisets:

Theorem: If p, q are quasi-equivalent, and g is of minimal degree such

that g o p = g o q, then all but at most four minimal shared multisets are
of the form g~1(a).

o The minimal shared multisets not of the form g~!(a) come from one
of two sources: the “missed values” of p and g, or the possibility that
some ¢ > 1 divides all multiplicities in g71(a), e.g.,

(x*)~*(0) = {0,0}.
@ Proof uses Galois theory, algebraic topology, and algebraic geometry.
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Other problems

The same methods can be used for other situations:

Theorem: If meromorphic functions p, q are such that there are five pairs
of nonempty disjoint multisets (S;, T;) such that p~1(S;) = q~*(T;), then
there are rational functions g, h such that gop = hoq.

Theorem: Rational functions on a smooth projective curve C (over an
algebraically closed constant field) which share three nonempty disjoint
multisets are quasi-equivalent.

Theorem: Meromorphic functions on a (complete, algebraically closed)
non-archimedean field which share three nonempty disjoint multisets are
quasi-equivalent.

We have a similar bound on the degree of the algebraic relation in all of
these cases, and characterize the minimal shared multisets.
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Questions

@ Can similar results be proved for sharing sets ignoring multiplicity?

@ What can be said about meromorphic functions sharing fewer than 4
multisets?

@ What other types of functions can the results be generalized to?
meromorphic functions on complex manifolds? rational functions on
varieties? on schemes??
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GCD of multiplicities in g~1(a)

Theorem: If meromorphic p, q are quasi-equivalent, and g(x) is a
minimal-degree rational function with g(p) = g(q), then there are at most
two points a for which the gcd of the multiplicities in g=1(a) is bigger
than 1.

Proof sketch: Show that if the gcd e; of the multiplicities in g71(a;)
satisfies ¢ > 1 for j = 1,2,3 then g = f(h) where deg(f) > 1 and
C(x)/C(f(x)) is Galois with non-cyclic group. Thus f(x) — f(y) factors as
a(x) - b(y) - I1;(x — pj(y)) for some a, b, u; € C(x) with deg(p;) = 1.
Hence h(p) = 1j(h(q)) for some j, so if C(u(x)) is the subfield of C(x)
fixed by the automorphism oj: x — p(x) then u(h(p)) = u(h(q)). Since
G := Gal(C(x)/C(f(x))) is non-cyclic, deg(u) = |(oj)| < |G| = deg(f), so
deg(u(h)) < deg(g), contradicting minimality of deg(g).
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Algebraic topology

Suppose the gcd e; of the multiplicities in g~1(a;) satisfies e; > 1 for
i=1,2,3. View g as a branched covering 5> — S2. Klein (1886)
constructed f(x) with C(x)/C(f(x)) Galois but non-cyclic, where all
multiplicities in f~%(a;) equal e;. Writing B for the set of branch points of
g, the restrictions of g and f to S?\ g~(B) and S?\ f~1(B) are
topological covers ¢ and 1, and any component X of the pullback of ¢
along 1 satisfies

2

X ——— S\ F4(B)

St

2\ g 1(B) " 52\ B

The compactification of 71 yields an unbranched cover of S, which must
be a homeomorphism since S? is simply connected, so g = f o h.
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Proof of the degree bound

Theorem: If meromorphic p, q share multisets Sy, ..., S, with n > 4 then

deg(g) < L5(—2+37,|Si).

Here is a proof in the easiest case, when each S; contains a minimal shared
multiset of the form g~1(a):

Lemma ( ): A rational function h of degree {
satisfies
20-2= 3 (t— |h N (a)eetl),
acCoo

where Seet is the underlying set of a multiset S.

Applying the theorem for g with degree k gives
n
2k—2> 3" (k—g Na) = nk - Z|sy so k < 7( 2+Zys \)
i=1 i=1
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