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Coin flipping problem

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to
flip two heads in a row?

Markov chains with states ∅,H and end state HH to get EV of 6 .

Modification

What about HT instead of HH?

Answer of 4 ; intuitively less since HT has no “reset.”

General question

A random string is generated by attaching either H or T to the end of the
string until the substring appears. What is the expected length of the
final string?

In other words, calculate the expected wait time.
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Natural questions

Why does HH take longer than HT? Can we generalize?

More letters in the alphabet?

Problem (Rubinstein-Salzedo)

A monkey hits one of 26 letters at random each second. On average, how long will it
take for the monkey to type the word ABRACADABRA?

How many outputs of length ` do not contain a word except at the
end?

What if we stop when we see any word from a set S? (e.g.
S = {HHHH,THHH}, leading to the concept of the Penney’s
game)
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Basic terminology

We designate an alphabet A with q letters.

Example

When flipping a coin, q = 2 and A = {H, T}, the coin alphabet.

A word w avoids v if it does not contain any substring equal to v . We
are interested in:

words which avoid w , except for a single w at the end; and

words which avoid a word w .
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Word correlation

The autocorrelation of a word w = w1w2 . . .w` of length ` is a vector

C (w ,w) = (C0,C1, . . . ,C`−1)

of 0’s and 1’s, such that Ck = 1 iff w has period k , i.e. wi = wi+k .

Example

Under the coin alphabet, the word w = HTHTH has autocorrelation
C (w ,w) = (1, 0, 1, 0, 1).

HTHTH

HTHTH → 1

HTHT H → 0

HTH TH → 1

HT HTH → 0

H THTH → 1

Sean Li Mentor: Tanya Khovanova The Penney’s Game with Group Action



Word correlation

The autocorrelation of a word w = w1w2 . . .w` of length ` is a vector

C (w ,w) = (C0,C1, . . . ,C`−1)

of 0’s and 1’s, such that Ck = 1 iff w has period k , i.e. wi = wi+k .

Example

Under the coin alphabet, the word w = HTHTH has autocorrelation
C (w ,w) = (1, 0, 1, 0, 1).

HTHTH

HTHTH → 1

HTHT H → 0

HTH TH → 1

HT HTH → 0

H THTH → 1

Sean Li Mentor: Tanya Khovanova The Penney’s Game with Group Action



Word correlation

The autocorrelation of a word w = w1w2 . . .w` of length ` is a vector

C (w ,w) = (C0,C1, . . . ,C`−1)

of 0’s and 1’s, such that Ck = 1 iff w has period k , i.e. wi = wi+k .

Example

Under the coin alphabet, the word w = HTHTH has autocorrelation
C (w ,w) = (1, 0, 1, 0, 1).

HTHTH

HTHTH → 1

HTHT H → 0

HTH TH → 1

HT HTH → 0

H THTH → 1

Sean Li Mentor: Tanya Khovanova The Penney’s Game with Group Action



Word correlation (pt. 2)

Similarly, we can define the correlation C (w , v) between two words w
and v , even between words of different length.

Example

Under the coin alphabet, the correlation C (HTHTTH, HTTHT) is equal to
(0, 0, 1, 0, 0, 1).

HTHTTH

HTTHT → 0

HTTHT → 0

HTTH T → 1

HTT HT → 0

HT THT → 0

H TTHT → 1
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Expected wait times

Say C (w ,w) = (C0,C1, . . . ,C`−1). The Conway leading number wLw
of a word w of length ` is

C0q
`−1 + C1q

`−2 + · · ·+ C`−1.

(Think base-q.)

Theorem (Collings, 1982)

The expected wait time for a word w is precisely q · wLw.

Example

On average, it takes 2(24−0 + 24−2 + 24−4) = 42 letters to generate the
string HTHTH.

Example (Rubinstein-Salzedo)

On average, a monkey will take 26(2610 + 263 + 1) = 2611 + 264 + 26
letters to type ABRACADABRA.
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The Penney’s game

If the avoiding set S has two words {wA,wB}, then we can turn this into
a game (the Penney’s game, a la Walter Penney): if Alice and Bob pick
wA and wB , which word will appear first?

The game is non-transitive: take the cycle

HHT < THH < TTH < HTT < HHT.

Theorem (Conway)

The odds that Alice wins are exactly

pA : pB = (wBLwB − wBLwA) : (wALwA − wALwB).

Example

If Alice picks HTHT and Bob picks THTT, then Alice’s chance of winning is
9
14 . Alice’s expected wait time is 20, but Bob’s is 18.
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Best beater

Theorem (Guibas & Odlyzko)

If Alice picks her word wA = w(1)w(2) . . .w(`) first, then Bob has the
best odds of winning when he chooses wB = w∗w(1)w(2) . . .w(`− 1)
for some w∗. This is a winning strategy.

Example

If Alice chooses HHHH and Bob chooses THHH, then the probability Bob’s
word appears first is 15

16 .
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Best beater (pt. 2)

HTH HTT TTT

HHT TTH

HHH THH THT

2:1
2:1

7:1

3:1

3:1

7:1

2:1
2:1

Figure: Directed graph of best beaters for (q, `) = (2, 3).
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Generating function system

For a word w , define

the correlation polynomial

Cv ,w (z) = C0 + C1z + · · ·+ C`−1z
`−1.

Tw (n) be the number of words of length n avoiding w , except for a
single w at the end; and

Aw (n) be the number of words of length n avoiding w .

We then define the generating functions

G (z) =
∞∑
n=0

Aw (n)zn, Gw (z) =
∞∑
n=0

Tw (n)zn.
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Extended results

Theorem (Guibas & Odlyzko, 1978)

For a reduced set S = {w1,w2, . . . ,wk}, the generating functions G (z),
Gw1(z), Gw2(z), . . . , Gwk

(z) satisfy the following system of linear
equations:

(1− qz)G (z) + Gw1(z) + Gw2(z) + · · ·+ Gwk
(z) = 1

G (z)− z−`1Cw1,w1(z)Gw1(z)− · · · − z−`kCwk ,w1(z)Gwk
(z) = 0

G (z)− z−`1Cw1,w2(z)Gw1(z)− · · · − z−`kCwk ,w2(z)Gwk
(z) = 0

...

G (z)− z−`1Cw1,wk
(z)Gw1(z)− · · · − z−`kCwk ,wk

(z)Gwk
(z) = 0
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Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets
of words? What if Alice can pick abaa, representing HTHH and THTT at
the same time?

We generalize to a group action ϕ : G ×A → A, thus sending words to
words. A word w resides in an orbit O(w) under the action; a pattern is
a representative (typically earliest lex. and in lowercase) from O(w).
Alice and Bob pick patterns instead of words.

Example

Under the alphabet A = {A, B, C} and the cyclic action, the orbit of ABC
is {ABC, BCA, CAB} and corresponds to the pattern abc.

We can also define pattern correlation polynomials, and generating
functions G (z) with avoiders of p, and Gp(z) for first-timers of p.

Sean Li Mentor: Tanya Khovanova The Penney’s Game with Group Action



Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets
of words? What if Alice can pick abaa, representing HTHH and THTT at
the same time?

We generalize to a group action ϕ : G ×A → A, thus sending words to
words. A word w resides in an orbit O(w) under the action; a pattern is
a representative (typically earliest lex. and in lowercase) from O(w).
Alice and Bob pick patterns instead of words.

Example

Under the alphabet A = {A, B, C} and the cyclic action, the orbit of ABC
is {ABC, BCA, CAB} and corresponds to the pattern abc.

We can also define pattern correlation polynomials, and generating
functions G (z) with avoiders of p, and Gp(z) for first-timers of p.

Sean Li Mentor: Tanya Khovanova The Penney’s Game with Group Action



Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets
of words? What if Alice can pick abaa, representing HTHH and THTT at
the same time?

We generalize to a group action ϕ : G ×A → A, thus sending words to
words. A word w resides in an orbit O(w) under the action; a pattern is
a representative (typically earliest lex. and in lowercase) from O(w).
Alice and Bob pick patterns instead of words.

Example

Under the alphabet A = {A, B, C} and the cyclic action, the orbit of ABC
is {ABC, BCA, CAB} and corresponds to the pattern abc.

We can also define pattern correlation polynomials, and generating
functions G (z) with avoiders of p, and Gp(z) for first-timers of p.

Sean Li Mentor: Tanya Khovanova The Penney’s Game with Group Action



Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets
of words? What if Alice can pick abaa, representing HTHH and THTT at
the same time?

We generalize to a group action ϕ : G ×A → A, thus sending words to
words. A word w resides in an orbit O(w) under the action; a pattern is
a representative (typically earliest lex. and in lowercase) from O(w).
Alice and Bob pick patterns instead of words.

Example

Under the alphabet A = {A, B, C} and the cyclic action, the orbit of ABC
is {ABC, BCA, CAB} and corresponds to the pattern abc.

We can also define pattern correlation polynomials, and generating
functions G (z) with avoiders of p, and Gp(z) for first-timers of p.

Sean Li Mentor: Tanya Khovanova The Penney’s Game with Group Action



How the Penney flips

If w is in the orbit represented by p, then

C(p, p) =
∑

v∈O(w)

C (v ,w).

Generally, if w ′ is in the orbit represented by p′, and w in the orbit
of p, then

C(p, p′) =
∑

v∈O(w)

C (v ,w ′).

The pattern Conway leading number and correlation polynomial

pLp′ = C0q`−1 + C1q`−2 + · · ·+ C`−1;

Cp,p′(z) = C0 + C1z + · · ·+ C`−1z`−1.
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How the Penney flips (pt. 2)

Theorem

For a reduced set S = {p1, p2, . . . , pk} whose orbit sizes are
r1, r2, . . . , rk , the generating functions G (z), Gp1(z), Gp2(z), . . . , Gpk (z)
satisfy the following system of linear equations:

(1− qz)G (z) + Gp1(z) + Gp2(z) + · · ·+ Gpk (z) = 1

G (z)− 1

r1
z−`1Cp1,p1(z)Gp1(z)− · · · − 1

rk
z−`kCpk ,p1(z)Gpk (z) = 0

G (z)− 1

r1
z−`1Cp1,p2(z)Gp1(z)− · · · − 1

rk
z−`kCpk ,p2(z)Gpk (z) = 0

...

G (z)− 1

r1
z−`1Cp1,pk (z)Gp1(z)− · · · − 1

rk
z−`kCpk ,pk (z)Gpk (z) = 0
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How the Penney flips (pt. 3)

All results from words carry over to patterns (expected value, odds,
winning strategy for sufficiently long words)

Theorem

Suppose Alice picks the pattern pA and Bob picks the pattern pB . The
odds that Alice wins are exactly

1
rB

(pBLpB − pBLpA) : 1
rA

(pALpA − pALpB).

(Here rA and rB are orbit sizes.)

Cyclic action (using G = Cq) and symmetric action (using G = Sq)

Theorem

For lengths ` < q −√q and under the symmetric action, Alice has a
winning strategy by choosing a pattern with ` distinct letters a1a2 . . . a`.
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(pBLpB − pBLpA) : 1
rA

(pALpA − pALpB).

(Here rA and rB are orbit sizes.)

Cyclic action (using G = Cq) and symmetric action (using G = Sq)

Theorem

For lengths ` < q −√q and under the symmetric action, Alice has a
winning strategy by choosing a pattern with ` distinct letters a1a2 . . . a`.
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How the Penney flips (pt. 4)

abcc

abbc

aabc abcb

abac

abbb

aaaa aaab

abaa

abababcd

aaba

aabb

abba

abca

4 : 3

3 : 2

9 : 5

7 : 5

2 : 1

4 : 1

63 : 1 15 : 1

4 : 1

5 : 111 : 5

19 : 5

3 : 1

11 : 5

3 : 2

Figure: Directed graph of Bob’s best choices for (q, `) = (4, 4).
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