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Introduction

Introduction

Definition (Diophantine Equations)

Diophantines are polynomials with rational coefficients where rational solutions in the real
projective space are sought.

Solutions to one-variable Diophantine equations are just the rational roots of a
one-variable polynomial.

I Formulas exist for such equations of degree ≤ 4.

Two-variable Diophantines are more complicated:
I Those with degree 1 are simply lines, and are thus parameterizable.
I What about those with degree 2?
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Introduction

Introduction (cont.)

Given a conic C with degree 2, and
rational O ∈ C, any rational line
through O reintersects C at a rational
point by Vieta’s formulæ. We can thus
parameterize the rational points on C
in terms of the slopes of the lines
between them and O.

Here we go one degree further: given a
rational cubic curve in the projective
plane of the form
ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0

with rational coefficients, we explore its
solutions with rational coordinates.

y

x

O

P

Figure: A line through a point O re-intersecting a
conic at another rational point P.
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Weierstraß Normal Form

Transforming a Cubic

Assume that we have a rational non-singular point O
on our curve. Let X,Y, Z : R2 → R be affine
transformations such that

the kernel of X is the tangent to the curve at P
(or, if P = O, any rational line not passing
through O),

the kernel of Y is a line through O with rational
slope, and

the kernel of Z is tangent OP.
Taking the projective transformation

T : R2 → R2, (x, y) 7−→
(
X

Z
,
Y

Z

)
gives a curve of the form

x1y
2
1 + (Ax1 +B)y1 = Cx21 +Dx1 + E .

Z
=
0

O

X = 0P

Y
=
0

Figure: Choosing axes to put a cubic
into Weierstraß form
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Weierstraß Normal Form

Weierstraß Normal Form

x1y
2
1 + (Ax1 +B)y1 = Cx21 +Dx1 + E

Multiplying this equation by x1 gives

(x1y1)
2 + (Ax1 +B)x1y1 = Cx31 +Dx21 + Ex1.

Setting x2 = Cx1 and y = C
(
x1y1 + 1

2(Ax1 +B)
)

then turns this equation into the form

y22 = a monic rational cubic in x2.

Definition

Given a cubic polynomial f(x) = x3 + ax2 + bx+ c, the elliptic curve with equation
y2 = f(x) is the union of the equation’s set of solutions and O, the vertical point at
infinity. It is said to be singular if f has a double root and non-singular otherwise.
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Weierstraß Normal Form

Weierstraß Normal Form (cont.)

Given a, b, c ∈ Q, let X = d2x and
Y = d3y. The equation of the curve
then becomes

Y 2 = X3 + d2aX2 + d4bX + d6c.

By choosing sufficiently large d, we can
assume a, b, and c are integers.

Until further notice, C will be an
non-singular elliptic curve with equation

y2 = f(x) = x3 + ax2 + bx+ c

for a, b, c ∈ Z.

Figure: The elliptic curves with equations
y2=x3−6x+9, y2=x3−7x+6, y2=x3+x2−5x+3.
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The Group of Points on a Cubic

The intersections of a Line and a Cubic

Lines and cubics can intersect at
one or three points.

Definition

P ∗Q is the third intersection of
line PQ with C. P

Q

R

P

Q
R

P
QR

Figure: Intersections of various lines with C.
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The Group of Points on a Cubic

The Group of Points on a Cubic

Definition

O is the vertical point at infinity.

Proposition

There is a unique group (C,+)
with identity O where for
collinear P,Q,R,

P +Q+R = O.

P
Q

P +Q

P ∗Q

Figure: Group addition

P
Q

R
P +Q

P ∗Q

Q+R

Q ∗R

P +Q+R

−(P +Q+R)

Figure: Associativity of addition
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The Group of Points on a Cubic

Formulæ for the Group Addition Law

By writing the line through two points as y = λx+ ν, we can get a cubic in x that gives
the intersections of a line in a cubic and the elliptic curve and use Vieta’s formulæ to find
the third root. The results are as follows:

Proposition (Addition Formula)

If x1 6= x2, the sum of P = (x1, y1) and
Q = (x2, y2) is P +Q = (x3, y3), where

λ =
y2 − y1
x2 − x1

,

ν =
x2y1 − x1y2
x2 − x1

,

x3 = λ2 − a− x1 − x2, and

y3 = λx3 + ν.

Proposition (Duplication Formula)

If P = (x, y) where y 6= 0, the sum of P
with itself is 2P = (x1, y1), where

x1 =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
,

λ =
f ′(x)

2y
, and

y1 = λ(x1 − x) + y.
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Points of Finite Order

Points of Finite Order

The point of order 1 is the identity.

Points of order 2 are those with a
vertical tangent, i.e. those with y
coordinate 0.

Points of order 3 are inflection points,
i.e., triple intersections of their tangent.

Theorem (Nagell-Lutz)

If (x, y) has finite order, x, y ∈ Z.
y = 0 or y divides the discriminant of f.

The proof is basically a νp bash with the
addition and duplication formulæ.

P
Q

Figure: P has order 2, Q has order 3.
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The Group Structure

The Group Structure

We will outline the proof of Mordell’s theorem, which states that the group of rational
points on a non-singular cubic curve is finitely generated. We do so using the Descent
theorem, which gives four conditions that suffice to show that an Abelian group is finitely
generated:

Descent Theorem

Let Γ be a commutative group, and let h : Γ→ R≥0 be a function. If

1 for every real number M, the set {P ∈ Γ : h(P ) ≤M} is finite,

2 for every P0 ∈ Γ there is a constant κ0 so that
h(P + P0) ≤ 2h(P ) + κ0 for all P ∈ Γ, and

3 there is a constant κ so that
h(2P ) ≥ 4h(P )− κ for all P ∈ Γ.

Then, if the index (C(Q) : 2C(Q)) is finite, Γ is finitely generated.
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The Group Structure Heights

Height

Definition

Given a rational number r = p/q for p, q co-prime, we define the height of r to be

h(r) = logH(r)

where
H(r) = max {|p|, |q|}.

We also define the height of a point P = (x, y) to be

h(P ) = h(x).

Descent Theorem, Condition 1 X
For every real number M, the set {P ∈ C : h(P ) ≤M} is indeed finite.
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The Group Structure Heights

Height of P + P0

Proposition (Descent Theorem, Condition 2)

For a fixed point P0, h(P + P0) ≤ 2h(P ) + κ for some constant κ.

By considering primes individually, we get (x, y) =
(
m
e2
, n
e3

)
for rational points on the

curve. So m ≤ H(P ), e ≤ H(P )1/2, and n ≤ k ·H(P )3/2.
The rest is the addition formula and the triangle inequality – the x-coordinate is

(y − y0)2 − (x− x0)2(x+ x0 + a)

(x− x0)2
=
Ay +Bx2 + Cx+D

Ex2 + Fx+G

Clearing denominators gets this is Ane+Bm2+Cme2+De4

Em2+Fme2+Ge4
, and using the above bounds on

m, e, n and the triangle inequality gets H(P + P0) ≤ CH(P )2 for some constant C.
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The Group Structure Heights

Height of 2P

Proposition (Descent Theorem, Condition 3)

There is a constant κ such that h(2P ) ≥ 4h(P )− κ.

Again, the explicit formulas get the x-coordinate of 2P is

f ′(x)2 − (8x+ 4a)f(x)

4f(x)
=
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
,

but getting a lower bound means we have to bound cancellation.
The numerator and denominator cannot have common roots, since if f ′ and f shared a
root, the curve would be singular.
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The Group Structure Heights

Height of 2P (cont.)

We want h
(
f(m/n)
g(m/n)

)
≥ d · h

(
m
n

)
− κ, where

these have no common roots and maximum
degree d. We can bound the gcd of
ndf(m/n) and ndg(m/n) by a constant R,
and some manipulation gets

H
(
f(m/n)
g(m/n)

)
H(m/n)d

≥ 1

2R
· |f(m/n)|+ |g(m/n)|

max (|m/n|d, 1)
.

We want to bound this below by C > 0. But
it’s a continuous function in t = m

n , and it’s
never 0 and approaches some positive
constant as |t| → ∞.

y

x

Figure: Bounding the function in t above 0
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The Group Structure Duplication as a composition of homomorphisms

Duplication as a composition of homomorphisms

Definition

If C is y2 = x3 + ax2 + bx, then C is y2 = x3 − 2ax2 + (a2 − 4b)x.

Note that C = x3 + 4ax2 + 16bx is isomorphic to C, since (x, y) on C corresponds to(
x
4 ,

y
8

)
on C. Also, let T = (0, 0), which is on C.

Definition

Let φ : C → C be a function with φ(T ) = O, φ(O) = O, and

φ(x, y) =

(
y2

x2
, y

(
x2 − b
x2

))
.

We can check φ(x, y) is on C by plugging into the equation.
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The Group Structure Duplication as a composition of homomorphisms

Duplication as a composition of homomorphisms (cont.)

Proposition

φ is a homomorphism.

We want to show
φ(P1 + P2) = φ(P1) + φ(P2).

We immediately get φ(−P ) = −φ(P ). So then it suffices to show

P1 + P2 + P3 = O =⇒ φ(P1) + φ(P2) + φ(P3) = O.
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The Group Structure Duplication as a composition of homomorphisms

Duplication as a composition of homomorphisms (cont.)

Since P1 + P2 + P3 = O if and only if
P1, P2, P3 are collinear, we can assume
they’re collinear on a line y = λx+ ν and
show their images are collinear on a line
y = λx+ ν.
By some computation, if P1, P2, P3 are the
intersections of C with y = λx+ ν, then
their images are the intersections of C with
y = λx+ ν for

λ =
νλ− b
ν

and ν =
ν2 − aνλ+ bλ2

ν
.

y

x

Figure: Three collinear
points on C

y

x

Figure: Collinear images
on C
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The Group Structure Duplication as a composition of homomorphisms

Duplication as a composition of homomorphisms (cont.)

Finally, there is a corresponding homomorphism φ from C to C, which gives the function

ψ : C → C defined as ψ(x, y) =
(
y2

4x2
, y(x

2−b)
8x2

)
.

Proposition

ψ ◦ φ(P ) = 2P .

This can be shown by straightforward computation. Similarly, we get φ ◦ ψ(P ) = 2P .
So then we’ve split the duplication map into two homomorphisms between C and C.
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The Group Structure Finiteness of the Index (C(Q) : 2C(Q))

Finiteness of the Index (C(Q) : 2C(Q))

Now we prove the fourth
condition in the Descent
Theorem, stated as follows:

Theorem

(C(Q) : 2C(Q)) is finite.

Recall the splitting of the duplication
map into the two homomorphisms,
shown below.

C(Q)
φ−→C(Q)

ψ−→ C(Q)

P
φ7→P ψ7→ 2P

Using the two homomorphisms, we split the index as

(C(Q) : 2C(Q)) ≤ (C(Q) : ψ(C(Q)))(C(Q) : φ(C(Q))).

(Proof is simple and just group theory.) It suffices to show
(C(Q) : ψ(C(Q)) is finite (the other is symmetric). To
do this, we find a homomorphism α from C(Q) to
another group, where

1 ker(α) = ψ(C(Q)),

2 α(C(Q)) is finite.

Then the result follows by the First Isomorphism
Theorem.
Note that we denote a = −2a, and b = b2 − 4a from here on.
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The Group Structure Finiteness of the Index (C(Q) : 2C(Q))

Finiteness of the Index (C(Q) : 2C(Q)) (cont.)

y

x

Figure: The elliptic
curve C defined by
y2 = x3 − x.

y

x

Figure: The elliptic
curve C defined by
y2 = x3 + 4x.

Via straightforward computation, we
observe the following:

Proposition (Image of C(Q) under φ)

The image φ(C(Q)) consists precisely of

1 O,

2 T = (0, 0) iff b ∈ Z2,

3 nonzero (x, y) iff x ∈ Q2.

Similarly, the image ψ(C(Q)) consists precisely of

1 O,

2 T = (0, 0) iff b ∈ Z2,

3 nonzero (x, y) iff x ∈ Q2.
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The Group Structure Finiteness of the Index (C(Q) : 2C(Q))

Finiteness of the Index (C(Q) : 2C(Q)) (cont.)

Define the map
α : C(Q)→ Q∗/(Q∗)2 by

O 7→ 1 mod (Q∗)2

T 7→ b mod (Q∗)2

(x, y) 7→ x mod (Q∗)2 for nonzero x

Weak Mordell’s Theorem

(C(Q) : 2C(Q)) is finite.

Proposition

1 α is a (group) homomorphism.

2 The kernel of α is ψ(C(Q)).

3 α(C(Q)) ⊆ {(±pε11 p
ε2
2 · · · p

εk
k )(Q∗)2 |

εi = 0, 1 for all 1 ≤ i ≤ k}, where pi are
distinct prime factors of b.

For (3), we write (x, y) =
(
m
e2
, n
e3

)
, m, n, e ∈ Z, e 6= 0.

Via the Descent Theorem, C(Q) must be finitely generated, giving

Mordell’s Theorem

Let C be a non-singular cubic curve defined by y2 = x3 + ax2 + bx for a, b ∈ Z. Then the
abelian group C(Q) is finitely generated.
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The Group Structure The Explicit Group Structure of C(Q)

The Explicit Group Structure of C(Q)

We now have
C(Q) ∼= Zr × Z/pυ11 Z× · · · × Z/pυss Z.

To find a formula for rank r, we apply a slew of computations and group theory to show
the following:

Proposition

Let α : C(Q)→ Q∗/(Q∗)2 be the analogy of α. Then 2r = #α(C(Q))·#α(C(Q))
4 .

We later explicitly compute r and C(Q) for the curve C : y2 = x3 − x. We prepare the
next proposition to compute that #α(C(Q)) = #α(C(Q)) = 2, which gives r = 0.
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The Group Structure The Explicit Group Structure of C(Q)

The Explicit Group Structure of C(Q) (cont.)

For any rational point (x, y) on C : y2 = x3 + ax2 + bx, we can write (x, y) = (m/e2,
n/e3) for integers m and n coprime, e ∈ Z6=0. Via substitution, we get

Proposition

The set of all nonzero points (x, y) ∈ C(Q) consists precisely of all

(x, y) =

(
b1M

2

e2
,
b1MN

e3

)
,

where b1, b2,M,N, e satisfy

N2 = b1M
4 + aM2e2 + b2e

4

and b1b2 = b. Moreover, we must have (M, e,N) ∈ Z6=0 × Z× Z and
gcd(M, e) = gcd(e,N) = gcd(N,M) = gcd(b1, e) = gcd(b2,M) = 1.
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The Group Structure The Explicit Group Structure of C(Q)

An Explicit Computation of C(Q)
We prove that for the curve C : y2 = x3 − x, whose analogy is y2 = x3 + 4x,

C(Q) = {O, (0, 0), (1, 0), (−1, 0)} ∼= (Z/2Z)2.

1 Find images α(C(Q)) and α(C(Q)) to
determine rank.

b = 1 gives b1 = ±1. Hence we seek solutions
to

N2 =M4 − e4

N2 = −M4 + e4,

which easily give α(C(Q)) = {±1
mod (Q∗)2}.

2 Use Nagell-Lutz to determine torsion subgroup.

Because D = 4, by Nagell-Lutz, O,
(0, 0), (±1, 0) are the only points of finite order.

b = 4 gives b1 = ±1,±2,±4. Because
±1 ≡ ±4 mod (Q∗)2, we need only find
solutions to the Diophantine equations for
b1 = ±1,±2:

N2 =M4 + 4e4

N2 = −M4 − 4e4

N2 = 2M4 + 2e4

N2 = −2M4 − 2e4

A speedy analysis gives (M, e,N) = (1, 0, 1),
(1, 1, 2) so #α(C(Q)),#α(C(Q)) = 2.
Hence, rank(C(Q)) = 0.
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The Group of Rational Points on a Singular Cubic Curve

The Group of Rational Points on a Singular Cubic Curve

Mordell’s Theorem has provided us the structure of the group of rational points on a
non-singular cubic curve. Naturally, we turn to singular cubic curves as well. We form a
group of points lying on a singular curve by excluding the singular point.

Definition
1 Let C be a cubic curve. Let
Cns = {P ∈ C | P is not singular}.

2 Cns(Q) = {(x, y) ∈ Cns | (x, y) ∈ Q2}.

Theorem

1 Let C be the curve defined by y2 = x3 + x2.
Then (Cns(Q),+) ∼= (Q∗,×).

2 Let C be the curve defined by y2 = x3. Then
(Cns(Q),+) ∼= (Q,+).

Figure: The singular
elliptic curve with
equation y2 = x3.

Figure: The singular
elliptic curve with

equation y2 = x3 +x2.
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