THE CENTER OF THE ¢-WEYL ALGEBRA OVER RINGS WITH
TORSION
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ABSTRACT. We compute the centers of the Weyl algebra, g-Weyl algebra, and
the “first g-Weyl algebra” over the quotient of the ring Z/p™ Z[q] by some
polynomial P(q). Through this, we generalize and “quantize” part of a result
by Stewart and Vologodsky on the center of the ring of differential operators
on a smooth variety over Z/p™Z. We prove that a corresponding Witt vector
structure appears for general P(q) and compute the extra terms for special
P(q) with particular properties, answering a question by Bezrukavnikov of
possible interpolation between two known results.

1. INTRODUCTION

1.1. Background and Motivation. In noncommutative algebra, the Weyl and ¢-
Weyl algebra are a pair of basic examples of g-deformation, which is a philosophy of
understanding an object better after it is deformed or “quantized” via a parameter
q.

The Weyl algebra, W(R), is a free algebra generated by a and b over a ring R
subject to the relation ba — ab — 1; the g-Weyl algebra, W,(R), on the other hand,
is a free algebra generated by a,a™',b,b~! over a ring R subject to the relation by
ba — gab, the g-commutation relation. The ¢g-Weyl algebra can be realized as an
“exponentiation” and quantization of the Weyl algebra.

The Weyl algebra is also the ring of differential operators over the affine space
A}{. There gives rise to another natural quantization, the “first ¢-Weyl algebra,”
which we obtain by replacing the differential operator by the g-derivative, formally
defined by the free algebra over R generated by z,y,z !,y ' over R and subject
to the relation yxr — qzy — 1.

In | ], Stewart and Vologodsky proved a conjecture of Kaledin about the
center of the rings of differential operators on smooth varieties over Z/p”Z. Their
results generalize a classical isomorphism in case Z/pZ arising in modular repre-
sentation theory (see (1.1) in [ ], or | ). They describe the center of
these rings of differential operators via the Witt vector construction. Particularly,
taking the smooth variety as Al, we obtain the ring to be the Weyl algebra over
Z/p™Z and we deduce that the center is isomorphic to the Witt vector ring over
the symmetric algebra generated by two elements &,5.

The motivation of this paper is to quantize the result in | ], taking the first
step by investigating the g-deformation of the simplest such ring, the g-Weyl algebra
and the first ¢-Weyl algebra, which quantizes the Weyl algebra.
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1.2. Known Results. This is not the first attempt to understand the center of
the Weyl and ¢g-Weyl algebra. One can easily prove that the center of the Weyl
algebra over a torsion-free ring is R itself. And the center of the Weyl algebra over
Z/p"Z is implied in | ]

As for the g-Weyl algebra, its center over a torsion-free ring is also investigated
(see e.g. | ]). Especially when ¢ is a I-th root of unity, the center would be
freely generated by a' and b'. However, the center of the g-Weyl algebra over rings
with torsion is largely left as a mystery.

Roman Bezrukavnikov asked the possible interpolation between the two known
results. Namely, he asked about the center of the g-Weyl algebra over Z/p" Z where
q is a p™-th root of unity and n is a positive integer. If we obtain the result, it would
be the first glance into the possible quantization of [ ], and it is interesting to
see whether the similar Witt vector construction would appear.

1.3. Our Approach. The way to formulate Bezrukavnikov’s question is to consider
the center of the quotient of g-Weyl algebra by an ideal generated by polynomial
P with coefficients in a ring Z/p™ Z. Particularly in the context of choosing ¢ as a
p™-th root of unity, P would be the p™-th cyclotomic polynomial.

The difficulty is that Z/pNZ is not a domain, when N > 2 (for example, p is a
zero divisor). And the p" cyclotomic polynomial splits completely in F, (modulo
p) but is not even reducible in Z/p*Z.

In this paper, we answer the question of Roman Bezrunikov by completely solving
the center ring of W,(Z/pNZ)/(®,(q)) by Theorem 5.2. On the contrary to the
expected Witt vector construction, we find and compute a series of extra terms,
which would potentially point out the obstacles in the general quantization.

Extending from Bezrukavnikov’s question, we consider the center of

Wo(Z/pNZ)/P(q)

for a general polynomial P. We prove that when monic P is irreducible in F, and
p is odd, the center preserves the Witt vector structure. This answers the question
of quantization for any “algebraic integer” q.

Moreover, we investigate the center of the first Weyl algebra, as another natural
quantization of the Weyl algebra. We show that as long as P(1) is not a multiple
of p, the center of the first Weyl algebra is isomorphic to the center of the ¢-Weyl
algebra. And there is a natural bijection between their underlying sets (Theorem
6.5).

1.4. Outline. We structure the paper as follows.

In §2, we review the basic definitions and structures of the Weyl and ¢-Weyl
algebra, recount a set of elementary number theory facts, and present the Witt
vector construction in our context. In §3, we generalize the special case of the
result in [ ] by replacing the Weyl algebra by the generalized Weyl algebra. In
84, we prove the main theorem for odd prime p (Theorem 4.2), solving the center
for all “algebraic integer” ¢ and presenting some extensions. In §5, we dedicate to
answer Roman Bezrukavnikov’s question thoroughly, by solving the center when
Pis ¢*" — 1 and ®,n(g). In §6, we construct an isomorphism between the first
q-Weyl algebra and the Weyl algebra and an additional natural bijection between
underlying sets of their centers.
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2. PRELIMINARIES

2.1. Basic Definitions. In this paper, we focus on R = Z/pNZ as a ring with
torsion, where p is a prime and N is a positive integer.

We first recall the definition of the Weyl algebra, ¢-Weyl algebra, and the first
q-Weyl algebra over a ring R.

Definition 2.1. Let ¢ and h be indeterminates. For a ring R we define the Weyl
algebra, generalized Weyl algebra, and g-Weyl alegbra over R as

W(R) = R{a,by/(ba — ab— 1),
W"(R) = R{a,b)/(ba — ab — h),
and
Wy(R) = Rla,a™,b,b™")/(ba — qab),
respectively.

To clarify, there are two different known definitions for the g-Weyl algebra. For
the other definition, we call it the first ¢-Weyl Algebra (as [ ]), distinguishing
it from Definition 2.1.

Definition 2.2. Let ¢ be an indeterminate. For a ring R we define the first q- Weyl
algebra over R as

1 -1 -1
W(R) = R, 2™, y,y™ )/ (yz — qzy — 1).

The following well-known result shows that the Weyl algebra (and the first ¢-
Weyl algebra) is essentially the ring of differential operators (and g-derivative) with
polynomial coefficients.

Proposition 2.3. The vector space of all real polynomials R[x] is

(a) a faithful representation of W(R), where a acts by multiplication by x and

y acts by the differential operator %;

(b) a faithful representation of Wq(l)(R), where a acts by multiplication by x

and y acts by the q-differential operator (%)q.

On the other hand, the ¢-Weyl algebra can be viewed as the ring of operators

of functions f where a sends f(x) to e®f(z) and b sends f(z) to f(z +logg). In

this sense, the ¢g-Weyl algebra can be seen as an exponentiation and g-deformation
of the Weyl algebra.

2.2. The Structure of the Weyl and ¢-Weyl algebra. In this section, we
present some basic facts about the Weyl and ¢g-Weyl algebra.
The following well-known proposition provides those algebras a basis (for a proof

see, e.g. | D.
Proposition 2.4. A basis for the
(1) Weyl algebra is {a'b’|i,j = 0};
(2) q-Weyl algebra is {a'b|i,j € Z};
(3) first g-Weyl algebra is {x'y’|i, j € Z}.
The following lemma proved that an element is in the center if and only it

commutes with both a and b (or z and y). The proof is straightforward, so we omit
it.
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Lemma 2.5. We have that

(a) an element z is in the center of W (R) if and only if it commutes with both
a and b.

(b) if we replace W"(R) in (a) by W,(R)/P(q), the same statement holds true.

(c) if we replace W"(R) in (a) by Wq(l)(R)/P(q) and a,b by x,y, the same
statement holds true.

Proof. (a) If z is in the center, it commutes with every element in the ring, including
a and b.

Conversely, suppose that z commutes with both a and b. By Proposition 2.4,
every element in W"(R) can be written in form

Z Cijalb],
(%]

where ¢;; is a polynomial of parameter ¢, which commutes with every element. We
have
zeija't! = ¢ij(za)a’ W = ¢; ja(za)a’ Y = = ¢ jal(zb)0 T = = ¢pa't 2.

Thus z commutes with each ¢;;a’t’, implying that

chijaibj = Z Zcijaibj = Z cijaibjz = (Z cijaibj> z.
2] ,J 4,J ,J
Therefore z commutes with every element; z is in the center.
(b) The proof of this part is exactly the same except for that in the basis provided
by Proposition 2.4, the exponents of a and b could be negative. We treat this case
specially as follows (let j = —k be negative, where k is a positive integer).

2bF = b7 (b2)b T = b7 b = bR (b2)b TR = bR = = bR

For the same reason z commutes with a’ for negative integer ¢ so z commutes
with all ¢;;a’0?. The rest is the same as (a)
(c) The proof of this part is exactly the same as (b). O

From now on, in the expressions like cijaibj and zijaibj, ¢;; and z;; would be
polynomials of the parameter gq. In this way we can more conveniently denote the
elements of the algebra by its basis.

So now we only need to find all the element that commutes with both a and b
to compute the center. The following lemma explains how the multiplication by a
and b works in those algebras.

Lemma 2.6. We have
(a) in W"(R),

( Z cija’b]> a= Z cijalej + Z jhcijazbjf1
1,J€Z>0 1,J€Z>0 1,€Z>0
and

b( Z Cijaibj>= Z Cijaibj+1+ Z thij(li_lbj

1,J€Z>0 1,j€Z>0 1,J€Z>0
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(b) in We(R)/P(q),
(Z Cijaibj> a= Z cijqja”lbj
i,j€Z i,j€Z
and
b ( Z cijaibj) = Z q'cija't/ .
1,j€Z i,j€Z

(¢) in Wg" (R)/P(q),

L qJ+1 i1
Z Cija W |a= Z de a““ b+ 2 cl+1j+1al+ 4
i,j€Z i,j€Z i,j€Z
and
L thl L.
b 2 cija't’! 2 dc aleJrl + 2 cH_lj_Hazb]“.
i,j€Z i,j€Z i,j€Z

Proof. (a) Symmetrically, we only need to prove the first equality. Induct on j to
prove that

cijaibja = cija”lbj + jhcijaibj_l,
and clearly this implies the result via direct summation.

The base case is trivial since a*a = aa’.
For general cases, we have

cija’t’a = c;;a't’ "' (ab + h)
= heia' =t + (cija't’la)b
= heija' ™+ h(j — 1)cija'¥ %b + ¢; ja' Y
= ci;a" T + jheija'b Tt
by the inductive assumption. As desired.

(b) For the same reason as (a), we only need to prove that

cija't’a = qjcija”lb].

In fact
cijaibja = cijaibj_lqab
= qcijaibj_lab
= qQCija"bj_Qab2
= qjcija”lbj.
As desired.
(c) For the same reason as (a), we only need to show
¢ -1

cija'ta = ¢ e ja" Y +

1 Cijaibjil.
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In fact
cija't’a = ci;a't? " (qab + 1)
= gcija'b " lab + c;ja't/ !
= ¢*cija'V2ab® + (1 + q)cija't/ !
= qjcija”lbj +(1+qg+--+ qj_l)cijaibj_l,
as desired. (]

2.3. Elementary Number-theoretical Setup. In this section, we set up some
elementary facts that will be helpful for future usage.
First, we extend the notion of the p-valuation to polynomials and matrices.

Definition 2.7. For a prime p we define the p-valuation of

(1) an integer entry square matrix M, v, (M), to be the greatest integer k such
that p* divides all the entries of M.

(2) a polynomial P € Z[z], v,(P), to be the greatest integer k such that p*
divides all the coefficients of P.

(3) a polynomial P € Z/pNZ[z], v,(P), to be the greatest integer k < N such
that p* divides all the coefficients of P.

Afterwards, whenever we talk about the p-valuation of an object in Z/pNZ, we
assume that this value will not be greater than .
We then review the well-known Kummer’s Theorem.

Theorem 2.8 (Kummer). For p prime, let n,my, ma,--- ,my be non-negative in-

- ) 1s the number
k

tegers such that n = Zi;l my;. Then the p-valuation of (m1 o
of carriers when my,ma, ..., my are added in base p. Namely,

& (ml,m:. . .,mk> - l% (é Sp(mi) — Sp(n)> )

where Sp(s) denotes the sum of digits when the integer s is written in base p.

Then we consider various properties about the factorization in Z/pNZ[x]. We
start by the well-known Gauss Lemma and Bézout’s Theorem.

Lemma 2.9 (Gauss). If polynomial Py, Py € Z[x] are both primitive, then Py Py is
also primitive.

Theorem 2.10 (Bézout). If Q1,...,Qr are polynomials in Fplq| such that their
greatest common divisor is 1. Then there exists polynomials B, ..., By such that

S¥ QiBi=1inF,[q).

Note that if polynomial H is defined in Z/p™ Z[q], then it can also be naturally
defined in Z/p"Z[q] where n < N by modulo p™. Similarly, if H is defined in Z[q],
then it can be naturally defined in Z/p"Z[q] for any n. For the sake of convenience,
we may write polynomial H in Z/p™Z, which means to consider it in Z/p"Z[q].

Now we prove the following proposition to explain what a “multiple” or a “divisor”
means in Z/p™Z[q].
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Proposition 2.11. Let n be a positive integer, H € Z[q| be an irreducible poly-
nomial modulo p. If polynomials Py, P> € Z[q] satisfy that H divides PPy in
Z/p"Z[q], then there exists a non-negative integer k < n such that H divides Py in
Z/p*Z[q] and H divides Py in Z/p"~*Z[q].

Proof. Induct on n. When n = 1, this is true since F[¢] is a UFD. For the general
cases, modulo p then we have that H divides P; P, in Fp[g]. Since H is a prime
in F,[q], H divides either P; or P, in Fp[g]. Without loss of generality, we may
write P, = KH + pL in Z/pNZ. Thus PP, = H(KP,) + p(LP,) is multiple of
H in Z/pNZ if and only if LP, is a multiple of H in Z/pN~!Z. By the inductive
assumption, there exists k' such that L is a multiple of H in Z/pk'Z and P is
a multiple of H in Z/pN_kl_lz. Thus we may write L = HK' + p”“/L'7 and we
have P = (K + pK')H + p*+1 L/ so P is a multiple of H in Z/p¥'*1Z. Choosing
k =k + 1, we get the desired result. Induction is completed. ([

Now we are ready to prove the following proposition, explaining how strong is
the notion of “coprime” is in Z/pNZ. This result would be useful in the proof of
Theorem 4.18.

Proposition 2.12. Let Hy, Hy € Z/pNZ[x] satisfying that they are coprime and
Hy is irreducible in Fp,. If a polynomial Q € Z/pNZ[x] is divisible by both Hy and
Hy, then Q is divisible by HiHo.

Proof. Since H; divides Q in Z/pVZ, we may write Q = H;Q'. Considering that
H, divides H1Q' = Q in Z/p™NZ, by Proposition 2.11, there exists a integer k such
that Hy divides H; in Z/p*Z and H, divides Q' in Z/pN~=*Z. If k = 1, then Hy
must divide H; in Fp, which never happens for two coprime polynomials in F,.
Contradiction. So k = 0, thus H, divides Q' in Z/pNZ. We may write Q' = HoQ".
Thus Q = HyH»Q" in Z/pNZ, so Q is divisible by H; Hs. O

2.4. Witt Vector Ring. Implied by | ], the center ring construction of the
Weyl algebra can be characterized by Witt vectors. In this subsection, we interpret
the Witt vectors construction in our context and build a connection between it to
the centers of the Weyl algebra family, which would be discussed later.

Definition 2.13. Fix a prime p and a non-negative integer n, a Witt vector over
a commutative ring R is a vector (rg,71,72,...,7,) with components in R. Define
the “ghost component map” from R"*! to R as

n i pn—i
’LUpnI(T07T1,7’2,...,7’n)*—>2p ryo.
=0

The Witt vector ring, W,,(R), is the ring with the underlying set of all the Witt
vectors over R and addition and multiplication preserving the addition and multi-
plication of the ghost components in R.

To build a connection between the Witt vector ring and our objects of study, we
need the following result.

Proposition 2.14. For non-negative integer k, we have

i k—i

k P~ ke 2.0
SpzpNzlE T e i ] ~ Wi (2/pN 26, b, ) )
=0
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and

i >k

k ; ~
Z piZ/pNZ[apIP ,bP 71][(]] ~ Wy (Z/pNZ[aa b])[q]
i=0

Remark that for subrings Ry, ..., Ry of R*, Z§=1 R; denotes R1+ Ro+- - -+ Ry, as
a subring of R*. In this paper, the ring R* is taken as either Z/pNZ[ﬁ,Z, 6*1,5’1]
or Z/pNZ[ﬁ,z, &_1,5_1]/P(q) for some polynomial P.

The isomorphism map is exactly the ghost component map. The proof is straight-
forward calculation, involving Theorem 2.8.

Proof. We show they have the same underlying set and this suffice since they have
the same multiplication and addition as in R.
An element x is in the left hand side ring if and only if it is in form of

T = Z prve (@) i
ijez

where x;; € Z/pNZ[q]. In fact

i J
n—uvp(ged( vp (ged(i,5)) bPVp(gcd(i-,ﬂ) e, O),

D LD g0t = w0, .. ar

where every term in the Witt vector is 0 except for the v,(ged(4, j))-th term, Thus
p”*”P(ng(i’j))xijaibj is in the ghost component ring adjoint ¢, which is the right
hand side. So the ring on the left-hand side is a subring of the ring on the right
hand side.

Conversely, we show that the ring on the right hand side is a subring of ring on
the left. We only need to prove that

Yw,n(0,...,y,...,0)

is in the ring on the left, where Y € Z/pVZ[q],y € Z/p™Z[a,b] and every term in
the Witt vector is 0 except for the i-th term. This is sufficient because

n
Wpn (Vg, V1, ..., Up) = prn((),...,O,v,;,O,...,O),
i=0

thus all the elements in the ghost component ring is generated by elements in form
of wyn (0,...,0,v;,0,...,0). We then write

Y= 2 yjka’b*,
J.k
and

3

Yw,n(0,...,y,...,0) = YpiyP
P
=Yp' (2 yjkajbk>
7.k

v Y (0 ) Tty

. Sik -
Zj,k' sjp=pni { J 4,k
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n—i

By (p ' ) we mean the multinomial coefficients:
{sjr}

n—1i|

-
Hj,k sjk!
By Theorem 2.8, for 0 < v < n — i, (?;;1}) is a multiple of p* unless all s;;, is
divisible by p"~*~*1; otherwise, there exists a s; with a non-zero digit on the
right of the left-most (n — ¢ — v + 1)-th digit in its base p expression, thus when
all the s, are added together, there will a carrier in every digit since the left-most
(n — i — v + 1)-th term; there are v of such carriers in total, so the multinomial

coefficient is a multiple of p¥, contradiction.
Fix a sequence of {s;;}, we prove that

i pnfi j k Sjik
p H(yjka b")*
{sik}/) S5
is in the left-hand side ring, thus the summation of all the possible sequences of
{s;x} is still in the left-hand side ring. Suppose that [ is the greatest positive integer

such that p! divides all the sjk. Then by the argument above, p? L divides (f:;})
27

So
i . l ) )
pz({ : }> [ [wana?t"ys ==t (] [(gsma’d®)27 ) SR,
Sak3) Gk ok P
which is in left-hand side ring since the coefficient is a multiple of p"~! and the
mutiplicities of a and b are both multiples of p'.
Thus the rings on the left and right are the isomorphic, as desired. O

3. THE CENTER OF THE WEYL ALGEBRA

In this section, we generalize partially the result in | | by considering the
generalized Weyl algebra instead of the Weyl algebra. We take h as a polynomial
of ¢ so that this fits better into the context of this paper. And h could possibly be
a zero divisor. The following result shows that the center of such generalized Weyl
algebra preserves the Witt vector construction.

Theorem 3.1. Let h € Z/pNZ[q] be a polynomial of q. Then

ZW"(R)) ~ Wiy, 00 (RIa,2]) [a].
In the rest of this section, we prove this result.

3.1. Basic Lemmas. We need first two simple results regarding the p-valuation
of polynomials in Z/pNZ.

Proposition 3.2. We have
(a) for polynomials Py, Py € Z[x],
vp(P1) + vp(P2) = vp(PLP2);
(b) for polynomials Py, Py € Z/pNZ[x],
min(N, v, (Pr) + vp(P2)) = vp(P1 Pa).
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Proof. (a) Let dy be the greatest positive integer that divides P; and dy be the
greatest positive integer that divides Py, and denote P; = dP; and P = daPj. Then
clearly v, (P1) = vp(di)+vp(P]) = vp(dy) since Py is primitive (otherwise d won’t be
the greatest). Similarly v,(P;) = v,(dz2). On the other hand, Py P; = dydz(P{Py),
by Lemma 2.9, v,(P1Ps) = vp(dida) + vp(P{P)) = vp(dida) = vp(di) + vp(da), as
desired.

(b) View Py, P, as polynomials in Z[z] naturally (although there are differ-
ent possible polynomials they can take, just choose one of them). Clearly the
p-valuation of P; in Z/p™Z[z] is the minimum of v,(P;) in Z[z] and N. Apply (a),
the result is obvious. (]

This result’s direct corollary is as follows.

Corollary 3.3. Polynomials Py,--- , P, € Z/pNZ[z], then Hle P; = 0 if and only
if S () = N.
Proof. Apply Proposition 3.2 repeatedly, we know

k
min (N, Z l/p(Pi)> =1,(0) = N.

Thus Zle vp(P;) = N, as desired. O

3.2. Proof of Theorem 3.1. Now we proceed with the proof of the Theorem 3.1.
By Proposition 2.14, we only need to show that

N—vp(h)
i oy N=vp(h)—i ~ N—vp(h)—i
ZW"R)/P(q)) =~ Y, p'Z/pNz[ar ,bP 1q)-
i=0

The isomorphism map is
¢ : Z zijaZH = Z Zijazbj.
4,J 4,J

Step 1. we first show that ¢ is a bijection.
By Lemma 2.5, z is in the center of W"(R) if and only if it commutes with both
a and b. By Proposition 2.4, we may write z as

z = Z zia'b.
1,J€Z>0
We have o
az = Z zija”lb]
i,jEZ;o
and, by Lemma 2.6,
za = Z zija”lbj + Z jhzijaibj_l.
1,J€Z20 1,J€Z>0
So z commutes with a is equivalent to
Z jhzijaibj_l =0.
1,J€Z>0
By Proposition 2.4, this is zero if and only if jhz;; = 0 for all ¢, j.
By Corollary 3.3, we know that v,(z;;) + vp(j) = N — vp(h). Symmetrically,
vp(2ij) + vp(i) = N — vp(h). Thus z is in the center if and only if z;; is a multiple
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of pN—ve(h)—min(vp(0).15 (7)) for every pair of i, j. This implies that z is in the center
if and only if
N-vy(h) . N—vp(h)—i ~ N—vp(h)—i
d(z)e >, p'z/pNz[ar N 1lal.
i=1

So ¢ is a well-defined map and so is
¢_1 : Z Z”alg] —> Z zijaibj.
4,J ,J

Therefore ¢ is a bijection.
Step 2. we then show that ¢ preserves the addition, multiplication, and multi-
plicative identity. By definition ¢(1) = 1 and

1 (Z zijaibj> + ¢ (Z zgjaibj> = Z(z” +2;)a't = ¢ <Z<Zij + zgj)aibj> :
i, 4,J 4,J 4,J
Additionally, note that
zijaibjz;dakbl = zijz;la”kbjﬂ

* is in the center, thus commutes with b’. So

2] 4,3

1 ~id kT
= Z zijZal Ty

.5,k

_ ¢ ( 2 ZijZ;clai+kbj+l>

.5,k

= ¢ ( Z z,-jaibjzfclakbl)

i,5,k,1
) 5
.3 ,J

4. GENERAL POLYNOMIALS

since z},a

10) (Z zijaibj> ) <Z zgjaibj>
4,7 4,7

Thus ¢ is indeed an isomorphism.

In this section we consider the center of the ¢-Weyl algebra, where ¢ is a root
of some polynomial and p is a odd prime. Namely, we consider the center of
W,(Z/pNZ)/P(q) where P is a integer coefficient polynomial.

The main theorem can be formulated as Theorem 4.2, which requires some ad-
ditional definitions.

Definition 4.1. For a polynomial P € Z[gq]. Define M(P) to be the smallest
positive integer such that ¢ (") — 1 is divisible by P in F,[q]. And define I(P) to
be the greatest positive integer such that ¢™(*) — 1 is divided by P in Z/pl(P)Z.

Theorem 4.2. When monic P € Z/pNZ[q] is irreducible in F,, we have
Z(W,(R)/P(q)) = W _yp) (R@ZM D, @M GME) 5= )]/ P(q).
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We use the rest of this section to prove this theorem. In subsection 4.1, we
rephrase the question into a problem about the factorization in R[g]. In subsection
4.2, we present some lemmas for preparation. In subsection 4.3, we present the
complete proof.

4.1. Rephrase the problem. First, we shall rephrase the problem by the follow-
ing Theorem 4.3.

Define W,(R)® the free algebra generated by a' and b* over ring R = Z/pNZ
subject to relation ba = gab.

Theorem 4.3. The center of W,(Z/pNZ)/P(q) is

o0
D Sppn Wa(R)V[q],

i=0
where Sp,n~ ; is the set consisting of all the polynomials H such that P divides
H(x' = 1) in Z/p"Z[q] and Sppx ;Wo(R)Vla) := Yyes, ,  HWq(R)[q].

After this theorem is established, we only need to consider sets Sp,~ ; to find
the center, avoiding all the computations in non-commutative rings.

To prove this theorem, we start by proving a lemma, which will also be used in
the future.

Lemma 4.4. In Z/pNZ|[q], for positive integers o and B3, the ideal generated by
q* —1 and ¢® — 1 is the principal ideal generated by ¢&°¥ P — 1. Namely,

(q* = 1,¢° = 1) = (¢=*? —1).

Proof. By Bezout’s theorem, there exists k,l € Z such that ka — I8 = ged(a, B);
denote the greatest common divisor by d. Let I be the ideal generated by ¢ — 1
and ¢ — 1. Since ¢® — 1 € I, we have ¢** — 1 € I; similarly ¢'» — 1 € I, then
¢Prd—qlel. Soqh*—1— (¢t —q¢?) =¢?—1€1l. So(¢?—1) = I. On the other
hand, ¢ — 1|¢® — 1 and ¢ — 1 (in Z[q]), so [ = (¢ —1). Thus I = (¢¢ —1). O

Corollary 4.5. We have

Sppn,i N SPpnj = SPpn ged(ij)-

Proof. Polynomial H € Spyn ; N Spy» j if and only if P divides both H (g —1) and
H(¢’ — 1), which is equivalent to

Pe (H(g ~ 1), H(g — 1)),
By Lemma 4.4, we have
(H(q" —1),H(¢’ = 1)) = (H(q))(
= (H(g))(
= (H(q)(¢*" —1)).

Thus H € Spyni N Spyn; is equivalent to that P divides H(q)(g#d(9) — 1),
which is equivalent to H € SP,p”,ng(i,j)' So SP,p",i N Sp7pn7j = SP,p”,ng(i,j)' U

¢ —1,¢ 1)
qgcd(w 1)

Now we are ready to prove Theorem 4.3
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The Proof of Theorem J.5. By Lemma 2.5, z is in the center ring of W, (Z/p™NZ)/P(q)
if and only if it commutes with both a and b. By Proposition 2.4, we may write

z = Z zija't’.

1€Z>0,j€Z
By Lemma 2.6,
az = Z zijaiHbj
i€l>o,j€Z
and

za = Z ¢ zi;a"
i€l>0,j€Z

Thus z commutes with a if and only if

Z (¢ — 1)z;;a" 1y = 0.

i€l>0,j€L
By Proposition 2.4, the equation above holds if and only if (¢/ — 1)z;; = 0 in ring
Z/pNZ[q]/P(q). Thus it is equivalent to that P(q) divides (¢/ —1)z;; in Z/pNZ[q],
equivalent to z;; € Sppn ;.
Symmetrically, z commutes with b if and only if 2z;; € Sppn ;. So z is in the

center if and only if z;; € Spyn i N Spynj = Sppn ged(iy), by Corollary 4.5. In
other word, the center ring is

a0
Z SP,pN ,iWq (R)(’L) [q:la

i=0
as desired. O

4.2. Preparations. We build a system to investigate the structure of Sp» ; by
importing a series of notions.

4.2.1. The notion of dy,.

Theorem 4.6. Let P be monic and irreducible modulo p. Let 1 < d; < N be the
largest integer from 0 to N such that P divides ¢ — 1 in Z/p%Z[q]. Then

Z(W, Z N, (R) D q).

By Theorem 4.3, it is sufficient to show that Sp,~; = (pN*di)

theorem.
We start by an easy lemma.

to prove this

Lemma 4.7. When P is monic and irreducible in F,. We can write ¢'—1=PK+L
for some K, L € Z[q] with deg L < deg P. Then d; = v,(L).

Proof. Apply the Euclidean division to ¢ — 1 and P, we may write ¢ —1 = PK +L
where L’s degree is less than that of P. Now we only need to prove d; = v,(L).

Consider that ¢* — 1 = PK + p*»() . (L/p*»)) = PK (mod p*»)). So d; >
vp(L).

Denote L' = L/p*»L)| then L’ does no divide p, equivalent to L' # 0 in F,,.

If P divides ¢* — 1 in Z/p*»(*1Z P divides L = p*»( L/ in Z/p*»(F)+1Z. We
may write PK’ = p*»(\) L/ in Z/p*»(1)+1Z. By Proposition 3.2, v,(P) + v,(K') >
vp(L). Since P is monic, v,(P) = 0, so vp(K’') = vp(L). We may write K/ =
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pr K" then p»WPK" = p*»I L in Z/p*»(F)+1Z implying PK” = L' in Fp.
Since P is a monic prime polynomial and divides L', and L’ has degree less than
that of P, we must have L' = 0 in F,,, contradicting that L’ is not divided by p. So
P doesn’t divide ¢* — 1 in Z/p*»(F)*1Z. So d; < v, (L) + 1.

So d; = vp(L), as desired. O

Now we are ready to prove Theorem 4.6.

Proof of Theorem J.6. Consider an element z; € Spyn ;, then z;(¢' —1) is a multiple
of P(q). We may remove any multiple of P from z;, the result remains the same
(because we are considering in a ring where P(q) = 0). Since P is monic, we may
assume that deg z; < deg P.

It’s sufficient to prove that this is equivalent to that p™ ~% divides z;. By Lemma
4.7, we may write ¢' — 1 = P(q)K(q) + L(q) and d; = v,(L). Then we know that
z;L(q) is a multiple of P(q). By Proposition 2.11, there exits k such that P divides
2z; in Z/p*Z and P divides L in Z/pN~*Z. By the definition of d;, we know that N —k
can and can only take integer values that no greater than d;. Thus z; € Sp,~ ;
is equivalent to that z; is a multiple of P in Z/pV~%Z. By Lemma 4.7, since
deg z; < deg P, this is equivalent to v,(2;) = N — d;, meaning pN =% divides z;, as
desired. O

4.2.2. The notion of 6 and its properties. Now we introduce § with various proper-
ties to help us better understand d,,.

Definition 4.8. Define K; = {k € Z,|d} > i}. Let 0, p(¢) be the smallest element
in K;. Call §, p(4) the i-th generator of p and P.

The following Proposition 4.10 completely solves the value of d,, by the genera-
tors. To prove it, we need a basic lemma.

Lemma 4.9. If k‘l, k?g € Ki, then ng(kl, kg) (S Ki.
Proof. 1f ky, ke € K;, then P divides both ¢** — 1 and ¢*2 — 1 in Z/p'Z[q]. Thus
Pe (™ —1,¢" — 1) = (=7 — 1),

by Lemma 4.4. Thus P divides ¢&°d(F1:¥2) —1 in Z/p'Z[q], implying ged(k1, ko) € K,
as desired. 0

Now we are ready to introduce the main result of the generators.

Proposition 4.10. For a positive integer i, K; consists of exactly all the multiples
of the i-th generator.

Proof. Since ¢* — 1 divides ¢** — 1 for all positive integer s, all the multiples of the
i-th generator is in K.

If there exists k' € K; which is not a multiple of §,, p (), by Lemma 4.9, ged(k’, 6, p (7)) €
K; which is smaller than d, p(¢). contradiction.

So the multiples of the i-th generator are all the elements, as desired. ([l

Corollary 4.11. For any 1 <i < j < N, 0, p(j) is a multiple of 6, p(3).

It’s obvious by definition that M(P) and I(P) are non-negative integers such
that M(P) = 6, p(1) = -+ = 6, p(I(P)) while 5, p(I(P) + 1) # M(P).

In the following discussion, for the sake of simplicity, M (P) and I(P) will be
written as M and [, since P is fixed.
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The key claim for the proof of Theorem 4.2 is as follows.

When p is an odd prime, for non-negative integer k, we have d, p(I + k) = MpF.

Consider the ring R[q]|/P(q) as a deg P dimensional vector space, and the multi-
plication by ¢ acts as a linear operator, denoted M(q). We may choose {1,q, ..., g% =1}
as a basis and clearly M(q) acts as a deg P by deg P square matrix with integer
entries. Now we prove the generalized “LTE Lemma” for M(q) as follows.

Lemma 4.12. For any p > 2, let k and i be positive integers such that v,(M(q)* —
1) =1, then

vp(M(@P" = 1) = v, (M(q)* = 1) +1i.
Proof. Denote v = v,(M(q)* — 1) and M(q)* —1 = p*M’. Then M’ is not a
multiple of p.

Clearly we only need to prove case i = 1, and then the result follows immediately
from induction. It’s sufficient to prove that

vp(M(Q)P* —1) = v + 1.
In fact,

M(q)PF —1=(p"M +1)P -1
B c Y AWRY i
—j; (J.)p (M)

P
s 3 (s

j=2
Since v, (p* 1 M’) = v + 1, now we only need to prove that v, ((?)pvj(j\/l/)j> >
v+ 1 when j > 2. When j = 2, since p is odd, v, ((?)) > 1 by Theorem 2.8, thus

Vp <<§)p2”(/\4/)2> >1+2v>0v+1.

When j > 3, we have

Vp <(§>pj”(/\/l')j> >jv=3v>v+1

Therefore
Vp(/\/l(q)pk —1)=v+1,
as desired. O

Proof of Lemma /.2.2. We prove by induction on k.

For the base case, by the definition of [ and M, we know that P divides ™ —1 in
Z/p'Z but not in Z/p'**Z. By Lemma 4.7, this implies that the remainder of ¢™ —1
divided by P has p-valuation [. In other word, v,(M(q)™ — 1) =1 in Z[g]. Apply
Lemma 4.12, v,(M(q)P™ —1) =1 + 1, and M(q)P™ — 1 acts as the multiplication
by ¢?™ — 1, and in particular, acts as the multiplication by the remainder L of
@M — 1 divided by P in Z[q]/P(q). Thus the remainder must be a mutltiple of
p'*1, by Lemma 4.7. So pM € K1, implying that pM is a multiple of &, p(I + 1),
by Proposition 4.10. By Corollary 4.11, 6, p(! + 1) is a multiple of M and doesn’t
equal to M ; since it’s also a divisor of pM, it has to be pM.



16 QUANLIN CHEN

For the general cases, the process is essentially the same. By Lemma 4.12
yp(./\/l(q)pkM —1) =1+k, thus p* M € K; . So the (I + k)-th generator is a divisor
of p* M and a multiple of the (I+k—1)-th divisor, p*~! M, by inductive assumption.
Since v,(M(q)?" M — 1) = I+ k — 1, p*"LM is not in K, 4; thus the (I + k)-th
generator can only be p*M. Induction is completed. (I

Now we have enough knowledge to explain the value of d,, even further as follows.

Theorem 4.13. If n is not a multiple of M, then d,, = 0; if n is a multiple of M,
then dy, = vp(n/M) + L.

Proof. When n is not a multiple of M, then n ¢ K; since n is not a multiple of
dp,p(1), by Proposition 4.10. So d,, < 1, thus d,, = 0.

When n is a multiple of M, suppose that v = v,(n/M). Then M is a multiple of
p’M = 6§, p(l4+v) and M is not a multiple of p* ' M = §, p(I+v), by Lemma 4.2.2.
Thus n is in Ky, but not Kj .1, by Proposition 4.10. Sol+v < d, <l+v+ 1,
implying that d,, = [ + v. O

Now the value of d,, is completely described, we may prove Theorem 4.2.
4.3. Proof of Theorem 4.2.

Proof of Theorem 4.2. By Proposition 2.14, we only need to show that
N ] —l—i ~ —l—i ~ —1—i
Z(Wq(R)/P(q)) ~ Z piR[aMprlfz’&,MpN ! ,bMpN i 71771\420N 1 ][q]
i=1
The isomorphism map is

¢ : Zzijaibj = Zz”azp
2% 4,J
Step 1. We first show that ¢ is a bijection.
By Theorem 4.13, when ¢ is not a multiple of M, d; = 0, and thus the ring
PN W (B)lq] = pVWo(R)[g]

is 0 as a subring of Z/p™Z[a, b][q].
On the other hand, when 7 is a multiple of M, suppose that i = Mp"i’ where ¢/
is coprime to p. Then ring

pNidi Wq(R)(i) lq] = pNiviqu(R) (P M )[Q]
is apparently a subring of
pN—v—qu (R) (p" M) [q] _ pN_d‘;p,P (pUM)Wq (R>(p“M) [q]
By Theorem 4.6, we have

20N IW R VL) = | D W (R) Ll |+ | X oM We(R) V]
i=0 Mti Mli

N—1
=0+ ) > PN W (R) V]

v=1 {, where vp(i/M)=v

N—I ]
= > pNTW(R)P M),
1

<
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For the same reason as the proof of 3.1 and Proposition 2.14, ¢ is a bijection from
N—I

> PN (R) Mg
v=0

to
N—I
Z piz/pNZ[aMpN—l—i’EiiMpN—l—i,szN—l—i’giMpN—l—i][q].
i=1

Step 2. we then show that ¢ preserves addition, multiplication, and multiplica-
tive identity.
Following the same procedure as the proof of Theorem 3.1, we only need to show
that
250" 250" 0 = 22,0 T RHIT
when Y] z;;a'b? and ) z{;a’b’ are in the center, which implies z}, is a multiple of

N—d k
p k

. This means that z};a” is in the center, so

20’V 2,a bt = 250"V 2,a 0 = 250t 2], d VY = 22,0 TREITL

Combine both steps, we proved that ¢ is an isomorphism. ([l
4.3.1. Postscipt. We would like to remark some properties about M (P).
Proposition 4.14. M(P) is a divisor of pieF — 1.

Proof. M(P) is by definition the smallest k such that P divides z* — 1 in F,.
Consider the field extension F,(¢) where ( is a root of P. Then k is the order of ¢
in Fp(¢). Then F,(¢) ~ Fp[z]/P(x) as a multiplicative group is a subgroup of K
with underlying set

{ao+ a1+ + adeg P—1C T (a0, . . ., Adeg p—1 € F;iegp\{O}}

and canonical multiplication, with order pd°8 ¥ — 1. Thus the cardinality of F,(¢)
is a divisor of pd®8 ¥ — 1, and the order of ¢ is a divisor of Fp(¢). So k is a divisor
of pdee P — 1. O

This is a direct result from the Galois theory in finite field. Its simple corollary
is as follows.

Corollary 4.15. M(P) is never a multiple of p, as long as P is not a constant.

4.4. When P has no double root. When P has no double root, we may also
compute the center W, (R)/P(q). However, the Witt vector construction is not
found here. The proof uses Proposition 2.12.

Lemma 4.16. When P has no double root in Fp, we may write P = Hle P;
(mod p™) where P; € Z/pNZ are distinct irreducible polynomials modulo p.

Proof. Induct on k. When k£ = 1, the result is obvious since F, is a unique fac-
torization domain and P has no double roots, so all the prime factors of P are
irreducible and distinct.

For the general cases, suppose that we can write P = Hf=1 Q; (mod pN—1)
where @); are distinct and irreducible in F,,. Suppose that T € Z[q] is a polynomial
satisfying

P— HQZ =pV 1T (mod pV).
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Then by Bezout’s Theorem, since
k
ged(P/Q;) = 1
i—
in F,, there exists polynomial By, ..., By € Z[q] such that
k
P
— =1 (mod p).
2" )

Now consider (since N =2, 2N —2 > N)

-
Il e
—

k k
P

Qi+pN 'BT)=|[Qi+p" ) BT +p*N %0

( =11 ; o

Qi +p"N'T

If
. -
>
—

1]
i

(mod p),

where © is some integer coefficient polynomial of g. Let Q) = Q; + pV 1B, T, we
know that P = ]_[le Q! in Z/pNZ, where Q; are distinct and irreducible modulo p
since they are congruent to @ modulo pV~!. Induction is completed. (I

Proposition 4.17. Polynomials Q1,Qa,...,Qk € Z[q] are pairwisely distinct and
all irreducible in Fplq). If Q is divided by Q; in Z/p™Z[q] for every 1 <i < k, then

Q is divided by [T, Qi in Z/pNZ[q].

Proof. Induct on k. When k = 2, the result is implied by Proposition 2.12. For
general cases, by inductive assumption, we know that both Hf;ll Q; and Qy, divide
P; they are coprime and @), is irreducible in F,,. By Proposition 2.12, Qy, Hif:ll Q; =
15, Q; divides P. Induction is completed. O

Theorem 4.18.
k
Z(We(Z/pVZ)/Q(q) ﬂ W(Z/pV2)/Pi(q)),

where Z(Wq(Z/pNZ)/Pi(q)) consists of all the elements that are in Z(W,(Z/pNZ)/Pi(q)
modulo P;.

Proof. By Theorem 4.3, the center is isomorphic to
CXD .
> ey iWa(R) V4],
i=0
By definition Sp v ; consists of all the polynomial Q" such that P divides Q'(z*—1),

which is equivalent to, by Proposition 4.17, that P; divides Q’(x*—1) for all j. Thus
Sppy i = ﬂ§=1 Sp, p~ ;- And this implies the result. O
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5. Roors orF UNITY

We dedicate this section to thoroughly answer Roman Bezrukavnikov’s ques-
tion. Namely, the case when ¢ is a p™-th root of unity. We solve the center of
W,(Z/pNZ)/(¢?" — 1) for P both being " —1 and Dn(q).

Theorem 5.1. The center of W,(Z/pNZ)/(¢?" — 1) is
n n

¢ —1 ")

Z qpi -1 WQ(R) [Q]

1=

Theorem 5.2. The center of W, (Z/pNZ)/(®pn(q)) is

n-l N—-1 ¢pn (q) —p ( i ( n
dip T W,(R)®)[q] | + W, (R)*[q].
=0

Proof of Theorem 5.1. Let P(q) = 2P — 1.
Consider that z;; € Sp p, if and only if

(zi5(¢" = D) e (¢ - 1)
as ideals of Z/pNZ[q] for all 4, j. By Lemma 4.4, we have

(26 (q* P = 1)) = (2i5(¢" = 1), 2i5(¢"" = 1)) < (¢ = D).

Denote ged(k, p") = pt. Note that ‘f;;t :11 —1+4¢ +¢® +---+¢" 7 is a monic

polynomial. And if (2;;(g4**") — 1)) € (¢?" — 1), we have

. ¢ —1 P! p"
(G~ Q=)@ ~ ) (@ - )
for any polynomial @). So we can apply Euclidean division to z;; divided by ‘éit:ll

and assume that z;; is a polynomial of ¢ with degree less than p" — p’. Then
2zj(¢" — 1) has degree less than p™. Since it’s in (qpn —1), and ¢?" — 1 is monic, it
must be 0. It’s easy to see that monic q”t — 1 is not a zero divisor, so z;; must be

¥ —1
g —1"

n
t

zero. So z;; must be a multiple of
Conversely, if z;; is a multiple of %, Zij (¢® —1) is clearly a multiple of g?" —1.
So S, p,i. consists of all the polynomial that is multiple of %. By Theorem

4.3, the center is

> qp" -1 i
D W (R)#)g],
as desired. O

Proof of Theorem 5.2. Let P = ®,». Similar to the proof of Theorem 5.1, We only
need to consider z such that

(2(¢" = 1)) € (®pn(q))
as ideals of Z/pNZ[q]. Thus
(2(¢" = 1),2(¢"" = 1)) € (2(¢" — 1), 2 Ppn(q)) € (Ppr (q))-
By Lemma 4.4,
(2(¢" = 1),2(¢"" = 1)) = (2)(g*4®"H — 1),
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Denote ged(k,p™) = p* (t < n). Then

I'=(2)(¢" —1,Ppn(q)) € (Ppr(q))-
CASE 1. When t < n, note that "(Q) P e Z[q]. We have

p=pla) ~ (¢ 1) % & (@ 1,2 (0).
So
()p) € (@0 (0))

Now consider z as a polynomial in Z[¢] in a natural way, then we have
pz = H ®pn + Hop™

for some Hy, Hy € Z[q]. This implies p|Hy; we may write H; = pHj, then we have
z = H3®pn + Hop™N 71, 50 2 € (®pn,pV 1) as an ideal of Z/p™VZ[q]. We need to
satisfy

(2)(¢" —1) = (H3®pn + Hap™ ") (¢" — 1) € (@pr (q))
which is equivalent to

(Hap™ 1) (g" —1) = (0" H)(H2)(¢" — 1) € (@ (q))-
Therefore

(Hz)(¢" —1) € (Dpr(q))
as ideals of Fp[q]. Since F,[q] is a UFD, and ””(7(11 - (gP
‘We have Hy € ( pq_)lp).
We have

t

—1) = ®yn(q) in F,.

1P (@) —p
z=p" 1H’;p£>1

in W,(Z/pNZ)/(®pn(q)) for some H.

If conversely z is a multiple of pv —1&pn(9)=p

P simple calculation yields that
z(p* — 1) is a multiple of P.
N—12pn(9)—p
qr'—1
CASE 2. When t = n. Then k is a multiple of p”. So ¢* — 1 is a multiple of
®,n(q). Regardless the value of z, 2@, (¢) is a multiple of P. So S, pj consists of
all the polynomials.

Combine cases 1 and 2, and Theorem 4.3, we know that the center is

(Z N-1, p"-)Iqu(R)(pi)[qO+Wq(R)(pn)[q],

as desired. 0

So Sy, p; consists of all the multiples of p

6. THE FIRST ¢-WEYL ALGEBRA
We recall the definition of the first ¢-Weyl algebra.
Definition 6.1. Let the first ¢-Weyl algebra over a ring R be
WV (R) = Rz, y)/(yz — qzy — 1).
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Now we recall the known homomorphism between the first g-Weyl algebra and
Weyl algebra, which is an isomorphism when P(1) is not a multiple of p (see e.g.

[HL17]).

Proposition 6.2. Let P € Z[q] be a polynomial such that P(1) # 0. Then
Wy(R)/P(q) ~ WV (R)/P(q).

And the isomorphism map is given by
fra—z,b— (¢g—1)zy — 1.

Proof. We may do Euclidean division to P(¢q) by ¢ — 1 in Z[q], then we get P(q) =

(g — 1)K(q) + L, where L is a constant. Plug in ¢ = 1 we get L = P(1) is not a
multiple of p. So L has an inverse, L™!, in Z/pN¥Z. Thus

~L7Y (g~ 1)K(q) =1
in Z/pNZ[q]. So ¢ — 1 has an inverse.

We now construct the isomorphism map f :a+— z,b— (¢ — 1)xy — 1. To show
that this is a homomorphism, it’s sufficient to prove that f(b)f(a) = qf(a)f(b).
This is true because

f®)f(a) —qf(a)f(b) = ((¢g — Dy + Dz — qz((¢ — Dzy + 1)
= (¢ = Da(yz) + = —q(g — D’y — gz
=(¢—1) (z(gzy + 1) — gz’y — x)
=0.
On the other hand, we may define inverse of homomorphisms f as
f iz ay e (g— 1)l (b—1).
Obviously they are respectively the inverse of f~!. Therefore f; and is an isomor-
phism map between W, (R) and Wq(l)(R), as desired. O

Corollary 6.3. For any polynomial P such that P(1) is not a multiple of p, we
have

Z(W,(R)/P(q)) = Z(W§Y(R)/P(q)).
If P is monic and irreducible modulo p, we have
Z(WM(R)/P(q)) = Wy _ypy (R[EM P 5M P [q].

6.1. The center of the first Weyl algebra. In this section we show that the
underlying sets of the first Weyl algebra and the Weyl algebra has a natural bijection

Z zijxty’ — Z zija't’.
0,J ,J

Proposition 6.4. If P(1) is not a multiple of p and (¢ —1)Q(q) is divided by P(q)
in Z/pNZ, then P divides Q in Z/p™NZ.

Proof. Induct on N. When N = 1, since P(1) is not a multiple of p, P(z) is coprime
with z — 1 in Fp[g]. Thus P must divide Q.

For the general cases, we may first do the Fuclidean division to Q and P, and
then we may assume that deg @ < deg P. Since P divides Q in Z/pN~1Z[q], if Q is
non-zero in Z/p™N~1Z[q], there exists a Q' € Z/pN~1Z[q] such that Q'P = Q; look
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at the leading coefficient and degree, and we obtain a contradiction. Thus @ is a
multiple of pV~1. Thus we know that P divides Q/p™ ! in (¢ — 1)Z/pZ[q]. This is
reduced to the base case. Induction is completed. O

Theorem 6.5. When P(1) is not a multiple of p, the map
o : Zzijxiyj — Zzijaibj.
0,J ,J
is a bijection from

ZW(Z/p™Z)/P(q) — Z(We(Z/pV2Z)/P(a))

Proof. By Lemma 2.5, z is in the center ring of Wq(l)(Z/pNZ)/P(q) if and only if
it commutes with both z and y. By Proposition 2.4, we may write

z= Z zij 'y’ .

1€Z>0,j€Z
By Lemma 2.6,
rz = Z Zijl'iJrlyj
i€Z=0,j€Z
and ‘
. gt —1 ) .
2L = Z (quij +———zipiy ) 2y
- q—1
i,jeZ
Thus z commutes with a if and only if
, gt —1 ; ;
Z <(q] — 1)2’2] + q_712i+1j+1 .’IZ‘H_lyj = 0.

i,j€Z
By Proposition 2.4, the equation above holds if and only if

j+1_1

(¢ = D)zij + o1 s =0

in ring Z/pNZ[q]/P(q) for all i,j. Thus it’s equivalent to that P(q) divides (¢/ —

J+1_ .
1)z + %ZHUH in Z/pNZ[q].
Now we prove z;; € Spyn; by induction on j. Denote 0;; = %zij, then
(q — 1)6” + 9i+1j+1 = 0 for all i, 7. When 7 =—1, we know 6;5 = 0 since 91'7_1

doesn’t exist. Base case is done.
For the general cases, the result is immediate since (g — 1)92;1];1 +0;; = 0 and
0;—1j—1 = 0. Induction is completed.

Thus 6;; = 0 in Z/pNZ[q]/P(q), so %zlj is a multiple of P in Z/pNZ[q]. So
(¢ — 1)z;; is a multiple of P and by definition z;; € Sppn ;.

On the other hand, we prove the converse is true. Namely, if z;; € Sppn ;, then
z is a center. Note that z;; € Spyn ; is equivalent to P dividing (¢/ — 1)z;; in
Z/pNZ[q]. By Proposition 6.4, this is equivalent to P dividing 0;5. The rest of the
proof above can be reversed without any complication.

So

2 = 2 zijx'y’ € Z(Wq(l)(z/pNZ)/P(Q))

i€l>0,j€ZL
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if and only if

i€Z=0,j€Z

So ¢ is indeed a bijection. As desired. O
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