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Abstract

Given a family F of graphs, a central problem in extremal graph theory is to determine

the maximum number ex(n,F) of edges in a graph on n vertices that does not contain any

member of F as a subgraph. The degenerate Turán problem regards the asymptotic behavior

of ex(n,F) for familes F of bipartite graphs. In this paper, we prove four new theorems

regarding the extremal number and its variants. We begin by investigating several notions

central to providing lower bounds on extremal numbers, including balanced rooted graphs

and the Erdős–Simonovits Reduction Theorem. In addition, we present new lower bounds on

the asymmetric extremal number ex(m,n, F ) and the lopsided asymmetric extremal number

ex∗(m,n, F ) when F is a blowup of a bipartite graph or a theta graph.
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1 Introduction

Given a graph F , a central problem in extremal graph theory is to determine the maximum number ex(n, F )

of edges in an n-vertex graph that does not contain F as a subgraph. The Turán problem regards the

asymptotic behavior of the extremal number ex(n, F ) as a function of n.

One of the earliest results on the Turán problem was proven in 1907, when Mantel [Man07] showed that

ex(n,K3) = bn2/4c, where Kr denotes the complete graph on r vertices. (See Figure 1 for an illustration of

this fact.) In 1941, Turán generalized Mantel’s result in [Tur41] by showing that ex(n,Kr+1) =
⌊
r−1
r ·

n2

2

⌋
.

Figure 1: K3-free graph with ex(6,K3) = 9 edges (left). K3 (in red) is formed when an edge is added (right).

A major breakthrough in the study of the extremal number came in 1966, with the proof of the famous

Erdős–Stone–Simonovits Theorem [TS66, TS46]. The result states that for any graph F ,

ex(n, F ) =

(
1− 1

χ(F )− 1

)(
n

2

)
+ o(n2),

where χ(F ) is the chromatic number of F .

When χ(F ) > 2, the first term of the Erdős–Stone–Simonovits formula yields the asymptotic behavior of

ex(n, F ) as a quadratic function of n. However, when χ(F ) = 2, that is, when F is bipartite, the formula only

shows that ex(n, F ) is sub-quadratic. This issue gave rise to the degenerate Turán problem, which regards

the asymptotic behavior of ex(n, F ) for bipartite F . For a comprehensive account of the degenerate Turán

problem, see [FS13].

One key conjecture in the area, put forth by Erdős and Simonovits [Erd81], states that for every rational

number r ∈ [1, 2], there exists a graph F and a positive constant c such that ex(n, F ) = (c+ o(1))nr. The

following is a weaker version of this conjecture, first stated in [BC18].

Conjecture A (Rational Turán exponents conjecture). For every rational number r ∈ [1, 2], there exists a

graph F with ex(n, F ) = Θ(nr).
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Along the lines of Conjecture A, we say r ∈ [1, 2] is a Turán exponent if there exists a graph F with

ex(n, F ) = Θ(nr). If we relax Conjecture A to allow for a finite family F of graphs instead of a single graph

F , we arrive at the following result of Bukh and Conlon [BC18].

Theorem 1.1 (Bukh–Conlon). For every rational number r ∈ [1, 2], there exists a finite family F of graphs

with ex(n,F) = Θ(nr), where ex(n,F) denotes the maximum number of edges in an n-vertex graph that does

not contain any member of F as a subgraph.

Bukh and Conlon’s construction of the family F corresponding to a given rational number r involves a

number of novel notions. We say a rooted graph (F,R) consists of a graph F and a nonempty subset R of

vertices, called roots. Bukh and Conlon utilize a special class of so-called balanced rooted graphs in their

analysis.

In order to provide a better understanding of the above notions, we begin this paper by studying certain

balanced rooted graphs. We say a rooted graph is closed if all of its leaves are roots. We provide a necessary

and sufficient condition for a closed rooted graph to be balanced.

Following our discussion of balanced rooted graphs, we return to the study of Turán exponents. Using a

reduction theorem of Erdős and Simonovits [ES70], we present a new proof of the Turán exponent of 2− 2
2s+1

for s ≥ 2, a result first established by Jiang, Ma, and Yepremyan [JMY18].

In recent years, the study of Turán exponents has been aided by studying certain variants of the extremal

number. In 2018, Jiang, Ma, and Yepremyan utilized the asymmetric extremal number ex(m,n,F) to prove

the Turán exponent of 7/5 [JMY18]. The asymmetric extremal number ex(m,n, F ) of a graph F is defined

as the maximum number of edges in an m-by-n bipartite graph that does not contain F . Regarding this

variant, we prove an asymptotic lower bound on the asymmetric extremal number of certain graphs.

We continue this exploration of the asymmetric extremal number by using Bukh and Conlon’s random

algebraic method to derive a stronger lower bound on the asymmetric extremal number of certain theta

graphs.

Lastly, we consider one final class of variants of the extremal number that we refer to as lopsided extremal

numbers, introduced by Faudree and Simonovits in [FS83]. As a corollary to our lower bound on the

asymmetric extremal number of certain theta graphs, we prove a corresponding lower bound on the lopsided

asymmetric extremal number.

The rest of this paper is organized as follows. In Section 2, we study balanced closed rooted graphs. In

Section 3, we present our short proof of the Turán Exponent of 2− 2
2s+1 . In Section 4, we present our general

lower bound on the asymmetric extremal number. In Section 5, we present a sharper bound in the case of

theta graphs, and in Section 6, we present the corresponding bound in the lopsided case.

Throughout the paper, we use the following notational conventions: given a graph G, V (G) denotes its

vertex set, E(G) denotes its edge set, v(G) and e(G) denote the number of vertices and respectively edges in

G, and given a subset of vertices S ⊆ V (G), |S| denotes the size of S.

2 Balanced Closed Rooted Graphs

In order to present our condition for a closed rooted graph to be balanced, we must clarify a few notions

from the introduction.

Definition 2.1. Given a rooted graph (G,R), the density ρG(S) of a subset S ⊆ V (G) \ R is defined as
eG(S)
|S| , where eG(S) denotes the number of edges of G adjacent to at least one vertex of S. If S = V (G) \R,
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we write ρG for ρG(S). We say that (G,R) is balanced if for all nonempty subsets S ⊆ V (G) \R, we have

ρG(S) ≥ ρG.

With these notions in place, we are ready to state and prove the following result.

Theorem 2.1. Let (G,R) be a closed rooted graph. Then (G,R) is balanced if and only if every closed rooted

subgraph of G has density at most that of G.

Proof of Theorem 2.1. Notice that whether a rooted graph (G,R) is balanced does not depend on the edges

between the roots. Without loss of generality, we may assume that there are no edges between the roots, or

in other words, the R is an independent set of vertices in G. In particular, ρG = e(G)/(v(G)− |R|).
We shall first prove the forward direction, and then we will prove the reverse statement.

Forward direction: Assume (G,R) is balanced. Let F be a closed rooted subgraph of G with roots

R′ := V (F ) ∩R. Consider S = V (G) \ (R ∪ V (F )). As G is balanced, ρG(S) ≥ ρG, hence

eG(S)

v(G)− |R| − |V (F ) \R|
=
eG(S)

|S|
≥ e(G)

v(G)− |R|
=⇒ eG(S) ≥ e(G) ·

(
1− v(F )− |R′|

v(G)− |R|

)
.

As R is an independent set, e(G) = e(F ) + eG(S). Thus

e(G)− e(F ) = eG(S) ≥ e(G) ·
(

1− v(F )− |R′|
v(G)− |R|

)
=⇒ ρ(F ) =

e(F )

v(F )− |R′|
≤ e(G)

v(G)− |R|
= ρ(G).

Backward direction: Assume (G,R) is a rooted graph such that every closed rooted subgraph has lower

density than G. Assume, for the sake of contradiction, that S is the largest subset of G \ R such that

ρG(S) < ρG. Consider F = G \ S. First, we claim that F is a closed rooted subgraph of G. To see this,

assume for the sake of contradiction that an unrooted v ∈ F has “in-degree” 1 within F . Then, adding v to

S yields S′ = S ∪ {v} with density

ρG(S′) =
eG(S) + 1

|S|+ 1
.

As G is closed, the “out-degree” of v must be positive. As a result, eG(S) must be strictly greater than

half the sum of the degrees of all vertices in S. Again, since G is closed, each vertex in S must have degree at

least 2, and it follows that eG(S) > |S|. Hence, ρG(S′) < ρG(S) < ρG, contradicting the maximality of |S|.
It follows that F is closed.

Next, we claim that ρF > ρG. To see this, note that since S has density less than that of G,

eG(S)

|S|
<

e(G)

v(G)− |R|
.

As eG(S) + e(F ) = e(G), the above rearranges to

ρG =
e(G)

v(G)− |R|
<

e(F )

v(G)− |R| − |S|
= ρF .

3 Extremal Numbers of Generalized Cubes

In order to present our simplified proof of the Turán Exponent of 2− 2
2s+1 , we need to state the following

definition. Given a rooted graph (F,R), F p denotes the graph consisting of the union of p distinct labelled

copies of F , each of which agree on the set of roots R but are otherwise disjoint. Next, we need to state the

following crucial lemma, known as the Erdős–Simonovits Reduction Theorem [ES70].
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Lemma 3.1 (Erdős–Simonovits Reduction Theorem). Given a bipartite graph F with bipartition V1 and V2,

let L(F ) be the graph with two more vertices v1, v2 and all edges between v1 and v2, v1 and V2, v2 and V1. If

ex(n, F ) = O(n2−1/α) for some α ∈ (1, 2), then ex(n, L(F )) = O(n2−1/(1+α)).

We are ready to state and prove the following result.

Theorem 3.2 (Jiang–Ma–Yepremyan). For all 2 ≤ s ≤ p, ex(n,Hp
s ) = O(n2−2/(2s+1)), where Hs is the

rooted graph formed when corresponding vertices of two copies of K1,s (the complete bipartite graph with 1

and s vertices on each part of the bipartition) are connected by a matching, and Hs is rooted at the leaves of

the two copies of K1,s.

Figure 2: H2 (left) and H3
2 (right), where the vertices in black are the roots.

In Figure 2, we display the graphs H2 and H3
2 .

Proof of Theorem 3.2. We proceed by induction on s.

Base case: For s = 2, consider the theta graph θp3 , and construct L(θp3) according to Lemma 3.1. By

Lemma 3.1, since ex(n, θp3) = O(n1+1/3), it follows that ex(n, L(θp3)) = O(n2−2/5). As Hp
2 is a subgraph of

L(θp3), it follows that ex(n,Hp
2 ) = O(n2−2/5), as desired.

Inductive step: As Hp
s is a subgraph of L(Hp

s−1), it follows from Lemma 3.1 that ex(n,Hp
s ) ≤ ex(n, L(Hp

s−1)) =

O(n2−2/(2s+1)), as desired. The induction is complete.

4 Asymmetric Extremal Numbers of Bipartite Graphs

The following corollary of Bukh and Conlon’s construction of the family F in Theorem 1.1 is essential to

proving our asymptotic lower bound on the asymmetric extremal number. (We shall present the exact

construction in Section 5.)

Theorem 4.1 (Bukh–Conlon). Let (F,R) be a balanced rooted graph with a unrooted vertices and b rooted

vertices. Then for sufficiently large p, ex(n, F p) = Ω(n2−a/b), where a
b equals 1

ρF
.

We are ready to state and prove our lower bound.

Theorem 4.2. Let (F,R) be a balanced rooted bipartite graph with a unrooted vertices and b edges, and let

m ≤ n. Then for sufficiently large p,

ex(m,n, F p) = Ω(mn1−a/b).

Proof of Theorem 4.2. By Theorem 4.1, for any n, for sufficiently large p, there exists an F p-free subgraph G

of Kn,n with Ω(n2−1/ρF ) vertices. Let the bipartition of G be (A,B). Randomly sample a set of m vertices

from A, and consider the induced subgraph G′ of G. For each vertex v ∈ A, the expected degree of v in G′
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is equal to degG′(v) = m
n · degG(v). By the linearity of expectation, it follows that the expected number of

edges in G′ is equal to

|E(G′)| =
∑
v∈A

m

n
· degG(v) =

m

n
· |E(G)| = Ω(mn1−1/ρF ).

Thus, there exists an F p-free m-by-n bipartite graph G′ with at least Ω(mn1−1/ρF ) edges, as claimed.

5 Asymmetric Extremal Numbers of Theta Graphs

We begin by presenting the definition of a theta graph. The theta graph θpk is defined as the union of p paths

of length k whose end-vertices are the same, but which are otherwise disjoint.

Note that θpk is identical to (θ1k)p, where θ1k denotes a path of length k. For an example of a theta graph,

see the graph of θ33 in Figure 3.

Figure 3: The theta graph θ33 rooted at its end-vertices (in black).

The proof of our lower bound on the asymmetric extremal number of certain theta graphs will closely

follow the proof of Lemma 1.2 in [BC18]. Before we proceed with the result, we must explicitly state

Bukh and Conlon’s construction in Theorem 1.1. Given a rooted graph (F,R) and a positive integer p, the

blowup Fp denotes the family of all possible unions of p distinct labelled copies of F , each of which agree on

the set of roots R [BC18]. In [BC18], Bukh and Conlon prove that for any balanced rooted graph (F,R),

ex(n,Fp) = Θ(n2−1/ρF ).

We may begin proving the necessary lemmas for the proof of our lower bound. The following probabilistic

lemma, taken from [BC18], will be used throughout the proof.

Lemma 5.1. Suppose that q >
(
m
2

)
and d ≥ m− 1. Then if f : Ftq → Fq is a random polynomial of degree

at most d and if x1, . . . , xm are m distinct points in Ftq,

P[f(xi) = 0 for all 1 ≤ i ≤ m] = q−m.

The following inequality, also crucial to our proof, generalizes an inequality stated in [BC18] for the special

case of paths.

Lemma 5.2. Let (F,R) denote the path of length k, rooted at its endpoints. If H ∈ Fp is bipartite with

bipartition (A,B), where |A| = u and |B| = v and u ≤ v, then for all 1 ≤ t ≤ k, u and v satisfy the inequality

tu+

(
2k − 2− k − 2

k
t

)
v ≤ (k − 1)e(H).

Proof. By induction on p, it suffices to show that if S is a connected subset of the unrooted vertices of F

(that is, a subpath), then

tu′ +

(
2k − 2− k − 2

k
t

)
v′ ≤ (k − 1)e(S),
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where u′, v′ (u′ ≤ v′) denote the number of vertices on each side of the bipartition of S, and e(S) denotes the

number of edges in F adjacent to at least one vertex of S.

Let x be the number of vertices in S. Then e(S) = x+ 1, u′ = bx/2c, and v′ = dx/2e. We now split into

cases based on the parity of x.

Case 1: x is even.

Let x = 2y. Then, by symmetry, it remains to show that

ty +

(
2k − 2− k − 2

k
t

)
y ≤ (k − 1)(2y + 1),

or equivalently, (
2k − 2 +

2t

k

)
y ≤ (k − 1)(2y + 1).

Rearranging, this is equivalent to

2k − 2 +
2t

k
≤ 2k − 2 +

(k − 1)

y
⇐⇒ 2ty ≤ k(k − 1),

which follows from t ≤ k and y ≤ k−1
2 .

Case 2: x is odd.

Let x = 2y + 1. It suffices to show that

ty +

(
2k − 2− k − 2

k
t

)
(y + 1) ≤ (k − 1)(2y + 2),

or equivalently, that

t
y

y + 1
+ 2k − 2− k − 2

k
t ≤ 2k − 2.

Rearranging, this is equivalent to y
y+1 ≤

k−2
k , which follows from the fact that y ≤ k−2

2 .

Finally, the proof utilizes elements of affine algebraic geometry. Specifically, we will need the following

lemma stated in [BC18], a corollary of the Lang–Weil bound.

Lemma 5.3. Suppose W and D are varieties over Fq of complexity at most M that are defined over Fq.
Then one of the following holds for all q sufficiently large in terms of M :

• |W (Fq) \D(Fq)| ≥ q/2, or

• |W (Fq) \D(Fq)| ≤ cM , where cM depends only on M .

We are ready to state and prove our lower bound.

Theorem 5.4. Let k ∈ N, and let q >
(
6k2

2

)
be a prime power. Let m = qt and n = q2k−2−

k−2
k t, where t ∈ N

and t ≤ k. Then for sufficiently large p,

ex(m,n, θpk) = Ω(m
k+2
2k n

1
2 ).
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Proof of Theorem 5.4. Let (F,R) denote the path of length k, rooted at its endpoints. Let R = {u1, u2}
and V (F ) \ R = {v1, . . . , vk−1}. Let s = 6k and d = sk. Consider the bipartite parent graph G = (M,N),

where M and N represent Ftq and F2k−2− k−2
k t

q , respectively. We randomly sample k − 1 polynomials

f1, . . . , fk−1 : Ftq×F2k−2− k−2
k t

q → Fq of degree at most d, and draw an edge between x, y ∈ V (G) if fi(x, y) = 0

for all 1 ≤ i ≤ k − 1.

By Lemma 5.1, the probability that a given edge xy is in E(G) is q−(k−1). Hence the expected number of

edges in G is

E [|E(G)|] = q−(k−1) ·mn = q(k−1)+
2t
b = m

k+2
2k n

1
2 .

Suppose that {w1, w2} are fixed vertices in G, and let C be the set of all copies of F in G whose roots

u1, u2 correspond to w1, w2, respectively.

We will bound E [|C|s] from above. Note that |C|s counts the number of ordered collections of s copies

of F rooted at {w1, w2}. Since the number of edges m in a given collection H of s copies of F rooted at

{w1, w2} is at most sk = 6k2 and since q >
(
6k2

2

)
, by Lemma 5.1, it follows that the probability of any such

collection H is at most q−(k−1)m.

Define Fs≤ =
⋃s
i=1 F i. Given H ∈ Fs≤, let Ns(H) denote the number of ordered collections of s copies

of F rooted at {w1, w2} whose union is H. For H bipartite, if there are u, v vertices on each side of the

bipartition of H, it follows that Ns(H) = Os(m
unv +mvnu). Hence

E [|C|s] =
∑
H∈Fs

≤

Ns(H)q−(k−1)e(H)

=
∑
H∈Fs

≤

Os(m
unv +mvnu)q−(k−1)e(H)

= Os

 ∑
H∈Fs

≤

(munv +mvnu)q−(k−1)e(H)


= Os

 ∑
H∈Fs

≤

qtu+(2k−2− k−2
k t)v−(k−1)e(H) + q(2k−2−

k−2
k t)u+tv−(k−1)e(H)

 .

By Lemma 5.2, tu +
(
2k − 2− k−2

k t
)
v − (k − 1)e(H) ≤ 0. Furthermore, as t ≤ k, the Rearrangement

Inequality implies that
(
2k − 2− k−2

k t
)
u+ tv − (k − 1)e(H) ≤ 0 as well. It follows that

E [|C|s] = Os

 ∑
H∈Fs

≤

2

 = Os(1).

Finally, by Markov’s Inequality,

P[|C| ≥ c] = P[|C|s ≥ cs] ≤ Os(1)

cs
.

Next, we must provide bounds on |C|. The argument in [BC18] must be modified as follows. Given

an arbitrary copy of F rooted at w1, w2 in G, let (x1, . . . , xk−1) denote its set of unrooted vertices. For

1 ≤ i ≤ k − 1, let

f(vi) =

g(w1) if d(vi, u1) is even,

g(w2) if d(vi, u1) is odd,
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where g(wi) denotes the size of the bipartition of G that wi lies in, and d denotes the distance function. It

follows that for all copies of F in C, (x1, . . . , xk−1) ∈ FLq , where L =
∑k−1
i=1 f(vi). The argument from [BC18]

can now be applied, with the algebraic variety X(Fq) defined as a subset of FLq . From Lemma 5.3, it follows

that there exists a constant cF , depending only on F , such that either |C| ≤ cF or |C| ≥ q/2. Thus, from the

above,

P[|C| > cF ] = P[|C| ≥ q/2] ≤ Os(1)

(q/2)s
.

To finish, we call a pair of vertices (w1, w2) bad if there are more than cF copies of F rooted such that

u1, u2 correspond to w1, w2, respectively. Let B be the random variable equal to the number of bad sequences.

Then, as s = 6k and q >
(
6k2

2

)
,

E [B] ≤ (m+ n)2 · Os(1)

(q/2)s
= Os(q

4k−s) = Os(q
−2k).

We remove a vertex from each bad sequence to yield a Fp-free graph G′ with at least

m
k+2
2k n

1
2 − E [B]n = m

k+2
2k n

1
2 −Os(1) = Ω(m

k+2
2k n

1
2 )

edges. Hence there exists an Fp-free m-by-n bipartite graph G′ with Ω(m
k+2
2k n

1
2 ) edges, implying that

ex(m,n, F p) ≥ ex(m,n,Fp) ≥ Ω(m
k+2
2k n

1
2 ), as desired.

6 Lopsided Asymmetric Extremal Numbers of Theta Graphs

We begin by defining the lopsided asymmetric extremal number.

Definition 6.1. Let F be a bipartite graph with a fixed proper 2-coloring in red and blue. Then the lopsided

asymmetric extremal number ex∗(m,n, F ) denotes the maximum number of edges in a bipartite graph G

(with m red vertices on one part and n blue vertices on the other) that does not contain a copy of F whose

blue and red vertices are in the blue and red classes of G, respectively. We write ex∗(n, F ) for ex∗(n, n, F ),

and call this the lopsided extremal number.

In general, ex∗(m,n, F ) is larger than ex(m,n, F ). As a result, Theorem 5.4 implies a corresponding lower

bound on ex∗(m,n, θk,p), and the following result is true.

Theorem 6.1. Let k ∈ N, and let q >
(
6k2

2

)
be a prime power. Let m = qt and n = q2k−2−

k−2
k t, where t ∈ N

and t ≤ k. Then for sufficiently large p,

ex∗(m,n, θpk) = Ω(m
k+2
2k n

1
2 ).

7 Conclusion and Future Work

In conclusion, our work provides new insights on the behavior of the extremal number and its variants. In

recent months, there has been significant activity on Conjecture A; see [Jan19b] and [CJL19]. A current

focus is on studying the extremal number of so-called subdivisions of graphs [GJN19] [Jan18] [Jan19a]. This

technique has led to recent discoveries of new sets of Turán exponents [JQ19a] [JQ19b]. In the light of
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our proof of Theorem 3.2, it would be interesting to explore further applications of the Erdős–Simonovits

Reduction Theorem in simplifying related bounding arguments and progressing towards Conjecture A. In

addition, one could consider extending our lower bound in Theorem 4.2 to the case that m � n, as well

as generalizing Theorems 5.4 and 6.1 to cover all possible pairs (m,n). Lastly, given the applicability of

extremal graph theory in information security [PRUW13], it would be interesting to explore the benefits our

results could provide to the fields of coding theory and cryptography.
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