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Solution to General Math Problems

Problem G1

We have n fair six-sided dice, labeled 1 through 6. Let pn be the probability that
when rolled, the product of all n numbers shown is at most 6.

(a) Compute the value of p2.

(b) Determine pn for any integer n ≥ 2.

Solution

We proceed by enumerating all possible multisets of n dice rolls with product at most
six.

• 1n = 1, which occurs with probability 6−n.

• For 2 ≤ k ≤ 6, we have 1n−1 · k = k, which occurs with probability
(
n
1

)
· 6−n.

• 1n−2 · 22 = 4 occurs with probability
(
n
2

)
· 6−n.

• 1n−2 · 2 · 3 = 6 occurs with probability n(n− 1) · 6−n.

Putting these together gives

pn = 6−n + 5 · n · 6−n +

(
n

2

)
· 6−n + n(n− 1) · 6−n

= 6−n
(

1 + 5n+ 3

(
n

2

))
=

3n2 + 7n+ 2

2 · 6n
.

In particular, p2 = 7
18 .
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Problem G2

Fix an integer d ≥ 1, and consider polynomials P (x) of degree d which satisfy

P (n) = n+
1

n

for n = 1, 2, . . . , 99. For each d, determine all possible values of P (100) or show that
no such polynomials P of degree d exist.

Solution

Such a polynomial exists for d ≥ 98. Moreover,

• When d = 98, the unique solution is P (100) = 100.5.

• When d = 99, P (100) can take any value other than 100.5.

• When d ≥ 100, P (100) can take any value.

The condition is equivalent to

Q(n) = nP (n)− (n2 + 1)

having roots at n = 1, 2, . . . , 99. Thus, this implies that degQ ≥ 99, so d = degP ≥ 98.
If d = 98, or degQ = 98, then we have that

nP (n)− (n2 + 1) = c(n− 1)(n− 2) . . . (n− 99)

for some constant c. Choosing n = 0, we have 99! · (−c) = −1, so c = 1
99! . Hence, in the

d = 98 we must have

P (n) =
1

n

[
(n2 + 1) +

(n− 1)(n− 2) . . . (n− 99)

99!

]
.

At P (100) we get P (100) = 1
100

(
1002 + 1 + 1

)
= 100.5.

When d ≥ 100 on the other hand, any polynomial of the form

P (n) =
1

n

[
(n2 + 1) +

(n− 1)(n− 2) . . . (n− 99)

99!

]
+ (n− 1)(n− 2) . . . (n− 99)R(n)

will work for any polynomial R(n) of suitable degree. So P (100) can take any value for
d ≥ 100.

When d = 99, by taking R(n) to be a suitable nonzero constant as above, we see that
P (100) takes any value other than 100.5. On the other hand, there is no P of degree
99 which P (100) = 100.5 since by e.g. Lagrange interpolation there is at most one such
polynomial of degree at most 99, but it has degree 98.
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Problem G3

There are 100 marbles in a bag: 30 red marbles, 60 green marbles and 10 yellow
marbles. We select three of them uniformly at random, independently and with
replacement (meaning we put the ball back after it is removed). Let E be the event
“all three marbles are the same color”.

(a) Find the probability of E.

(b) Find the probability of E, given that at least one selected marble is red.

(c) Find the probability of E, given that the selected marbles aren’t all different
colors.

Solution

(a) This is 0.33 + 0.63 + 0.13 = 0.254.

(b) The probability that none of them are red is 0.73 = 0.343 so the probability that
at least one is red 1 − 0.73 = 0.657. On the other hand the probability all three
are red is 0.027, so the answer is 27/657 = 3/73.

(c) The probability that no two are the same color is given by 3! ·0.3 ·0.6 ·0.1 = 0.108,
so the probability that some two are the same color is 1− 3! · 0.3 · 0.6 · 0.1 = 0.892.
The probability all three are the same color was given in (a) as 0.254. Hence the
answer is 254/892 = 127/446.
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Problem G4

A pair (σ, τ) of permutations on {0, 1, . . . , n− 1} is balanced if the following map is
also a bijection on {0, 1, . . . , n− 1}:

x 7→ (σ(x) + τ(x)) mod n.

(Here, a mod n means the remainder when a is divided by n.)

(a) Does there exist a balanced pair when n = 3? (Either give an example or
prove none exists.)

(b) Does there exist a balanced pair when n = 4? (Either give an example or
prove none exists.)

(c) For which n does there exist a balanced pair?

Solution

We’ll prove that a balanced pair exists if and only if n is odd.
Assume for contradiction a balanced pair exists for even n. Summing the function

σ + τ across x = 0, 1, . . . , n− 1 gives

0 + 1 + · · ·+ (n− 1) ≡ 2(0 + 1 + · · ·+ (n− 1)) (mod n)

and we conclude n divides 0 + 1 + · · ·+ (n− 1) = 1
2n(n− 1); in other words we expect

1
2n(n− 1)

n
=
n− 1

2

to be an integer. But if n is even, then n− 1 is odd so this is wrong.
As for odd n, one can take σ(x) = τ(x) = x. Then the sum of all of these is x 7→ 2x

mod n, which is a bijection for n odd.
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Problem G5

Consider the following six points in the coordinate plane:

A = (0, 1), B = (0, 3), C = (1, 4), D = (4, 9), E = (6, 7), F = (6, 8).

For a point P in the coordinate plane let S(P ) = PA+PB+PC+PD+PE+PF .

(a) Prove that S(P ) is minimized at some point P .

(b) Determine the value of that minimum.

Solution

For any point P we have the following inequalities:

PA+ PD ≥ AD
PB + PF ≥ BF
PC + PE ≥ CE

Summing all of these gives a lower bound

S(P ) ≥ AD +BF + CE = 4
√

5 +
√

61 + 2
√

13.

This is achieved if P lies on all the segments AD, BF , CE.
We claim this occurs for the point

P =

(
12

7
,
31

7

)
(which must be unique). Indeed, we have

P =
4

7
A+

3

7
D =

5

7
B +

2

7
F =

6

7
C +

1

7
E.

P

A

B

C

D

E

F
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One can prove (a) without solving (b) in the following manner: we restrict our atten-
tion to a closed disk D centered at the origin O = (0, 0) with radius R = S(O) + 1000,
since points outside this disk will clearly have S(P ) > S(O). Then S is a continuous
function on D which is bounded below (by zero), so by compactness, there exists a
minimum value of S over D.
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Problem G6

Let a, b, c be positive real numbers for which min(ab, bc, ca) ≥ 1.

(a) Prove that log(abc) ≥ 3
√

(log a)3 + (log b)3 + (log c)3.

(b) Determine for which triples (a, b, c) the equality holds.

Solution

Let x = log a, y = log b, z = log c. Now

x+ y = log(a) + log(b) = log(ab) ≥ 0.

Similarly y + z ≥ 0, z + x ≥ 0. Then we are done with (a) upon writing

(x+ y + z)3 − (x3 + y3 + z3) = 3(x+ y)(y + z)(z + x) ≥ 0.

The equality is sharp whenever any of {x + y, y + z, z + x} vanishes, i.e. whenever
min(ab, bc, ca) = 1.
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Problem G7

For each integer n ≥ 1 let Tn denote the set of nondegenerate triangles whose side
lengths are in {1, . . . , n}. Moreover, for each triangle 4ABC, let

D(4ABC) = min (|AB −AC|, |BC −BA|, |CA− CB|) .

(a) For each integer n ≥ 3, determine the largest possible value of D(4ABC) over
all triangles in Tn.

(b) For which n is this maximum value achieved for a unique triangle in Tn (up
to congruence)?

Solution

We claim that D(4ABC) =
⌊
n−1
3

⌋
is optimal, and that for part (b) the answer is n ≡ 1

(mod 3).
Throughout, let δ = D(4ABC) for brevity, and let a ≥ b ≥ c denote the side lengths.
First, we show that one cannot take δ any larger. By the triangle inequality, we have

b+ c > a, or b+ c ≥ a+ 1. Then we write

(n− δ) + c ≥ (a− δ) + c

≥ b+ c ≥ a+ 1

= (a− b) + (b− c) + c+ 1

≥ c+ 2δ + 1.

This shows that 3δ ≤ n− 1, as desired.
We give two examples each when n ≡ 0, 2 (mod 3).

• If n = 3k, then the triangles (3k, 2k + 1, k + 2) and (3k, 2k + 1, k + 1) both have
δ = k − 1.

• If n = 3k + 2, then the triangles (3k + 2, 2k + 2, k + 2) and (3k + 2, 2k + 2, k + 1)
both have δ = k.

Finally, for n = 3k + 1 we have (3k + 1, 2k + 1, k + 1). To see this is tight, note that
in the displayed equations, we must have equality everywhere, meaning a = n, and
a− b = b− c = δ (and also a+ 1 = b+ c). Since δ = k and a = 3k + 1, that implies the
result.
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Solution to Advanced Math Problems

Problem M1

Let P be a partially ordered set (poset) with 12 elements. Given that P has width
2, what is the maximum number of linear extensions that P can have?

(A linear extension of a poset P is a total ordering of the elements compatible with
the partial order. The width of a partially ordered set is the largest size of a subset
in which no two elements are comparable; this is the size of the largest antichain.
See https://en.wikipedia.org/wiki/Partially_ordered_set for the definition
of a poset.)

Solution

By Dilworth’s theorem, since P has width 2 it may be partitioned into two chains, say

a1 ≤ · · · ≤ ak and b1 ≤ · · · ≤ b12−k.

If there are any relations between ai and bj , then we can delete them without decreasing
the width of the poset, but increasing the number of linear extensions. Hence we can
reduce to the case where P is the disjoint union of two chains as above.

In that case, a linear extension of P corresponds to a way choose k positions out of
12 for an ai, and assign the remaining 12 − k to bi’s. The number of such situations is(
12
k

)
. This is maximized at

(
12
6

)
= 924.
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Problem M2

Consider the infinite series

S =

∞∑
n=2

[
log(n3 + k)− log(n3 − k)

]
.

where k ∈ (0, 8) is a real number. (Here log denotes the natural logarithm.)

(a) Prove that S converges for any k.

(b) For k = 1, compute S.

Solution

For part (a), write

S =
∑
n≥2

log

(
n3 + k

n3 − k

)
.

This is a series of positive real numbers, so it suffices to show the partial sums are
bounded above. Then in light of the estimate log(x) ≤ x− 1, it is enough to show that

∑
n≥2

(
n3 + k

n3 − k
− 1

)
=
∑
n≥2

(
2k

n3 − k

)
<∞.

Now for all n ≥ 3 we have n3 − k > n2 so we may bound the above sum by

2k

 1

8− k
+
∑
n≥3

1

n2

 <∞

since
∑

n≥1 n
−2 = π2

6 . This concludes the proof of (a).
As for (b), the partial sums telescope:

S = lim
N→∞

N∑
n=2

(
log(n+ 1) + log(n2 − n+ 1)− log(n− 1)− log(n2 + n+ 1)

)
= lim

N→∞

(
[log(N + 1) + log(N)− log(2)− log(1)]−

[
log(N2 +N + 1)− log(3)

])
= lim

N→∞

(
log(3/2) + log

(
N2 +N

N2 +N + 1

))
= log(3/2) + log(1).

=⇒ S = log(3/2).
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Problem M3

Consider integrable functions f : [0, π]→ [−1, 1] such that
∫ π
0 f(x) = 0, and let

S(f) =

∫ π

0
f(x) sinx dx.

Find a constant M , as small as you can, for which |S(f)| ≤M .

Solution

By replacing f with −f when appropriate, it’s enough to consider S(f) ≤M .
Let g be the function defined by

g(x) =

{
1 1

4π ≤
3
4π

−1 otherwise.

We have that

S(g) =

∫ π

0
g(x) sinx dx = −

∫ π
4

0
sinx dx+

∫ 3π
4

π
4

sinx dx−
∫ π

3π
4

sinx dx

= −
(

1− 1√
2

)
+
√

2−
(

1− 1√
2

)
= 2
√

2− 2.

Hence M ≥ 2
√

2− 2.
We claim that this is best possible. To see this, note that

S(g)− S(f) =

∫ π

0
[g(x)− f(x)] sinx dx

=

∫ π
4

0
[g(x)− f(x)]︸ ︷︷ ︸

≤0

sinx dx+

∫ 3π
4

π
4

[g(x)− f(x)]︸ ︷︷ ︸
≥0

sinx dx

+

∫ π

3π
4

[g(x)− f(x)]︸ ︷︷ ︸
≤0

sinx dx

≥
∫ π

4

0
[g(x)− f(x)]︸ ︷︷ ︸

≤0

sin(π/4) dx+

∫ 3π
4

π
4

[g(x)− f(x)]︸ ︷︷ ︸
≥0

sin(π/4) dx

+

∫ π

3π
4

[g(x)− f(x)]︸ ︷︷ ︸
≤0

sin(π/4) dx

= sin(π/4)

∫ π

0
[g(x)− f(x)] dx

= 0.
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Problem M4

For integers n ≥ 0 let

an =
n∑
i=0

1

i+ 1

(
n+ i

n− i

)(
2i

i

)
.

Identify the sequence (an)n by name and prove that an is the claimed sequence.
(You may use the Online Encyclopedia of Integer Sequences, http://oeis.org/.)

Solution

The answer is that an is the nth Schroeder number. Our proof is by generating functions.
We write

∑
n≥0

anx
n =

∑
n≥0

(
n∑
i=0

1

i+ 1

(
n+ i

2i

)(
2i

i

)
xn

)

=
∑
i≥0

 1

i+ 1

(
2i

i

)∑
n≥i

(
n+ i

2i

)
xn


=
∑
i≥0

 1

i+ 1

(
2i

i

)
xi
∑
k≥0

(
k + 2i

2i

)
xk


=
∑
i≥0

(
1

i+ 1

(
2i

i

)
xi

1

(1− x)2i+1

)

=
1

1− x
∑
i≥0

(
1

i+ 1

(
2i

i

)(
x

(1− x)2

)i)

=
1

1− x
· 2

1 +
√

1− 4 x
(1−x)2

=
2

1− x+
√

(1− x)2 − 4x

=
2

1− x+
√
x2 − 6x+ 1

which is the generating function of the Schroeder numbers. Here we have used the
Catalan number generating function

∑
i

1
i+1

(
2i
i

)
Xi = 2

1+
√
1−4X .
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Problem M5

Let G be a group with presentation given by

G =
〈
a, b, c | ab = c2a4, bc = ca6, ac = ca8, c2018 = b2019

〉
.

(a) Show that G is finite.

(b) Determine the order of G.

Solution

First, observe that by induction we have

anc = ca8n

for all n ≥ 1. We then note that

a(bc) = (ab)c

a · ca6 = c2a4 · c
ca8 · a6 = c2a4 · c

a14 = c(a4c) = c2a32.

Hence we conclude c2 = a−18. Then ab = c2a4 =⇒ b = a−15.
In that case, if c2018 = b2019, we conclude 1 = a2018·18−2019·15 = a6039. Finally,

bc = ca6

a−15c = ca6

a−15c2 = c(a6c) = c2a48

a−33 = a30

=⇒ a63 = 1.

Since gcd(6039, 63) = 9, we find a9 = 1, hence finally c2 = 1. So the presentation above
simplifies to

G =
〈
a, c | a9 = c2 = 1, ac = ca−1

〉
which is the presentation of the dihedral group of order 18.
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Problem M6

Let A = (aij)
n
i,j=1 be a symmetric n × n matrix. Assume that aij ≤ 0 for i 6= j.

Show that the following two conditions are equivalent:

• The matrix A is positive-definite.

• There exists a vector v such that both v and Av have strictly positive entries.

Solution

In what follows, by v > 0 we mean the entries of v are positive.
First, we prove that if A is positive definite then v > 0 with the desired property

exists. Actually, we will prove the following claim, which implies the result since we can
then take v = A−1w for any w > 0.

Claim: If A = (aij) is a symmetric positive definite n × n matrix with nonpositive
entries off the diagonal, then all entries of A−1 are nonnegative, and the diagonal entries
are positive.

Proof. We proceed by induction on n, with the base case being clear. Let Aij denote
the matrix obtained when the ith row and jth column of A are deleted. Since detA > 0,
it’s equivalent to check all the cofactors of A are nonnegative, as

A−1 =
1

detA


C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn.


where Cij = (−1)i+j detAij is the (i, j)-cofactor.

Since A is positive definite we immediately have Cii = detAii > 0.
Now we show C12 ≥ 0 ⇐⇒ detA12 ≤ 0, say. Let Bij be the matrix obtained by

deleting from A12 the ith row and jth column of A. Then

detA12 =
n∑
i=2

(−1)iai1 detBi1.

But Bi1 is the (i−1, 1)-minor of the matrix A11. As the matrix A11 is also positive definite
(it’s a principal minor and induction hypothesis applies), we have (−1)i detBi1 ≥ 0.
Then ai1 ≤ 0, hence (−1)iai1 detBi1 ≤ 0 for each i, done.

Now conversely assume v = (v1, . . . , vn) > 0 is given so that Av > 0; we prove every
eigenvalue λ of A is positive. This is essentially a modified proof of the Gershgorin
circle theorem, modified to fit our context.

Write the eigenvector as (v1y1, . . . , vnyn). For any k,∑
j

akjvjyj = λvkyk =⇒ vk(akk − λ)yk =
∑
j 6=k
−akjvjyj .

Now assume WLOG that 1 = yk = maxi yi. Then the triangle inequality implies that

vk|akk − λ| ≤
∑
j 6=k
−akjvj < akkvk

where the last inequality follows from the hypothesis
∑

j akjvj > 0 (from Av > 0). Hence
λ > 0 as desired.
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