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Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion
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Principle of Inclusion-Exclusion Simple form

Simple form

A well-known formula

|A1 U Ay U A3| = [A1] + [Ao| + |As|—
— |A1 ﬂA2| — ’Al ﬂA3| — |A2 ﬂA3|—|—
+|A10A2ﬂA3|

Theorem

Given sets A1, A, ..., An, we have the following formula for the number of
elements in the union:

n n
— k+1
UA,’ = E (—1) E ‘A,’l ﬂA,‘z ﬁ...ﬂA,‘k‘
i=1 k=1 1< <iz...<ix<n
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Principle of Inclusion-Exclusion Algebraic form

Algebraic form

Theorem (Principle of Inclusion-Exclusion)

Let S be an set with n elements. Let V be the 2"- dimensional vector
space (over some field K) of all functions f : 2° — K. Let ¢ : V — V be
the linear transformation defined by:

¢F(T)= > F(Y)VTCS

YOT
ThenVT C S:
¢ H(T)= > (D) TIF(Y),

YDOT
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Principle of Inclusion-Exclusion Example

Applications

A typical setting
@ A — a set of objects we study, e.g. a set of humanoids

@ S — a set of interesting properties of the objects in a set A, e.g. elf,
religious, female

@ T —asubset of S, e.g. iself

e f_(T) is the number of objects in A that have only the properties in
the set T

o 5(T)=¢(f=(T)) = > yo7 f=(Y) is the number of objects in A
that have at least the properties in the set T

o If we know £-(T), then we can compute f—(T) as:
(T) = (¢7':)(T) = ZY;T(_l)ly_Tlf(Y)
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Principle of Inclusion-Exclusion Example

Example

Let us consider a fantasy town, and assume that there were two surveys.

Results of the first survey:
@ 2100 female humanoids
@ 950 human women and 900 female elves
@ 1900 humans and 1850 elves

Results of the second survey:
@ 1000 religious humanoids
@ 200 religious humans and 500 religious elves

@ 50 religious human women and 300 religious female elves

Question

How many non-religious male elves are there?
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Principle of Inclusion-Exclusion Example

Example

Setting

A = {all humanoids in town }
S = {female, elf, religious}

Observation

Number of non-religious male elves is f—({elf})

Calculation

f—({elf}) = £~ ({elf}) — £~ ({female, elf}) — £ ({religious, elf})+
+ £~ ({religious, female, elf}) =

= 1850 — 900 — 500 4 300 = 750
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Generating Functions

Generating functions
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Generating Functions Introduction

Introduction

Definitions

An ordinary generating function of a sequence f(n) is a formal power series

Flx) = 3 F(n)x",

n>0

while its exponential generating function is

6o =S ()<

n>0
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Generating Functions Rational generating functions
Fundamental property of rational generating functions
Theorem

Let ai,a0,...,a3€C, d>1, and ag#0

The following conditions on a function f : N — C are equivalent:

a.
P
Z f(n)x" = (X),

where Q(x) = 1+ ayx + aax® + ... + agx9, and

P(x) is a polynomial in x of degree less than d.
b.
Vn>0:

f(n+d)+aif(n+d—1)+axf(n+d—2)+ ...aqf(n) =0
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Generating Functions Fibonacci numbers

Generating function for Fibonacci sequence

Important Example
f(n)=F, - Fibonacci sequence
Compare Fpyp — Fpp1 — Fp =0 with statement b. to obtain from a.

b
ZF”X aX+ 1 v 2
—X—X
n>0

and from initial conditions Fp =0and F; =1

ZFnX 1—x—x2

n>0
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Generating Functions Fibonacci numbers

Explicit expression for Fibonacci numbers

Equivalently
X
Fox" =
n; T ()1 - 3x)
1 5 1—+/5 1
with ¢ = V5 and @ = =1l—-p=——
2 @
Hence as the Taylor series coefficients
n__ =n
F, = P
V5
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Alternating Permutations and Euler Numbers Definitions

Alternating Permutations and Euler Numbers

Let &, be a set of permutations of [n].
A permutation w = wyws...w, € &, is alternating if

wip > wy < w3 > wg < ...
Definition

The number of alternating permutations w € &,, is called
an Euler number E, (with Eg = 1).
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Alternating Permutations and Euler Numbers Definitions

Reverse Alternating Permutations

A permutation w = wyws...w, € &, is reverse alternating if

wp < wy > w3y < wg > ...

Proposition

The number of reverse alternating permutations in &, is also Ej,.

Proof
Since w = wiwp...w,, € G, is alternating if and only if

w=(n+1-—w) (n+1—wma)... (n+1—wy,)

is reverse alternating, there are as many reverse alternating as alternating
permutations in &,,.
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Alternating Permutations and Euler Numbers ~ Theorem

Generating Function for Euler Numbers

Theorem
The exponential generating function for Euler numbers is

n

X

E E,,—I = secx + tanx
n!

n>0

Since sec x is an even function and tan x is odd, this is equivalent to
E 2,, = sec x
n>0 !
2n+1

ZE2n+1 1) = tanx

n>0
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Alternating Permutations and Euler Numbers Proof

Proof

Let S C [n] with #S = k, and _5 =[n] \ S. Choose reverse alternating
permutations v of S and v of S in E; and E,_j ways. If n > 1,

w=u"x(n+1)x*v

uniquely represents every alternating and reverse alternating permutation
of [n+ 1]. Hence

n
n
2Eni1=) <k> ExEpi, n>1
k=0
For G(x) = 3,50 En%; with g = £ =1,
2G'=G*+1, G(0)=1

G(x) = secx + tan x
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