Towards Append-Only
Authenticated Dictionaries

Vivek Bhupatiraju, CS-PRIMES 2017

Public-key Cryptography

PK

M plaintext

=

key

=

private

key

ciphertext

e(M, PK)

Secure Channels

- Having secure channels is becoming more and more
necessary

- Many of these systems based around public-key
cryptography

- Essential to accurately distribute and access these
public-keys

- Let’suse adirectory!

Directory sends
Robert PK|

Directory

4

2
Directory stores PK|
under John's name

Robert encrypts
with PK|

e(, PK))

1

John publishes his
public key, PK|

5

John
PK, *+SK|

John decrypts
with SK| =>

Directory sends
Robert PK,

4

Directory

2

Directory stores PK|,
under John's name,
sends PK, to Mark

1

John publishes his
public key, PK|

Mark

Robert encrypts
with PK,

e(

 PK,)

e(

Mark now knows
- NO secrecy

, PK))

> John
PK, *+SK|

6
John decrypts
with SK| =>

Detecting Impersonation! (NON-MEMBERSHIP)

directory is not hiding a
PK,, under his name

Di reCto ry CT Needs to check that

John
Alin

PK,
PK,

> John

|
PK, +SK,

2
Sends cryptographic proof
that this IS the case

Detecting Impersonation! (CONSISTENCY)

directory is not hiding a
PK,, under his name

Di reCto ry CT Needs to check that

John
Alin

PK,
PK,

> John

|
PK, +SK,

2
Sends cryptographic proof
that this IS the case

Detecting Impersonation! (MEMBERSHIP)

he asks for John's PK

@f Directory
Sends Robert PK|, when

John
Alin

PK,
PK,

' %

2
Asks for proof that PK|, is
in the directory under
John's name

Append-Only Dictionaries (Key-value pairs)

- NON-MEMBERSHIP
- Proof that no values exist for key n
other than the ones in the tree
- CONSISTENCY
- Proof that all data in version 1 of
the dictionary is also in version j of
the dictionary, where 1 < j
- MEMBERSHIP
- Proof that (n, v_) is in dictionary

Attempts at a Full AAD

m == number of key-value pairs in AAD / Server

Membership Non-membership Consistency

History Tree O(log(m)) O(m) O(log(m))
Prefix Tree O(log(m)) O(log(m)) O(m)

Quacrave Do | 0Qm x log(m)) | OCm * log(m)) | O(log(m))

H(L +R)=Q

Merkle Tree (Merkle Root)

H(H(A) [H(B)) =L H(H(C) | H(D)) =R

H(A) H(B) H(C)

A=(a,v,) B=(b,v,) C=(c,v) D=(d,v,)

History Tree

- Just amerkle tree that grows as key-value pairs are
added to it

N @ﬁ

(av,) (b, v,) (c,v,) (av,) (b, v,) (c,v,) (d, v)

History Tree (MEMBERSHIP)

Merkle Root; QO =7 Qc

Space/Time
Complexity

O(log(m))

(a,v,) (b, v,) (c,v,) (d, v,)

History Tree (NON-MEMBERSHIP)

Space/Time
Complexity

O(m)

G v) (av,) G, v,)) (k, v,)

History Tree (CONSISTENCY)

Space/Time Complexity: O(/og(m))

A= SN = A

(@, v,) (b, v,) (av,) (b, v,) (c,v,) (d, v,)

version | version j

Prefix Tree

Tree defined by hashes:

HASH(‘a’) = 1100...
HASH('b’) =0011...
HASH('c’) = 1010...
HASH('d’) = 0001...

Also a merkle tree!

- Each node s a hash of
its children

Prefix Tree (MEMBERSHIP)

Space/Time
Complexity

O(log(m))

Prefix Tree (NON-MEMBERSHIP)

HASH(‘e’) = 0011...

Space/Time
Complexity

O(log(m))

Prefix Tree (CONSISTENCY)

- Server has to send all key-value pairs added between
versions OR membership proofs
- Both linear in complexity, O(m)

Quadratic Prefix Forest

U, of
Forest,
Size 1

U, of
Forest,
Size 4

@)

tree of size n?

Un of
Forest,
Size n?

Quadratic Prefix Forest

- Say there are 7 trees in the forest

n

2 (n)(nt])(2nt+1)
2 i = 6
:

i=0
If there are m total key-value pairs

#of trees = O(\m)

Q. Prefix Forests (MEMBERSHIP)

N

© oo tree of
size n?

of Trees: O(\/m)
Space / Time Complexity: O(3m x log(m))

Q. Prefix Forests (NON-MEMBERSHIP)

N

© oo tree of
size n?

of Trees: O(\/m)
Space / Time Complexity: O(3m x log(m))

Q. Prefix Forests (CONSISTENCY)

Keep each of the Merkle roots of each prefix treein a
larger history tree

Merkle roots of each prefix tree should never change
Can check (via membership proofs) the roots of the
prefix tree against those stored in the history tree
Space/time complexity of O(log(m))

Q. Prefix Forests (USABILITY)

- Each tree’s size is a square number
- Atm=1,000,000

- Next tree will need ~10,000 new key-value pairs
- Sacrificing usability for better complexities in other

operations

Future Work

- Algebraic Hashing
- H(a,b)=L*a+R*b
- Bilinear Accumulators
- Accumulating sets into small digests
- Incorporating NON-MEMBERSHIP into history
trees
- Coding up trees to test viability
- Exploring new data structures

Acknowledgements

| would like to thank:

Alin Tomescu, my mentor

Srini Devadas, coordinator of CS-PRIMES
My parents and family

MIT-PRIMES program

Thank you!

Ask me questions!

