Random walks on a Grid with a Periodic Boundary Condition

Peter Rowley

Mentor Boya Song

PRIMES Conference May 20, 2017

Periodic Boundary Condition

- Boundaries wrap to the other side
- Equivalent to a torus

(b) A $\mathbb{Z}_N \times \mathbb{Z}_N$ torus

(a) An $N \times N$ grid

Figure: Two ways of viewing the grid

Random Walk

 Simple symmetric random walk: starting anywhere, at every step there is a 25% chance of moving in each direction (up, down, left, right)

Markov Chains

- A set of discrete states with probabilities to move between
- Irreducible if it is possible to get from any state to any other
- Can be modelled by a transition matrix
 - Columns add to 1
 - Element in *i*th row and *j*th column is probability of transition from *j*th state to *i*th state
 - Regular if some power has all positive entries

$$T = \left[\begin{array}{cc} 0.3 & 0.4 \\ 0.7 & 0.6 \end{array} \right]$$

Figure: A Markov process and its transition matrix

3 by 3 Transition Matrix

Figure: Transition matrix for random walk on 3×3 grid

Steady State Distribution

Definition

Steady State Distribution: A probability distribution of a Markov chain which stays constant when the transition matrix is applied

• Due to symmetry and reversibility of this random walk, the steady state distribution is all equal probabilities of $\frac{1}{n^2}$

The Even Case

- Grid can be colored black and white so that it always goes from black to white
 - Graph of states is bipartite
- Probability distribution does not approach a steady state vector
- We focus on the odd case

Eigenvalues

- It is known that all regular transition matrices have one eigenvalue of 1 and the rest satisfy $|\lambda| < 1$
- For small cases, we look at the number of distinct eigenvalues:
 - 3 by 3 has 3
 - 5 by 5 has 6
 - 7 by 7 has 10
 - 9 by 9 has 15
- We conjecture that for an odd $(2n+1) \times (2n+1)$ grid there are $\binom{n+2}{2}$ distinct eigenvalues

Viewing as a Product Chain

- Coordinates start with (1,1) in top left, with (i,j) being ith row and jth column
- Can be seen as two separate random walks, one for each coordinate
- Each step randomly chooses one of the walks to increment
- Allows us to use results from random walk on a loop

Eigenvalues for Each Loop

• It is known that all distinct eigenvalues of a loop of length 2n+1 are of the form $\cos\left(\frac{2\pi}{2n+1}k\right)$ for $0 \le k \le n$

Combining the Eigenvalues

• In a product chain of d chains, if P is a probability distribution over the set of chains, and λ_i is any eigenvalue of the ith process, then

$$\sum_{i=1}^{d} P_i \lambda_i$$

is an eigenvalue of the product chain.

- Any λ_i , λ_j from have $\frac{\lambda_i + \lambda_j}{2}$ as an eigenvalue of the 2-D walk
- This gives $\binom{n+2}{2}$ distinct values

Removing a Point

- One point is removed
 - Impossible to move to or from that point

Transition Matrix

 $0 \frac{1}{4} \frac{1}{4} 0$

Time to Affect

- Probability not affected for states not near the removed point at first
- Comparing the probabilities of being at any given point after a certain amount of time
- Only affected once the path can have traveled to a point adjacent to the removed point

Future Research

- Consider eigenvalues of the even case
- Consider eigenvalues of the point-removed case
- Look into the expected hitting times with and without a point removed

Acknowledgements

- My mentor Boya Song
- Professor Jörn Dunkel
- MIT Math Department
- MIT PRIMES
- Dr. Tanya Khovanova
- Dr. Slava Gerovitch
- My parents