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INTRODUCTION THEOREMS ACKNOWLEDGEMENTS

INTRODUCTION TO DENESTING

The goal of this project is to find ways to efficiently denest
given radicals.

Ramanujan’s radicals:√
3
√

5− 3
√

4 = 1
3

(
3
√

2 + 3
√

20− 3
√

25
)

√
5
√

1
5 +

5
√

4
5 = 5

√
16

125 +
5
√

8
125 +

5
√

2
125 −

5
√

1
125

6
√

7 3
√

20− 19 = 3
√

5
3 −

3
√

2
3

We can also denest radical expressions of rational functions√
2t + 2

√
t2 − 1 =

√
t− 1 +

√
t + 1.

It is easy to verify that the equations are true, but it is not
immediately clear how Ramanujan would have gotten to the
RHS solely from the LHS.
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INTRODUCTION THEOREMS ACKNOWLEDGEMENTS

FIELDS

In a field, one can add, subtract, multiply, and divide, as in the
rationals or the reals.

Additive and multiplicative inverses exist, except for a
multiplicative inverse of 0
Additive and multiplicative identities are 0 and 1,
respectively.
Addition and multiplication are associative and
commutative.
Multiplication is distributive over addition

Some examples of fields are Fp, Q, C, Q(t), and Q(
√

2).
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INTRODUCTION THEOREMS ACKNOWLEDGEMENTS

FIELD EXTENSIONS

In a field K, we can define a polynomial in K to be a polynomial

f (t) =
d

∑
i=0

kiti.

If α is the root of some polynomial in K, then we can define the
extension K(α).
Let d be the degree of the minimal polynomial of α: namely, the
polynomial f such that f (α) = 0 and f has smallest degree.
Then 1, α, ..., αd−1 form the basis of K(α) over K.
For example, Q(i) is the field containing all numbers of form
a + bi with a, b ∈ Q.
Some fields, like Q(t) or Q(π) will have an infinite basis.
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INTRODUCTION THEOREMS ACKNOWLEDGEMENTS

DEPTH OF A RADICAL

Informally, we can define the depth of a radical expression to
be the number of layers of radicals needed to express it.

For example, the depth of
√

3
√

2− 1 is two.
The goal of radical denesting is to decrease the depth of a
radical.
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INTRODUCTION THEOREMS ACKNOWLEDGEMENTS

THEOREM 1

We’ll define a real-embeddable field to be a field K to be an
extension of Q that is embeddable in R.

This encompasses fields like Q, Q(
√

2), and also transcendental
extensions like Q(t).
We have the following:

Theorem
Let p and q be primes. Let r ∈ K be a radical expression and K a
real-embeddable field such that p

√
r ∈ K( q

√
d) with d ∈ K and

q
√

d 6∈ K. Then either
p = q, and p

√
r = p
√

dm · α with α ∈ K and m an integer or
p 6= q, and p

√
r ∈ K
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INTRODUCTION THEOREMS ACKNOWLEDGEMENTS

PROOF

If p 6= q, then one can use degrees of extensions to get a
contradiction.

Otherwise, we can write
p
√

r = s0 + s1
p
√

d + · · ·+ sp−1
p
√

dp−1 = f ( p
√

d) where si ∈ K.
Taking both sides to the pth power, r = f ( p

√
d)p. Because

p
√

d 6∈ K, only the terms with degree p are nonzero.
We can then use the roots of unity filter to show that
r = f ( p

√
dζp)p.

Taking the pth root, we know that p
√

r · ζk
p = f ( p

√
dζp). We can

replace ζp with any power of p and then sum the equations to
get p
√

r · t = sm · p
√

dm where t is a sum of pth roots of unity.
After more degree manipulations, this gets us p

√
r = p
√

dm · α
with α ∈ K.
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INTRODUCTION THEOREMS ACKNOWLEDGEMENTS

THEOREM 2

We can use Theorem 1 to prove the following

Theorem
Let K be a real-embeddable field such that r ∈ K. Moreover, let L be an
extension K( n1

√
a1, . . . , nk

√
ak) such that p

√
r ∈ L and ∏ ni is minimal.

Then n1 = . . . = nk = p and p
√

r = α · p
√

ae1
1 · · · a

ek
k for integers ei

and α ∈ K.

If some ni has a prime divisor other than q, we could then
replace ni

√
ai with ni/q

√
ai, so the ni’s are powers of p.

If nk = p, we can induct on k; if nk ≥ p2, one can show that a
contradiction arises.
The theorem is was proven for p = 2 in a paper by Borodin, et
al.
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al.
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THEOREM 2
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COROLLARY

As a result of Theorem 2, we have the following corollary:

Theorem

Let r be a depth one radical in a real-embeddable field K. Then if n
√

r
denests as a depth one radical in K, it denests in the form m

√
b · α

where b ∈ K and α ∈ K(r).

For example, we have

6
√

7 3
√

20− 19 =
3

√
5
3
− 3

√
2
3
=

3

√
2
3
·
(

1
2

3
√

20− 1
)

where r = 7 3
√

20− 19 and K = Q.
Indeed, every example tested satisfies the corollary.
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DENESTING WITH DIOPHANTINES

Using the corollary, we can come up with ways to see if radicals
generally denest.

For example, if 3
√

3
√

2− 1 denests, then we know it is of form
3
√

3
√

2− 1 = α · (x + y 3
√

2 + z 3
√

4) where α is some root of a
radical number and x, y, z rational.
We can WLOG x = 1 and then cube both sides of the equation.
We can then "equate" coefficients of 1, 3

√
2, 3
√

4.
When we solve the system, we can eliminate α and get y = −1
and z = 1. Plugging back in, α = 1

3√9
.

Thus, we denested 3
√

3
√

2− 1 = 3
√

1
9 −

3
√

2
9 +

3
√

4
9 .
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FUTURE RESEARCH

While the theorems shown do not show how to denest radicals
in general, it shows that all radicals follow a rule if they denest.
This lets us create rules to denest radicals without potentially
missing cases.

There is an algorithm discussed in the paper by Borodin, et al
that will denest any square root in a field.
The goal of future research is to come up with conditions for
denesting in specific cases using Diophantines. Additionally,
an algorithm that could come up with these conditions is being
researched.
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