
 

 

 

 

 

 
 

 

Automatically Improving 3D Neuron Segmentations 

for Expansion Microscopy Connectomics 

by Albert Gerovitch 

 
 
 
 
 
 
 
 

1 



 

Abstract 
Understanding the geometry of neurons and their connections is key to comprehending            

brain function. This is the goal of a new optical approach to brain mapping using               

expansion microscopy (ExM), developed in the Boyden Lab at MIT to replace the             

traditional approach of electron microscopy. A challenge here is to perform image            

segmentation to delineate the boundaries of individual neurons. Currently, however,          

there is no method implemented for assessing a segmentation algorithm’s accuracy in            

ExM. The aim of this project is to create automated assessment of neuronal             

segmentation algorithms, enabling their iterative improvement. By automating the         

process, I aim to devise powerful segmentation algorithms that reveal the “connectome”            

of a neural circuit. I created software, called SEV-3D, which uses the pixel error and               

warping error metrics to assess 3D segmentations of single neurons. To allow better             

assessment beyond a simple numerical score, I visualized the results as a multilayered             

image. My program runs in a closed loop with a segmentation algorithm, modifying its              

parameters until the algorithm yields an optimal segmentation. I am further developing            

my application to enable evaluation of multi-cell segmentations. In the future, I aim to              

further implement the principles of machine learning to automatically improve the           

algorithms, yielding even better accuracy. 
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Introduction 
Studying the mechanisms of the brain is the central goal of neuroscience. 

Currently, however, neuroscientists lack the crucial ability to visualize brain cells, or 

neurons, in great detail. Recently, a new approach called Expansion Microscopy (ExM) 

[​1​] was introduced, allowing us to obtain images of the brain down to the spatial 

resolution of ~60 nanometers using conventional optical microscopes. The ability to use 

optical microscopes represents a key improvement over previous approaches based on 

electron microscopy, because they can capture multiple fluorescent colors 

simultaneously, and also can resolve features in three dimensions without the need to 

slice the brain tissue into nanoscale sections. 

It is critical to understand how neurons are connected, as this would help explain 

how they interact, and would ultimately uncover how the brain functions. This requires 

not only data collection to obtain raw images of the neurons, but also a computational 

approach to extract individual cell shapes and connections from these images. My goal 

is to develop an optimal approach to extracting neuron shapes from ExM optical 

images. This paper describes the first step in this process: focusing on implementing 

methods to automatically assess and improve the quality of such image segmentations.  

Researchers have developed several preliminary segmentation algorithms to 

isolate neurons in expansion microscopy images [​2​]. Currently, however, there is no 

method implemented for assessing segmentation algorithms’ ability to capture entire 

neurons accurately, without omitting important features or adding extraneous areas. 

Even small errors could cause large-scale distortions. For example, a few errors in the 

shape of a long neural wire could misrepresent many downstream connections. 

The strategy is to develop an assessment method with a closed loop between 

the human user and the segmentation algorithm. Such a method would evaluate the 

algorithm's segmentation of the raw data, modify algorithm parameters to improve the 

segmentation, and yield an optimal segmentation for the user. The remainder of the 

segmentation could be completed by a human, as the task would have become much 
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easier. With additional programming techniques, the algorithm would automatically 

self-improve, automating the entire process (as seen in​ Figure 1​). 

I have created a Java program, called “Segmentation Evaluation and 

Visualization in 3D” (SEV-3D), which takes the first steps in this process. It uses several 

standard image comparison techniques to score segmentation algorithms and yield an 

optimal segmentation based on a given set of parameters. I use two metrics for 

evaluation: pixel error and warping error. My software takes ground truth and a 

proposed segmentation as input, runs the selected metric to compare the two images, 

and outputs the numerical score, as well as a multilayered image to visualize potential 

errors in the 3D segmentation. The program runs in a closed loop with a segmentation 

algorithm, modifying its parameters until the algorithm yields an optimal segmentation. 

The goal of this program is to find the combination of parameters that yields the best 

neuron segmentation. Though SEV-3D is able to process any image, so far I have 

focused on single-cell data. In the future, I plan to expand my study to multi-cell data 

and to implement machine learning techniques to automatically improve the  

segmentation algorithm. 

 

1 Methods 
1.1 Expansion Microscopy 

Traditional light microscopy allows resolution only up to 300nm. Expansion 

microscopy is a new method of looking at microscopic structures, including neurons, 

developed in the Boyden lab [​1​]. It works by physically expanding tissue, which allows 

for large 3-dimensional images in color and at high resolutions (see ​Figure 2​). 5x 

expansion microscopy can see up to 300/5 = 60nm, which is 5 times better than the 

resolution achieved by conventional light microscopy (see ​Figure 3​). 
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1.2 Metrics 
The goal of metrics of segmentation performance is to compare segmentations 

from a computer algorithm with a human ground truth. This ground truth is usually 

generated by a human by segmenting raw data by hand. Alternatively, a data simulator 

could be used to generate simulated raw data and to produce its ground truth. 

There are four major error types that a metric should consider: additions, 

deletions, splits (incorrect boundaries), and mergers (incorrect gaps). An ideal metric 

should tolerate minor differences, such as additions and deletions, but strongly penalize 

topological mistakes, such as splits and mergers. For example, a pixel addition to an 

object could still preserve its general shape, while if the change creates a new object or 

merges two objects, this could be a critical error. In the application, I focus on two 

evaluation metrics: pixel error and warping error. 

 

1.2.1 Pixel error 

Pixel error is generally considered to be the easiest method of comparing two 

images. It simply counts the fraction of pixels where the two images differ. However, it 

equally penalizes minor errors and topological differences. 

 

1.2.2 Warping error 

Warping error tolerates minor disagreements and strongly penalizes topological 

errors (see ​Figure 4​). Instead of noticing only pixel differences, it focuses on entire 

objects in an image and evaluates the topological disagreement between them (see 

Figure 5​) [​3​]. 

The algorithm for warping a binary image onto a binary image , based onL* T  

mask image , was adapted from [​4​]:M  

arp(L , , )w * ∈ B T ∈ A M ∈ B  

=L : L*  

do 
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= imple(L)S : s ⋂M  

, randomly breaking ties= rgmax |t |i : a j∈S i − li  

if t | .5| i − li > 0  

=li : 1 − li  

else 

return L  

end 

 

1.3 Raw Data 
Data from a microscope without any edits is called raw data. In this project, 

obtaining raw data was a critical step, as it was the basis for both the ground truth and 

segmentations. The ground truth is created from the raw data by a human or simulation. 

A segmentation algorithm is then run on the raw data to propose a segmentation. 

 

1.3.1 Single-cell Image 

In this project, the focus was primarily on single-cell data. Raw data covered just 

one neuron, making only two possibilities for every pixel - 1 (neuron) or 0 (background). 

The segmentation algorithm can make just two types of mistakes: labeling a neuron as 

background (a false negative) or labeling background as a neuron (a false positive). 

 

1.3.2 Multi-cell Image 

The long-term aim of this project is to expand assessment capabilities to 

multi-cell data as well. With multi-cell data, there is more than one neuron in the raw 

data, making more possibilities for the labeling of every pixel. The segmentation 

algorithm, in addition to incorrectly distinguishing background from neuron, can also 

make the mistake of counting a part of one neuron as part of another. 
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1.3.3 Simulated Data 

This project uses simulated microscopy data provided by the Boyden Lab. This 

data is generated by an automatic computer algorithm, without actual images from a 

microscope. It provides simulated raw data and its ground truth segmentation. An 

annotated electron microscopy volume was used to produce a simulation, using a 

specific mathematical model to simulate the effects of the microscope and the sample 

expansion on the image. Since the electron microscopy image was previously 

annotated by humans, there is a ground truth already available for the simulated 

sample. Segmentation algorithms run on the simulated data. 

 

1.4 Segmentation Algorithms 
Segmentation algorithms were provided by the Grossman Center for the 

Statistics of Mind at Columbia University. They interpret a raw image of a neuron, or 

several neurons, and return a proposed segmentation.  

In this project, the SEV-3D program compares the proposed segmentation to a 

ground truth using the error metrics and produces a numerical score and visualization of 

error. Then, in a closed-loop system, the SEV-3D assessment module modifies 

parameters until the algorithm yields the best segmentation. In a long-term goal of this 

project, a machine learning module would automatically provide feedback, allowing the 

algorithm to learn and improve. In addition, this feedback would allow further 

self-improvement of the simulator to produce more realistic images.  

 

1.5 Java Programming Language 
The Java programming language was used for this project. Java’s high-level 

capabilities for image processing were critical to the function of the application. 

Standard Java libraries were used to enable the manipulation of multi-layer images. The 

ImageJ API (source: ​http://www.java2s.com/Code/Jar/i/Downloadij135jar.htm​) was used 

to open images and convert them to multi-dimensional arrays that could then be read 

and modified by the Java code. 
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1.6 TIFF Images 
All data for this project was in 3-D, so multilayered images were required. The 

TIFF format allows images with many slices, which was a very effective method of 

storing and exporting data. However, TIFF images come in various compressions and 

types, so SEV-3D initially standardizes the raw data so it is compatible with the 

segmentation algorithm. 

 

2 Results and Discussion 
2.1 Application and Results of Metrics 

The created application, “Segmentation Evaluation and Visualization in 3D” 

(SEV-3D), runs the pixel error and warping error metrics on a segmentation and 

compares the result with a ground truth. SEV-3D takes a proposed segmentation TIFF 

image file, a ground truth TIFF image file, a selected metric, a toggle for generating a 

visualization, and a range of input parameters for the segmentation algorithm (as seen 

in ​Figure 6​). Once the program finds the parameters that yield an optimal 

segmentation, the results for the best segmentation are returned to the user in two 

formats: a numerical score and a visualization of the error. 

Figure 7 ​is an example of raw data, ​Figure 8​ is an example of ground truth, and 

Figure 9​ is a proposed optimal segmentation.​ ​These images have multiple layers, and 

the scores are computed for all layers, but only one layer is shown here for comparison. 

For a video demonstration of the operation of SEV-3D, see 

https://youtu.be/Uu1tSK36AOk​. The video shows how the program is run, manipulating 

two parameters (​sigma​  and ​spatialDistanceUpperBound​ ) with two proposed values for 

each. Then, the video displays the assessment results after the four runs. After that, the 

program outputs the optimal segmentation with its score (9.700E-5) and visualizes it, 

going through multiple layers of the image. The visualization shows no areas with error. 

False negatives would have been marked blue (“Only Truth”); false positives would 
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have been marked green (“Only Segmentation”). The white color indicates the area 

where the segmentation and ground truth coincide. 

 

2.1.1 Scores 

If the user does not choose to export a visualization of the error, the program will 

simply output the score of the selected error metric, pixel error or warping error, on its 

selected optimal segmentation. A lower error score indicates a better segmentation, 

while a higher error score shows that there were many errors. 

 

2.1.2 Visualization 

A numerical score is not the best form of feedback for an algorithm developer. 

For the human, it is essential to see which parts of the image the algorithm is 

segmenting incorrectly. 

The application has an option to export a TIFF image file with a visualization of 

the error. The pixel error between the two images can be seen on ​Figure 10​. The 

warping error is presented on ​Figure 11​. 

While pixel error considers all pixels equally, the warping error algorithm 

recognizes if there is a gap in the membrane of the neuron, and does not fill the inside. 
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3 Illustrations 

 

Figure 1. Diagram of Segmentation and Feedback Process.​ This diagram depicts the 

flowchart of this project. Yellow boxes represent existing programs, blue boxes represent image 

data, and the green box is the SEV-3D software I have created. Data and parameters are 

passed into the simulator, which returns ground truth and simulated data. The simulated data is 

passed to segmentation algorithms, which create segmentations. These segmentations and the 

ground truth are passed to the SEV-3D assessment module that communicates with my 

machine learning software, which automatically improves the segmentations algorithms. This 

finally yields an optimal algorithm. 
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Figure 2. Close-up Expansion Microscopy Image.​ This is an example of a high-resolution 

color image obtained from zooming in on expansion microscopy data. Similar neurons were 

analyzed in this project (image courtesy of the Boyden lab [​1​]). 

 

Figure 3. Light Microscopy vs. Expansion Microscopy. ​The B image is data from light 

microscopy, while the C image is from expansion microscopy. The C image is 5 times larger 

than the B image, as the white stripe is the same length in both, and it is much more detailed 

(image courtesy of the Boyden lab [​1​]). 
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Figure 4. Warping Error.​ Warping error penalizes topological differences, while tolerating 

variations in simple points. If pink pixels, or “in” simple points, are added to the image, this 

would not create or delete objects from the segmentation, so warping error would not penalize a 

segmentation algorithm if these pixels are accidentally added. Similarly, if green pixels, or “out” 

simple points, are removed, this would not create or delete objects, so warping error would not 

penalize a segmentation algorithm for deleting these pixels. However, if one of the black pixels 

is removed or added onto the white, a new hole or object would be created, and warping error 

would penalize such a mistake very strongly (image adapted from [​5​]). 
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Figure 5. Comparing Segmentation Metrics.​ The ground truth is used to evaluate the 

accuracy of two segmentation algorithms (A and B) in segmenting the black and white raw 

image in the top right corner. In the evaluation of the segmentations created by algorithms A 

and B by using pixel error, they score equally. Segmentation A, however, visibly differs from the 

ground truth, while Segmentation B is relatively similar. Warping error, unlike pixel error, 

penalizes only topological errors (red = deletion, blue = addition, green = merger, yellow = split) 

(image adapted from [​4​]). 

 

Figure 6. Application Input.​ As input, the user defines the ground truth and segmentation 

file-paths, chooses an error metric, decides whether to visualize and where to output the image, 

and then defines the test values for two parameters (​sigma​  and ​spatialDistanceUpperBound​  in 

this case). 
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Figure 7. Raw Data.​ This image is an example of raw data produced by a simulator. See 

animation of the sequence of slice images going down a full 3-D stack at 

https://www.dropbox.com/s/z0stindu0mhx114​. (Image courtesy of the Boyden lab.) 

 

 
Figure 8. Ground Truth. ​This image is an example of ground truth produced by a simulator. 

See animation of the sequence of slice images going down a full 3-D stack at 

https://www.dropbox.com/s/nbwsfcwtc1iyx59​. (Image courtesy of the Boyden lab.) 
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Figure 9. Proposed Segmentation.​ This image is an example of the optimal segmentation 

produced by SEV-3D. See animation of the sequence of slice images going down a full 3-D 

stack at: ​https://www.dropbox.com/s/8wgovn0owe6a8ro​. (Image courtesy of the Boyden lab.) 
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Figure 10. Pixel Error Visualization​ when comparing ​Figure 8​, as the ground truth, to ​Figure 
9​, as the proposed segmentation. (Animation going down full 3-D stack: 

https://www.dropbox.com/s/atr9l2ys9kxogyt​) 

 

 

Figure 11. Warping Error Visualization​ when comparing ​Figure 8​, as the ground truth, to 

Figure 9​, as the proposed segmentation. (Animation going down full 3-D stack: 

https://www.dropbox.com/s/8e3ihlxq1jw4ucy​) 

 

4 Conclusions and Future Work 
4.1 Conclusions 

Using my software, SEV-3D, I compared two error metrics, pixel error and 

warping error. I ran the evaluation software on a variety of simulated and actual data, 

and concluded that warping error gives a much more accurate representation of the 

algorithm’s mistakes than pixel error. Warping error recognizes and strongly penalizes 

only topological differences, while pixel error counts all pixel differences equally. With 
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my software, I have created a tool for researchers to evaluate their segmentation 

algorithms. SEV-3D provides feedback in a visual form, allowing developers to see 

exactly which areas are missed by their algorithm. The software successfully runs a 

segmentation algorithm, evaluates single-cell segmentations, yields an optimal 

segmentation, and has some multi-cell capabilities that I plan to expand on later. 

 

4.2 Future Work 
In the future, I plan to further expand my closed-loop system to automatically 

improve the segmentation algorithm. The program would provide feedback to the 

developer on both multi-cell data as well as single-cell data, and would automatically 

determine which areas of the segmentation can be fixed by the computer. The rest of 

the segmentation, a relatively small part, could be completed by a human. With the use 

of other evolutionary programming techniques, this entire process could become fully 

automated. I plan to improve the operation of SEV-3D by using the principles of 

machine learning and letting the algorithm self-evaluate and then self-improve. 
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