
On the Viability of Distributed
Consensus by Proof of Space

Vivek Bhupatiraju John Kuszmaul Vinjai Vale

March 3, 2017

Abstract

In this paper, we present our implementation of Proof of Space (PoS) and our study of its viabil-

ity in distributed consensus. PoS is a new alternative to the commonly used Proof of Work, which

is a protocol at the heart of distributed consensus systems such as Bitcoin. PoS resolves the two

major drawbacks of Proof of Work: high energy cost and bias towards individuals with special-

ized hardware. In PoS, users must store large “hard-to-pebble” PTC graphs, which are recursively

generated using subgraphs called superconcentrators. We implemented two types of superconcen-

trators to examine their differences in performance. Linear superconcentrators are about 1.8 times

slower than butterfly superconcentrators, but provide a better lower bound on space consumption.

Finally, we discuss our simulation of using PoS to reach consensus in a peer-to-peer network. We

conclude that Proof of Space is indeed viable for distributed consensus.

To the best of our knowledge, we are the first to implement linear superconcentrators and to

simulate the use of PoS to reach consensus on a decentralized network.

1 Introduction and Motivation

Proof of Space [2] is a new and promising cryptographic primitive. One of its most important

potential applications lies in distributed consensus on a decentralized network, which is essential

for cryptocurrencies such as Bitcoin. This paper demonstrates experimentally that Proof of Space is

effective in this context, and provides the first performance analysis for its use to reach consensus.

Proof of Space was created to improve on its predecessor Proof of Work [4], which originated

more than twenty years ago as a technique to increase the difficulty of Distributed Denial of Service

(DDoS) attacks on websites and spamming of emails. The purpose of Proof of Work is to allow

a prover P to demonstrate to a verifier V that P has spent a significant amount of computational

resources on solving some problem. Proofs of Work can be required to increase the difficulty of

performing certain tasks to dissuade attackers. For example, if ten seconds of computational time

were required to send an email, then spammers could not send millions of emails in a day.

Proof of Work is traditionally implemented using cryptographic hashes. A cryptographic hash

is a function that accepts a string as input and returns as output a long, seemingly random string of

fixed length. For example, SHA-512(“1234”) returns the 512 bit (64 byte) string:

d404559f602eab6fd602ac7680dacbfaadd13630335e951f097af3900e9de176b6db285

12f2e000b9d04fba5133e8b1c6e8df59db3a8ab9d60be4b97cc9e81db

Using a cryptographic hash function Hൺඌඁ(), a Proof of Work can be designed as follows. The

verifier V sends to P a string r along with a non-negative integer n, which dictates the computational

complexity of the Proof ofWork. The prover P is tasked with finding a string e such that Hൺඌඁ(r||e)

(where || represents concatenation) begins with n zeroes. Since cryptographic hash functions are

non-invertible, P must perform an expected 2n hashes to solve this Proof of Work. After P sends his

solution e to V, V can verify the solution by checking that Hൺඌඁ(r||e) begins with at least n zeroes,

which requires only a single cryptographic hash computation. Ease of verification is critical to the

practicality of Proof of Work. For example, if Google implemented the Proof of Work requirement

1

to send emails to Gmail users, then Google would have to verify tens of billions of Proofs of Work

every day [11], which is only practical if each verification is very fast.

In recent years, one of the most important applications of Proof of Work has become distributed

consensus protocol for blockchains on cryptocurrencies such as Bitcoin. The blockchain acts as a

public ledger detailing transfers of Bitcoins between users. Bitcoin users use Proof ofWork to reach

consensus on the blockchain. In particular, Proof of Work is used to allow community members

to make contributions to the blockchain without any single community member having the ability

to dominate. Because a large amount of work has been used to create the blockchain, users can be

fairly certain that it is accurate. The probability of a block’s accuracy also increases with its age.

Distributed consensus along with other applications of Proof of Work have brought to light

a number of major weaknesses of traditional Proof of Work implementations. Against modern

attackers, traditional implementations of Proof of Work are vulnerable to the usage of highly spe-

cialized hardware, which may be able to compute cryptographic hashes a hundred times faster, and

ten thousand times more energy-efficiently than standard machines [12]. What the verifier may

believe to be a ten-second Proof of Work may actually take an attacker only a tenth of a second.

Moreover, current implementations of Proof of Work consume large amounts of energy on stan-

dard machines, posing a problem for the large scale usage of cryptocurrencies such as Bitcoin [9].

Another major vulnerability of Proof of Work lies in the context of Botnets, which are groups of

infected computers that can be utilized by hackers for email spamming or DDoS attacks.

One recently proposed solution to these issues is Proof of Space. Whereas Proof of Work

requires computational effort, Proof of Space requires space consumption. Proof of Space allows

a prover P to demonstrate to a verifier V that P has devoted a certain amount of space (in memory

or in persistent storage) to completing a task. Again, V should be able to verify this Proof of Space

easily (devoting few computational resources and little space).

Proof of Space addresses all of the major vulnerabilities of Proof of Work. Proof of Space

puts users with different hardware on a more level playing field. Although customized hardware

2

exists to optimize for cryptographic hashes, memory and persistent storage cannot easily be further

optimized for Proof of Space. As was recently demonstrated in SpaceMint [9], Proof of Space can

use several orders of magnitude less energy than Proof of Work. Unlike Proof of Work, hackers

cannot covertly complete Proofs of Space on botnet machines without ever using a significant

amount of resources at once, making it easier for infected users to detect that their device has been

compromised. Proof of Space can also replace Proof of Work in preventing DDoS attacks and

email spamming.

This paper studies the performance characteristics of Proof of Space in the context of distributed

consensus. We discuss our implementation of a full working prover and verifier interface for Proof

of Space, as well as our simulated consensus protocol by Proof of Space on a peer-to-peer network.

Because verification for Proof of Space may be slower than for Proof of Work, one concern is

that Proof of Space would be slow to reach consensus. Our first main contribution is the simulation

of consensus protocol with PoS. We find that after 41 seconds, 90% of 150 users in a network

reached consensus. This suggests that Proof of Space is an effective tool for distributed consensus,

as our simulation for Proof of Space is only around two times slower than the equivalent simulation

for Proof of Work, and both take time well under the ten minutes Bitcoin takes to reach consensus

[8].

Proof of Space involves the prover storing large PTC graphs [10], which are recursively defined

with superconcentrators. The second main contribution of this paper is to provide experimental

data on the differences between using butterfly and linear superconcentrators. Running Proofs of

Space on a solid state drive, we find that, in practice, the use of linear superconcentrators is only

around 1.8 times slower than the use of butterfly superconcentrators in terms of pebbling time.

Interestingly, this suggests that linear superconcentrators are more practical than butterfly super-

concentrators for Proof of Space. In particular, the theoretical lower bounds for space consumption

with linear superconcentrators is Ω
(

n
logn

)
, while the lower bound for space consumption with but-

terfly superconcentrators is Ω
(

n
log2 n

)
[12]. Therefore, the multiplicative difference between the

3

lower bound for space consumption and the actual performance is significantly better for linear

superconcentrators for essentially all sizes of Proof of Space.

Prior to our work, relatively little has been done in the direction of experimental evaluation of

Proof of Space. Most notably, the recent paper SpaceMint [9] created a complete prover and verifier

environment for Proof of Space, using PTC graphs recursively defined with butterfly superconcen-

trators. One key difference between our work and their work is that we investigate both butterfly

superconcentrators [5] and linear superconcentrators [13]. We also implemented a simulation of

distributed consensus on a network and experimentally analyzed the time to consensus by Proof of

Space. To the best of our knowledge, we are the first to implement linear superconcentrators, and

the first to simulate consensus on a peer-to-peer network for Proof of Space.

The rest of this paper proceeds as follows. In Section 2, we describe the protocols used in Proof

of Space, distributed consensus, and the graphs used for implementations of Proof of Space. In

Section 3, we discuss our implementations, focusing on the difference between linear and butterfly

superconcentrators and our simulation of consensus on networks. In Section 4, we present experi-

mental data for pebbling time, Merkle tree generation time, and time to reach consensus. Finally,

in Section 5, we provide conclusions and discuss future work.

2 Background and Technical Discussion

In this section, we begin by discussing distributed consensus and blockchain, which are used in

cryptocurrencies such as Bitcoin. We then consider the details of a complete PoS implementation.

2.1 Distributed Consensus and the Bitcoin Blockchain

Distributed consensus is the problem of getting a majority of the users in a network to agree on

some information. In the case of Bitcoin, this information is a financial transaction between two

individuals; call them Alice and Bob, and consider a transaction where Alice owes Bob twenty

4

Bitcoins. Both entities need assurance that the transaction will be honored. One potential solution

is for Charlie, a middleman, to facilitate the transaction. Then a future dispute could be settled by

examining his records. However, Charlie may not be trustworthy or safe from hacking.

Hence the main insight behind blockchain and distributed consensus is trusting the network.

Specifically, the only way to manipulate transaction history should require one to overcome the

entire honest subset of the network – a scope which is practically impossible for any attack.

Now that we have motivated distributed consensus, let us discuss its specifics. Distributed

consensus in Bitcoin is based on a public ledger system known as blockchain. More formally, a

blockchain (Figure 1) is a series of blocks, each consisting of four components: a list of transactions

to add the the ledger, a Proof of Work, the hash of the previous block (thus creating the chain), and

other metadata (the timestamp, identification of the user who created the block, etc.). Every user

in the network (also known as a miner) is allowed to submit a new block. A monetary incentive is

also provided to the first miner to generate the next block in a chain. Because of the Proof of Work

component, formulating a valid block is difficult. Additionally, all the miners in the network are

configured to only recognize to the longest existing chain of blocks, ignoring all forks and satellite

chains (Figure 2). This makes the Bitcoin blockchain highly tamper-resistant. Suppose an attacker

wished to rewrite the transaction history in an old block; this would require not only creating an

alternate version of that old block, but also creating enough blocks following that to catch up to

the main chain. It is virtually impossible for an attacker to muster enough computational power for

this feat, because they need to be able to beat the entire honest portion of the network.

However, as discussed in the introduction this blockchain suffers from energy cost and bias

towards specialized hardware. Hence we seek to implement a similar blockchain system, except

basing it on Proof of Space instead of Proof of Work.

5

Figure 1: A schematic of the Bitcoin blockchain.

Figure 2: A schematic of the longest-chain protocol.

2.2 Requirements of a PoS

We now consider what we require of a PoS. A PoS must enable the prover P to demonstrate to the

verifier V that she has devoted a given and presumably large amount of storage to the PoS. There

are two main requirements of such a scheme: the communication between P and V should be small,

and V should be able to verify P’s proof with small space and computational resources.

A trivial PoS protocol can be conducted as follows. V first generates a random binary string.

This binary string should be long enough that it takes a significant amount of space to store. V

then sends the binary string to P, to be stored for a given amount of time (say one week). V then

randomly chooses several bits in the string; we will use 100 for our example. He remembers those

bits and their locations, and then frees the storage he used to hold the rest of the binary string. At

the end of the week V asks the prover for the values of those 100 bits. If P is able to correctly

answer these queries, V can be confident with high probability that P stored most of the file.

6

This design fails to meet the first of the two requirements. Sending the large binary string over

the Internet is extremely impractical. To address this issue, we will look to a more complex PoS

that is based on having P store so-called “hard-to-pebble” graphs.

2.3 The Pebbling Game and Hard-to-Pebble Graphs

We first define the abstract notion of the pebbling game based on [10], and then we proceed to its

application to the problem at hand as described in [2]. The Pebbling Game is a single-player game

played on a directed acyclic graph with pebbles as tokens. The rules of the game are as follows:

• A pebble may be placed on a vertex if and only if all of its parents have a pebble on them.

Hence a source of the graph (a vertex with no parents) may be pebbled at any time.

• A pebble may be removed from a vertex at any time.

The goal of the game is to pebble all the sinks of the graph (the vertices with no children) starting

from an unpebbled graph. In particular, one wishes to do this using as few pebbles as possible.

In the context of Proof of Space, this game translates into the following. First, the prover will

need to store a large directed acyclic graph. Placing a pebble on a vertex corresponds to computing

and storing a value for that vertex. Each vertex’s value is calculated by hashing the values of its

parents. Thus computing and storing the value of a vertex corresponds to placing a pebble on

that vertex. This requires the values of the parents and hence can only be done after the parents

are pebbled1. Removing a pebble corresponds to freeing that vertex’s value from memory or disk

space, and that space can be used to store another vertex’s value later on. Hence theminimal number

of pebbles needed to pebble a sink corresponds directly to the minimal amount of space needed.

Using this setup, one can design a simple PoS in which the prover is tasked with providing the
1Additionally, the provermust use their own public key as a seed value for pebbling the sources. During verification,

the verifier will ask for some of the source values and check that they came from the prover’s public key, in order to
confirm the identity of the PoS’s creator.

7

hash values for some of the sink nodes in the graph. This solves the problem of short communica-

tion, because there is an established protocol for P to build the graph.

However, we must carefully choose the graph so as to prevent the dishonest prover from only

pebbling a portion of the graph (and attempting to then pebble the queried positions during verifi-

cation). In order to make it difficult for the prover to cheat, we want our graph to be hard to pebble.

Intuitively, a graph is hard to pebble if in order to pebble a vertex, one must pebble a large number

of its ancestors.

Let us consider what factors influence whether a graph is hard to pebble. Larger graphs are

more difficult to pebble, simply because there are more vertices. Also, having more edges per

vertex intuitively makes the graph harder to pebble. If the graph is well connected, and no part

of it is isolated from others, a prover will have to pebble most of the ancestors of a vertex before

pebbling the vertex itself.

In [10], Paul, Tarjan, and Celoni defined a recursive family of graphs, known as the PTC graph.

The nth PTC graph PTC(n) is generated by attaching a set of sources, a superconcentrator, two

copies of PTC(n− 1), another superconcentrator, and finally a set of sinks. (See Figure 3 for an

illustration.) A superconcentrator (SC) is defined as a graph such that if one picks any set of sources

and a set of sinks both of size n, one can find n vertex-disjoint paths connecting these sources and

sinks. More detail is provided about the PTC graph in [10] and [5].

The authors of the PTC paper also prove that there is no pebbling strategy of their graph which

uses fewer than Ω
(

n
logn

)
pebbles, where n is the total number of vertices in the PTC graph. This

result implies that a PoS for a PTC graph of n vertices proves that P has stored at least Ω
(

n
logn

)
space, which is a significant amount.

2.4 Efficient Verification with Merkle Trees

In this subsection, we consider an additional step that allows V to efficiently verify P’s PoS. Clearly

V cannot efficiently pebble the PTC graph himself, so he needs some other way of confirmation.

8

Figure 3: A schematic of the PTC graph.

Merkle trees – a data structure patented by Ralph Merkle in 1979 [7] – provide a working

solution [2]. P must build a Merkle tree using the pebbled graph’s vertex hash values as the leaves,

by doing as follows. First P initializes a binary tree whose leaves are the PTC graph’s nodes. As

she builds the tree towards the root, she hashes the values of the parents of each node to find the

value of the current node. Eventually P will reach the topmost vertex, called the Merkle root. Note

that in the context of pebbling games, this is placing a tree on top of our initial graph and pebbling

the tree to reach a single sink.

Verification is then performed as follows. First, P broadcasts his Merkle root, which becomes

public knowledge. V then challenges P for the hash values of certain randomly selected nodes in

the original PTC graph (i.e., leaves in the Merkle tree). Every time P sends over a leaf, she also

sends its sibling and the siblings of its descendants in the Merkle tree (called the sibling path).

This collective response from P is called the opening of the node in question. Upon receiving each

opening, V hashes his way up the sibling path until he confirms that the final hash matches the

publicly known Merkle root. If the computed Merkle root does not match the Merkle root that P

initially broadcasted, V will know that P was not honest and will reject P’s PoS. Otherwise, V can

be confident that P was storing the entire Merkle tree in order to provide each proof.

V must also challenge P to open some of the sources, in order to confirm that the PoS is really

from P and is not stolen from another prover. Recall that P should use her public key as a nonce

9

value for the sources; V knows P’s public key, so he simply rehashes those sources to confirm P’s

ownership of the PoS.

This method has been proven to work with a small number of challenges in [2]; [9] and [2]

recommend 30 challenges as a sufficient number, after the Merkle root has been verified. Note that

provers store the same Merkle tree throughout multiple consensus steps. The first time they use

this Merkle tree, they are subject to a more extensive suite of verification challenges, in order to

verify with high probability that their Merkle root is genuine and that the leaves of their Merkle tree

are the pebbled PTC vertices, as claimed; this works by opening more nodes with their parents (in

the PTC graph), in order to verify that parents’ hash values correctly combine to form the child’s

hash values in the PTC graph [2].

2.5 PoS Based Blockchain

It is vital that all the users in a blockchain network have a fair shot at passing a block. In a Proof of

Work based blockchain, whoever can compute a valid proof first gets to pass their block; this works

out because hashing is effectively random. However, for PoS everyone will take approximately the

same amount of time to formulate their proof, since the difficulty lies in dedicated a large amount of

storage, not generating the PoS. Hence, time cannot be used to determine the “winner” – whichever

miner gets their proof chosen for the next block. We require that each user’s probability of winning

is proportional to the amount of space they dedicate. Hence we must have a standardized quality

function performed on every submitted proof, as proposed in [9].

Here we make the simplifying assumption that every user is dedicating the same amount of

space. Otherwise our quality function would have to include that parameter. Instead, our quality

function simply hashes the entire proof. The valid proof with the smallest hash (based on lexico-

graphical order) is chosen as the winner.

Therefore the full protocol is as follows: when a new miner joins the network, they will receive

instructions to generate and store large PTC graphs. Then each time a new block is passed, the

10

miner will apply a known protocol to extract the next challenge based on the previous block. The

miner will generate a PoS based on the challenge and the graph they have stored using their public

key as a seed, compile all the new transactions they are aware of into a block, and broadcast their

block to the network with their public key attached to it. Additionally, when the miner hears about

another block being broadcasted, they will compare it to the current block they are broadcasting.

If the new block contains a valid PoS of higher quality, the miner will start broadcasting that block

instead, thereby allowing the new block to propagate further into the network.

A more complete description including various theoretical attacks and defenses is provided in

[9]. This paper focuses primarily on performance analysis of the PoS.

3 Contributions

Previous implementations of Proof of Space have not used linear superconcentrators in their PTC

constructions and have not tested reaching consensus with PoS in a network [9]. We implement

both in an attempt to address these two gaps and to better explore the viability of Proof of Space.

3.1 Linear Superconcentrators in PTC Graphs

As discussed in Section 2.3, the main family of graphs used in the Proof of Space protocol are

PTC graphs, which involve superconcentrators in their construction. Superconcentrators (SCs) are

graphs with the property that if one picks a set of sources and a set of sinks, both of size n, one can

find n-vertex disjoint paths connecting these sinks and sources.

There exist multiple families of SCs. Previous implementations of the PoS protocol with PTC

graphs [9] have used the family of butterfly superconcentrators (BSCs). A BSC is recursively

constructed, with its base case being the complete bipartite graph K2,2, denoted BSC(1). Each

successive superconcentrator BSC(i) is constructed by connecting a set of 2i sources and sinks to

two BSC(i− 1) graphs, with each source of BSC(i) connected to one source of each BSC(i− 1)

11

Figure 4: BSC(3), the 3rd Butterfly Superconcentrator.

graph [5]. Additionally, each sink of BSC(i− 1) is connected to two sinks of BSC(i). BSC(3) is

illustrated in Figure 4, with each BSC(2) graph highlighted. The number of vertices in BSC(i) is

Θ(i ·2i), meaning the number grows by roughly a factor of 2 on each iteration.

As is also discussed in Section 2.3, Paul, Tarjan, and Celoni have proven that there exists no

pebbling strategy of their graphwhich uses fewer thanΩ
(

n
logn

)
pebbles, where n is the total number

of vertices in the PTC graph [10]. In terms of our protocol, having to pebble Ω
(

n
logn

)
vertices is

equivalent to computing and storing at least Ω
(

n
logn

)
values of vertices, which is a significant

amount of space. However, this result assumes that the SC is linear in the number of edges. Hence,

the BSC construction used by other PoS implementations does not achieve the Ω
(

n
logn

)
bound in

the paper; instead, it only achieves a bound of Ω
(

n
log2 n

)
[12].

A tighter bound is more desirable for a PoS setup, as it ensures that the prover has used more

space to pebble the graph. As such, we have constructed PTC graphs with linear superconcentrators

(LSCs) in order to achieve the PTC bound and to compare the LSC’s performance against BSCs.

The LSC we used was also recursively generated, and involves a special bipartite graph called

an expander. The expander graph has the same number of left and right vertices, as well as some

12

Figure 5: LSC(n), the nth Linear Superconcentrator.

other properties defined in [13]. The LSC’s base case is also the complete bipartite graph K2,2,

denoted LSC(1). Each successive graph LSC(i) consists of one LSC(i − 1) graph sandwiched

between two expander graphs named E1 and E2 with 2i left and right vertices each. The upper 2i−1

right vertices of E1 are connected with the sources of LSC(i−1), while the upper 2i−1 left vertices

of E2 are identified with the sinks of LSC(i−1).

In addition, there are several other edges in the LSC. Denote the right nodes of E1 as r j and the

left nodes of E2 as l j, for j = 1,2, . . . ,2i. Then we have the following 2i+1 edges: (1) r2i−1+ j → r j,

(2) l j → l2i−1+ j, (3) r j → l2i−1+ j, (4) r2i−1+ j → l j, where j = 1,2, . . . ,2i−1. These connections are

illustrated in Figure 5.

It is proven in [13] that this construction satisfies the SC condition and is linear, meaning that

if it is used in the PTC construction, the Ω
(

n
logn

)
bound proven in [10] will hold.

To compare the performance of the LSC and BSC, we considered the time it took to pebble PTC

graphs constructed with both families of SCs. Our implementation of pebbling stores the graph

structure in one file, the hashes of each node in another file. In Section 4, we use these pebbling

times to evaluate LSCs, which, to the best of our knowledge, we are the first to implement.

13

3.2 Simulation of Consensus on Network

The other main contribution of our work was the simulation of the protocol described in Section

2.5 in a network. To do this, we made use of Mininet, a software that creates a virtual network

on a single machine [6]. Mininet provides a Python API to create customized networks, enabling

the user to set options such as the network’s topology, the bandwidth of each connection, and the

amount of CPU to dedicate to each miner.

For our network setup, we followed Bitcoin’s peer to peer network in which each miner forms

long-lived outgoing connections to eight randomly selected peers [3]. Each connection in the net-

work was also assigned a bandwidth of 100Mb/s and a delay of 50ms, in an attempt to best simulate

the time propagation would take in a physical network. We also used Python’s XMLRPC library

to communicate between miners for proving and verifying.

For comparision purposes, we ran seperate tests for reaching consensus with PoW andwith PoS.

For our PoS tests, we closely followed the protocol described in Section 2.5. The only difference

between the protocol and the tests was that there were no transactions or other block data – instead,

the miners submitted only their PoS, and continually broadcasted the best proof they have seen so

far. For our PoW simulation, we followed the protocol described in [8]; the only major differences

between the two in code were the sending and verifying of proofs – the proof being sent in the PoS

simulation was just one hash, and verification essentially consisted of hashing the proof. We also

exclude the block data from the PoW tests in order to have a fair comparision between the two.

We ran these tests on networks of varying sizes, starting at 25 miners and going up to 150

miners. The main focus was timing the propagation of a single proof throughout the network; to

do so, we recorded times at which certain percentages of the network agreed on a single proof. The

percentages were maintained by an external host on the network serving as a pollster, keeping track

of how many miners agreed on any one of the proofs in real time.

Prior to each test, theminers were taskedwith generating a Proof of Space or a Proof ofWork for

a PTC(16) graph, which equates to about 1.14GB of data. After all the miners have been initialized

14

and have created their own proofs, each miner would then broadcast their own proof, replacing it

with proofs of higher quality as they encountered them from their neighbors. To account for time

taken to verify incoming proofs, we also added a pause corresponding to the average time it took

to verify a PoS or a PoW for a PTC(16) graph, both obtained in Section 4. This verification and

propagation of proofs continued until 100% of the nodes agreed upon a single proof, at which point

the test ended. The entire test simulates the addition of a new block to the blockchain.

To the best of our knowledge, we are the first to simulate consensus with PoS.We use our results

to support the viability of Proof of Space for distributed consensus in the next section.

4 Results and Analysis

In this section, we present and analyze data on the runtime of pebbling both linear and butterfly

PTC graphs, the time to create a Merkle tree, and the time to reach consensus with Proof of Space.

Figure 6 provides the time to pebble PTC graphs recursively defined with both BSCs and LSCs.

Note that the number of vertices in the graph is the number of bytes divided by 64, as each vertex

stores a 64-byte hash from SHA-512. Also note that this graph is on a log scale, and we only

show graphs larger than one megabyte. Finally, note that we later translated our pebbling code

from python to c++ and observed a 25 % increase in speed for PTC graphs recursively defined

with BSCs. We believe similar performance increases can be done with the PTC graphs that are

recursively defined by LSCs, however here we present the complete test results of our Python

implementation. After performing a linear regression on the log graph, we find for the butterfly

PTC graph that log2(T)≈ 1.01 · log2(S)−21.072, while for the linear PTC graph, log2(T)≈ 1.022 ·

log2(S)− 20.589, where T is the time-to-pebble in seconds and S is the size of the PTC graph in

bytes. If we substitute S =1000000000, we find that for a 1 gigabyte graph (log2(S) = 30), pebbling

the linear PTC graph is 20.843 ≈ 1.8 times slower than pebbling the butterfly PTC graph. There are

a couple of reasons why pebbling the PTC graph with LSCs is slower than pebbling the PTC graph

15

220 222 224 226 228 230 232

20

22

24

26

28

210

212

Graph Size (bytes)

Pe
bb
lin

g
Ti
m
e
(s
ec
on
ds
)

Butterfly
Linear

Figure 6: Pebbling Time for PTC Graphs

220 222 224 226 228 230 232

20

22

24

26

28

210

212

Graph Size (bytes)

Tr
ee

C
re
at
io
n
Ti
m
e
(s
ec
on
ds
) Merkle Tree

Figure 7: Merkle Tree Creation Time

with BSCs. First, because the vertices have more parents on average (up to seven in the LSC, but

only up to two in the BSC), more file reads are necessary to read the hash values of the parents.

Second, since there are more parents, the preimage of the hash will be longer, which will slow down

the pebbling process more as SHA-512 runs slower for larger inputs.

Recall that the lower bound for the number of pebbles necessary to pebble an n-vertex LSC is

Θ
(

n
log2 n

)
[10], whereas the lower bound for the n-vertex BSC is only Θ

(
n

log22 n

)
[12]. Moreover,

because the constant factors behind the two lower bounds are equal [12], the LSC comes with a

lower bound log2 n times greater than does the BSC. Because our experiments reveal less than a

factor of 2 difference in real-world performance, it follows that the LSC is superior in terms of the

difference between the PoS lower bound and the actual pebbling time. This is important because

any PoS cheater, no matter how clever, must use at least the space dictated by the lower bound.

Consequently, the LSC provides more security at relatively little additional computational cost.

Figure 7 provides the time to create Merkle trees from the pebbled PTC graphs (with BSCs).

Note that the x axis is the size of the PTC graph in bytes, rather than the size of the Merkle tree.

In general, however, the number of nodes in the Merkle tree is simply 2⌈log2(N)⌉+1−1, where N is

the number of nodes in the PTC graph. Note that we have to round up to the nearest power of two

16

0 20 40 60 80 100
0

25

50

75

Percentage Consensus

Se
co
nd
sE

la
ps
ed

150 Nodes PoS
150 Nodes PoW

Figure 8: Consensus Time by Percent

25 50 75 100 125 150
0

25

50

75

Number of Nodes

Se
co
nd
s
El
ap
se
d

25% Consensus
50% Consensus
75% Consensus
90% Consensus
100% Consensus

Figure 9: Consensus Time by # of Nodes

in order to implicitly store the binary tree as an array. This causes some irregularities in the graph,

making the graph jump every once in a while. We find that the Merkle tree generation time takes

roughly as long as the butterfly PTC pebbling time. For PTC(16), which is 1.14 gigabytes, Merkle

tree generation takes 47.8% of the time to pebble the PTC graph and construct the Merkle tree.

Figures 8 and 9 provide the time to reach consensus on a peer-to-peer network using a Proof

of Space that is 1.14 gigabytes. We use as a conservative estimate for both PoS generation and

verification time 0.09 seconds, which is the time it takes experimentally for the entire prover/verifier

protocol (the two processes combined).

To capture any experimental biases, we also run the analogous 150-node experiment for the

Bitcoin consensus protocol, in which verification requires a single hash and proof consists of only

a single value to be hashed, rather than the many hashes used in PoS (Figure 8). We set the PoW

verification time to be 0.0005 seconds. Since the experimental consensus time for PoS is within

around a factor of two of the time for Proof of Work, and because the times measured are well

within the consensus window of ten minutes used for Bitcoin (which is, however, a larger network)

[8], we conclude that PoS is a viable alternative to Proof of Work for consensus protocol.

Figure 9 can be used to understand how consensus time for PoS using butterfly superconcentra-

tors scales with the number of nodes. Interestingly, 100% consensus seems to scale considerably

17

worse than smaller percentages. This is fine, as 90% consensus is sufficient for consensus protocol.

5 Conclusion and Future Work

In our work, we implemented a full prover and verifier interface, in which the prover pebbles PTC

graphs, creates a Merkle tree using the pebbled graph as the leaves of the tree, and then opens

leaves in the Merkle tree to prove to a verifier that the prover has completed the Proof of Space.

We have also implemented PTC graphs with linear superconcentrators, which take roughly 1.8

times longer to generate than those with butterfly superconcentrators, but which provide a better

theoretical bound on the minimum space required to pebble the graph. We have also concluded

that Proof of Space is viable for distributed consensus on a peer-to-peer network, as our tests with

networks indicate that consensus can be reached relatively quickly.

One direction for future work would be to test larger PTC graphs and consensus on larger

networks. We could also test consensus with the presence of malicious miners. Finally, we would

like to extend all of our work to a full implementation of a blockchain in a cryptocurrency similar

to Bitcoin, but using Proof of Space instead of Proof of Work.

6 Acknowledgements

We would like to acknowledge and thank our mentors Albert Kwon and Ling Ren for their invalu-

able guidance throughout this project.

We would also like to thank MIT PRIMES, Dr. Slava Gerovitch, and Dr. Srini Devadas for

providing us with this opportunity to conduct original research.

18

References
[1] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Annual Interna-

tional Cryptology Conference, pages 139–147. Springer, 1992.

[2] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak. Proofs of space. In Annual
Cryptology Conference, pages 585–605. Springer, 2015.

[3] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on bitcoin’s peer-to-peer
network. In 24th USENIX Security Symposium (USENIX Security 15), pages 129–144, 2015.

[4] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Secure Informa-
tion Networks, pages 258–272. Springer, 1999.

[5] N. P. Karvelas and A. Kiayias. Efficient proofs of secure erasure. In International Conference
on Security and Cryptography for Networks, pages 520–537. Springer, 2014.

[6] B. Lantz, B. Heller, N. Handigol, and V. Jeyakumar. Mininet: An instant virtual network on
your laptop (or other pc). http://mininet.org/.

[7] R. C. Merkle. A certified digital signature. In Conference on the Theory and Application of
Cryptology, pages 218–238. Springer, 1979.

[8] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[9] S. Park, K. Pietrzak, J. Alwen, G. Fuchsbauer, P. Gazi, and A. Kwon. Spacemint: A cryp-
tocurrency based on proofs of space. Technical report, IACR Cryptology ePrint Archive,
2015: 528, 2015.

[10] W. J. Paul, R. E. Tarjan, and J. R. Celoni. Space bounds for a game on graphs. Mathematical
systems theory, 10(1):239–251, 1976.

[11] S. Radicati. Levenstein. email statistics report. 2015.

[12] L. Ren and S. Devadas. Proof of space from stacked bipartite graphs. Technical report,
Cryptology ePrint Archive, Report 2016/333, 2016.

[13] U. Schöning. Smaller superconcentrators of density 28. Information processing letters,
98(4):127–129, 2006.

http://mininet.org/

	Introduction and Motivation
	Background and Technical Discussion
	Distributed Consensus and the Bitcoin Blockchain
	Requirements of a PoS
	The Pebbling Game and Hard-to-Pebble Graphs
	Efficient Verification with Merkle Trees
	PoS Based Blockchain

	Contributions
	Linear Superconcentrators in PTC Graphs
	Simulation of Consensus on Network

	Results and Analysis
	Conclusion and Future Work
	Acknowledgements

