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Abstract

The Hecke algebra and rational Cherednik algebra of the group G(r,1,n) are non-commutative al-
gebras that are deformations of certain classical algebras associated to the group. These algebras have
numerous applications in representation theory, number theory, algebraic geometry and integrable sys-
tems in quantum physics. Consequently, understanding their irreducible representations is important. If
the deformation parameters are generic, then these irreducible representations, called Specht modules
in the case of the Hecke algebra and Verma modules in the case of the Cherednik algebra, are in bijec-
tion with the irreducible representations of G(r,1,n). However, while every irreducible representation of
G(r,1,n) is unitary, the Hermitian contravariant form on the Specht modules and Verma modules may
only be non-degenerate. Thus, the signature of this form provides a great deal of information about the
representations of the algebras that cannot be seen by looking at the group representations.

In this paper, we compute the signature of arbitrary Specht modules of the Hecke algebra and use
them to give explicit formulas of the parameter values for which these modules are unitary. We also
compute asymptotic limits of existing formulas for the signature character of the polynomial representa-
tions of the Cherednik algebra which are vastly simpler than the full signature characters and show that
these limits are rational functions in t. In addition, we show that for half of the parameter values, for
each k, the degree k portion of the polynomial representation is unitary for large enough n.
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1 INTRODUCTION

1 Introduction

In mathematics and physics, a fundamental notion is that of a group. Groups are the mathematical objects

that represent symmetry and as such they are defined via the main properties of symmetries of spaces. The

identity is always a symmetry of any space; given two symmetries, one can compose them to define a third

and if we compose more than two symmetries then the order of composition is irrelevant; given a symmetry

operation, an inverse for the operation exists and is also a symmetry.

Groups are often divided into two categories. On the one hand, we have the finite groups such as Sn, the

group of permutations of the set {1, . . . ,n}. The group Sn in particular has a natural action via symmetry

operations on the coordinate space of n identical particles and plays an important role in the geometry of this

space. On the other end of the spectrum, we have Lie groups, which are continuous groups of symmetries

such as the group of invertible real (or complex) n× n matrices, GLn, which controls the geometry of n-

dimensional real (complex) Euclidean space.

Since a standard idea in both mathematics and physics is to use the symmetries of a space to understand it

better, the study of groups and their actions on physical systems or geometric spaces is extremely important.

Unfortunately, this can be fairly difficult. So, as is usually the case, we replace the problem with a “linear

approximation”. This is where representation theory comes in.

A representation of a group G is a linear action of the group on a vector space. More precisely, an

n-dimensional (complex) representation of G is a homomorphism ρ : G→ GL(V ) (i.e., a map ρ such that

ρ(ab) = ρ(a)ρ(b)), where V is an n-dimensional complex vector space. If the group G is continuous, then

the map ρ is required to be continuous as well. Thus, a representation can be viewed as a linearization of

the group. As a small miracle, this linearization process does not lose much information. For example,

using representation theory, one can classify all the simple Lie groups, which are the building blocks of

all Lie groups (see [FH] for example). Additionally, the representations of symmetry groups on quantum

mechanical systems yield a lot of information about the system, and the general structure of the periodic table

can be explained using representation theory ([CS], [Sin]). The use of spherical harmonics in the quantum

theory of angular momentum comes from the (infinite dimensional) representation theory of SO(3), the

group of rotations on the 2-sphere, while the theory of spin can be seen to be the representation theory of

SL(2,C), the group of 2×2-matrices with determinant 1 (see [Wey] for these applications and many more.)

Finite groups are not short of applications either. One extremely important application to number theory

comes from Galois theory and Galois cohomology ([Ser]). Another application arises in the representation

theory of Lie groups: every reductive Lie group has an associated finite group called its Weyl group which,

to a large extent, controls the representation theory of the Lie group ([FH]). In the case of GLm, the Weyl

group is Sn and there is an extremely strong correspondence between the representation theory of Sn and

GLm known as Schur-Weyl duality (see [FH]).

The objects of study in this paper arise from generalizations of these Weyl groups known as complex

reflection groups. Weyl groups are real reflection groups, i.e., there exists a representation V of the Weyl

group such that every element in the group is a product of reflections across some hyperplane. Complex

reflection groups, on the other hand, are built out of complex reflections in the same manner, where a

complex reflection is a linear operator on a vector space whose set of fixed points is a hyperplane (but whose
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1 INTRODUCTION

other eigenvalue does not have to be −1). The motivation for the study of complex reflection groups is

twofold. First, they are extremely natural generalizations of Weyl groups, which are central to the study

of simple Lie groups. Second, a theorem of Chevalley-Sheppard-Todd ([NS]) states that if a group G acts

linearly on a vector space V , then the space of orbits of the action has no singularities if and only if G is a

complex reflection group. Thus, complex reflection groups have very nice geometric properties.

In this paper, we restrict our attention to a particular infinite family of complex reflection groups

G(r,1,n), which can be defined as the group of complex n× n-matrices with all elements either zero or

rth roots of unity and with exactly one nonzero element in each row and column. For r = 1, this group is

just Sn, and, in general, the representation theory of G(r,1,n) is extremely similar to that of Sn (see [GJ] and

references therein). Since the representation theory is so well understood, we study not the group itself but

two algebras (spaces with addition and multiplication), the Hecke algebra and Cherednik algebra, that are

defined using G(r,1,n) as a starting point.

The Hecke algebra associated to G(r,1,n) is defined by taking the group algebra of G(r,1,n) and de-

forming the relations using some complex parameters to change the multiplication formulas. Hecke algebras

play a central role in the geometric construction of representations of simple Lie groups ([CG]), in Kazhdan-

Lusztig theory ([KL]), in the representation theory of p-adic groups ([CMHL]), and in the characteristic p

representation theory of algebraic groups. The rational Cherednik algebra of G(r,1,n) is defined by de-

forming an algebra associated to the orbit space of G(r,1,n) on V ⊕V ∗, with V a n-dimensional complex

representation. Its representation theory plays a critical role in the proof of the Macdonald conjectures

([Che]) and in the study of the Calogero-Moser integrable systems in physics ([EM]).

In the representation theory of any algebra or group, the most important objects are the irreducible

representations, which are the representations that do not have any smaller representation sitting inside them.

If the parameters involved in the definition of the Hecke and Cherednik algebras avoid certain countable sets

of hypertori and hyperplanes, respectively, then their irreducible representations are well-understood. In

both cases, the irreducibles in the category of finite dimensional representations of the Hecke algebra and

those in the category O for the Cherednik algebra are in one to one correspondence with those of G(r,1,n)

(see [GJ] for the Hecke algebra and [EM] for the Cherednik algebra). In the case of the Hecke algebra,

the irreducible is called a Specht module and in the case of the Cherednik algebra, it is the Verma module

associated to the irreducible representation of G(r,1,n).

However, there is one key difference between the representation theory of G(r,1,n) and that of the two

algebras. Every irreducible representation of G(r,1,n) is unitary, i.e., there exists a unique (up to scaling)

positive definite Hermitian form on the representation such that G(r,1,n) acts by unitary operators. There

is a similar statement that holds for the Specht modules and Verma modules: there exists a unique (up to

scaling) Hermitian form such that certain elements of the algebras have specified adjoints with respect to

the form (see [Sto]). This form, called the contravariant form, is non-degenerate but not positive definite.

For any non-degenerate Hermitian form on a finite dimensional vector space, there is an invariant called

the signature that characterizes the form. This signature is defined by taking an orthogonal basis for the

form and then summing the signs of the norm squares 〈v,v〉 of the basis elements. This is independent

of the choice of orthogonal basis. Since the Specht modules are finite dimensional, the signature of the
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contravariant forms on these representations is well-defined. On the other hand, the Verma modules are

infinite dimensional but they are graded over the non-negative integers by finite dimensional subspaces. The

contravariant form induces non-degenerate forms on each graded piece and so we can define the signature

character of the Verma module as
∞

∑
i=0

bit i, where bi is the signature of the form on the ith graded piece.

Computing the signature and signature character of the contravariant form is important for two reasons.

The first source of motivation is that they are important invariants of the Specht modules and Verma modules

that help us better understand the behaviour of these representations. The second source of motivation comes

from the application of the representation theory of groups to quantum mechanics. In any such applications,

the groups act via unitary representations and hence the classification of unitary representations of groups is

an important problem in representation theory. For infinite groups, this problem is very difficult. In fact, the

solution uses the computation of signatures of non-degenerate Hermitian forms that are not positive definite

(see [AvLTVJ]). A similar situation arises here, as the computation of the signature of the Specht modules

will allow us to see when these representations are unitary.

In this project, our first goal is to compute the signatures of the contravariant form on the Specht modules

and to use them to compute explicit formulas for the unitary range, i.e., the range of deformation parameter

values in which these representations are unitary. For r = 1, the signatures and signature characters of Specht

modules and Verma modules have been computed in [Ven]. Additionally, the unitary ranges are also known

for the Hecke algebra in the case r = 1. However, for r > 1, the signature formulas and the unitary range for

the Specht modules are not known. The first main result of the paper is the computation of these formulas

for all values of r and all Specht modules.

Our second goal is to compute the asymptotics of the signature character of the polynomial representa-

tion of the Cherednik algebra, which is the Verma module associated to the trivial representation of G(r,1,n).

The full signature character for all Verma modules has already been computed (see [Gri1] [Gri2].) The sig-

nature character depends on the Euclidean space of deformation parameters used in the definition of the

Cherednik algebra. If we focus our attention to the signature of the degree k part of a Verma module, then

this signature is locally constant with respect to the parameters and, in fact, only changes when we cross

one of finitely many affine hyperplanes. Thus, if we choose an infinite ray in our parameter space and move

towards infinity, then eventually, the tk coefficient of the signature character stabilizes. Hence, we get a

well-defined power series in the limit as the parameters go to infinity, which we call the asymptotic signa-

ture character of the Verma module. This asymptotic character measures the stable limit of the signature

character as the parameter values grow large and it depends on the direction in which the parameter values

tend to infinity.

There are two main reasons the asymptotic signature character is an interesting object to study. The

first is that the limiting formula is vastly simpler than the full signature character. This was found to be

the case for r = 1 in [Ven] and is expected to hold for r > 1 as well. It is certainly true for the cases

that we compute in this paper. The second reason the asymptotic character is interesting is because of

its connection with the Deligne category of the Cherednik algebra (see [Eti], [Aiz]). A suitable sequence,

depending on n, of Verma modules of the Cherednik algebra of G(r,1,n) (such as the sequence of polynomial

representations) gives an object in the Deligne category which is also equipped with a suitable notion of
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non-degenerate Hermitian form with associated signature character. This Deligne category object measures

the stable properties of the sequence of representations, i.e. the properties that the representations have

sufficiently far down the sequence. The relationship between the signature characters of the sequence of

Verma modules and the signature character of the object in the Deligne category is not fully understood.

However, formulas in the Deligne category setting are usually obtained from the corresponding formulas

in the normal Cherednik algebra setting by interpolating the latter, i.e., by replacing the parameter n in the

latter formulas by a complex variable t corresponding to the complex variable involved in the definition of

the Deligne category. Additionally, it is known that, while the full signature characters of the Verma modules

do not show any polynomial behaviour in n, the coefficient of tk in the asymptotic signature characters of any

suitable sequence of Cherednik Algebra representations is polynomial in n for large enough n. Thus, if we

can compute what this polynomial is, it should shed light on the signature character for the corresponding

object in the Deligne category.

The second main result of this paper is the computation of the asymptotic signature character of the

polynomial representation of the Cherednik algebra associated to G(r,1,n) for half of all possible parameter

values. In addition, we also show that, for these parameter values, the coefficient of tk in the asymptotic

signature character is
(n+k

k

)
for n sufficiently large, i.e., the degree k portion of the polyomial representation

is unitary for n sufficiently large. Hence, for half of all possible parameter values, the polynomial represen-

tation is stably unitary. In the coming few months, we hope to extend this result to all parameter values and

to arbitrary Verma modules. We also hope to use this computation to study the signature character of the

corresponding object in the Deligne category of the Cherednik algebra.

The paper is organized as follows. In section 2, we introduce the Hecke algebra, construct the Specht

modules and define the contravariant form. In 2.4, we compute the signature of the contravariant form and

in 2.5 we exhibit some of its consequences. In section 3, we define the Cherednik algebra and its Verma

modules and rederive the signature character of the polynomial representation. In 3.5, we compute a formula

the asymptotic norms of an orthogonal basis for the polynomial representations and prove, in particular, that

the polynomial representation is stably unitary. In 3.6, we derive a recursion relation that the asymptotic

signature character satisfies and use it to compute the asymptotic character for small values of n. In section

4, we outline some of the work we plan to do in the coming few months.

2 The Hecke Algebra

2.1 Definition of the Hecke Algebra

The Hecke Algebra is a deformation of a complex reflection group G(r,1,n). A complex reflection is an

operator on Cn that fixes every point of some n−1 dimensional complex hyperplane. A complex reflection

group is a finite group generated by complex reflections. The specific complex reflection group that will be

discussed in this paper is G(r,1,n). The group G(r,1,n) is a group of n by n matrices where for every matrix,

each row and each column have exactly one nonzero entry that is an rth root of unity ([AK]). The repre-

sentation theory of G(r,1,n) is given by combinatorial objects called multi-Young diagrams and standard

multi-tableau which are defined below ([AK]).
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Definition. For a non-negative integer n, a partition µ = (µ1,µ2, · · · ,µk) of n is a tuple of integers so that

µ1 ≥ µ2 ≥ ·· · ≥ µk ≥ 1 and µ1+µ2+ · · ·+µk = n. A Young diagram corresponding to µ is given by k rows

of boxes so that row i has µi boxes starting from the left. The size of µ denoted by |µ| is defined to be n.

Definition ([AK]). A multi-Young diagram with r parts and total size n is a r-tuple of Young Diagrams

Y = (Y1,Y2, · · · ,Yr) so that |Y1|+ |Y2|+ · · ·+ |Yr|= n. When the context is clear, r and n will be omitted. The

size of Y , denoted by |Y |, is defined as |Y1|+ |Y2|+ · · ·+ |Yr|.

Definition ([AK]). A standard multi-tableau corresponding to a multi Young diagram Y is a way of filling

in the boxes of Y with 1 to n so that in every tableau, each row and each column is increasing.

Remark. To reduce verbosity, a standard multi-tableau will just be called a multi-tableau.

Example. The following is an example of a multi Young diagram of size 9 and 2 parts: ,

 .

The following is an example of a multi-tableau of the Young diagram: 1 3 7

2 8
, 4 5 9

6

 .

Each irreducible representation of G(r,1,n) corresponds to a multi-Young diagram with r parts and size

n ([AK]). Moreover, a basis for each such representation is given by all the multi-tableaux of the shape of

the representation ([AK]). This classifies all representations of G(r,1,n) since for any finite group, all rep-

resentations are semisimple and can be decomposed into irreducibles. In order to study the Hecke Algebra,

G(r,1,n) needs to be given a different presentation. The group G(r,1,n) will be defined by generators and

relations, and the Hecke Algebra will have the same generators with some of the relations being deformed.

Definition ([AK]). The complex reflection group G(r,1,n) is given by the generators s0,s1, · · · ,sn−1 with

relations sr
0 = 1, s2

1 = s2
2 = · · ·= s2

n−1 = 1, s0s1s0s1 = s1s0s1s0, sis j = s jsi if |i− j| ≥ 2, and if 1≤ i≤ n−2,

sisi+1si = si+1sisi+1.

The eigenvalue relations (first and second relations) will be deformed to get the Hecke Algebra.

Definition ([AK]). The Hecke Algebra of G(r,1,n) over the complex numbers denoted by Hn,r(q) is given

by the generators T0,T1, · · · ,Tn−1 with relations (T0−u1)(T0−u2) · · ·(T0−ur) = 0, (Ti +1)(Ti−q) = 0 for

all i≥ 1, T0T1T0T1 = T1T0T1T0, TiTj = TjTi if |i− j| ≥ 2, and TiTi+1Ti = Ti+1TiTi+1 if 1≤ i≤ n−2, where q,

u1,u2, · · · ,ur are complex numbers.

In order to have the representation theory of the Hecke Algebra be semisimple, the parameters q,

u1,u2, · · · ,ur will be restricted to where qm 6= 1 for 2 ≤ m ≤ n and qm · ui/u j 6= 1 for i 6= j and 0 ≤ m ≤ n

([Ari]). These will be called the generic values for the parameters.
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2.2 Irreducible Representations of the Hecke Algebra

Since the Hecke Algebra under these parameters is semisimple, the irreducible representations can classify

all representations of the Hecke Algebra. Like G(r,1,n), each irreducible representation of the Hecke Al-

gebra corresponds to a multi-Young diagram with r parts and size n ([AK]). Define the Specht module Sλ

as the representation of the Hecke Algebra corresponding to the multi-Young diagram λ . Like the case of

G(r,1,n), a basis for Sλ is given by all the multi-tableaux of shape λ ([AK]).

Definition. Given a multi-tableau tp of size n, let the find value of i, denoted by fi, be defined as the number

of the tableau that i is placed in. The find vector is defined to be the vector ( f1, f2, · · · , fn).

Definition ([AK]). Given a multi-tableau tp of size n, let the content value of i ,denoted by di, be defined as

the column number minus the row number of i. The content vector is (d1,d2, · · · ,dn).

Proposition ([AK]). Let tp be a multi-tableau. The following describe the actions of the generators of the

Hecke Algebra on tp:

Ti−1tp =



u f1tp if i = 1

qtp if i and i−1 are in the same row of tp

−tp if i and i−1 are in the same column of tp

u fi
u fi−qdi−1−di ·u fi−1

(
(q−1)tp +

qu fi
u fi−qdi−1−di ·u fi−1

tq

)
otherwise

where tq is the multi-tableau formed by switching i and i−1 in tp.

Definition. Let λ = (λ1,λ2, · · · ,λr) be a multi-Young diagram with size n. The special multi-tableau of

shape λ is given by placing the numbers |λ1|+ |λ2|+ · · ·+ |λi−1|+1 to |λ1|+ |λ2|+ · · ·+ |λi| in λi where λ

is filled in left to right, then top to bottom.

Example. The following is an example of a special multi-tableau of size 9: 1 2 3

4 5
,

6 7 8

9

 .

Note that d3 = 3− 1 = 2 and f3 = 1. The content vector is (0,1,2,−1,0,0,1,2,−1) and the find vector is

(1,1,1,1,1,2,2,2,2).

2.3 The Contravariant Form

Under any Hermitian form 〈, 〉, let the squared norm of an element t be the value of 〈t, t〉. For the purposes

of this paper, the squared norm will just be called the norm because 〈t, t〉 can be negative and thus the square

root is not well defined. Though there are many similarities between the representation theory of G(r,1,n)

and that of Hq(n,r), there is one fundamental difference. There is a Hermitian form on each representation

of G(r,1,n) that is a positive definite inner product such that each group element acts unitarily.

6
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It is shown in [Sto] that if the parameters are on the unit circle, there also exists a unique (up to scaling

by a real number) non-degenerate Hermitian form (, ) on the Specht modules of Hq(n,r) such that each Ti

acts by a unitary operator and the norm of the special multi-tableau is positive. The main difference between

the two Hermitian forms is that the form on the group algebra is positive definite while this property does

not hold for Hq(n,r).

For an orthogonal basis B of a vector space V , the signature of V is defined to be the number of elements

with positive norm in B minus the number of elements with negative norm in B. By basic linear algebra, the

signature is independent of choice of orthogonal basis. The signature of each Specht module of Hq(n,r) is

nontrivial and therefore interesting to compute since not all elements have positive norm.

2.4 Computation of the Signature

Fix λ as a multi Young diagram and Sλ as the Specht module corresponding to λ . Define the Jucys-Murphy

elements, given in [Sto], as Li = q1−iTi−1 · · ·T0T1 · · ·Ti−1 for 1≤ i≤ n. Note that the Jucys-Murphy elements

are unitary operators under the form (, ) since each Tj is unitary, and q1−i is unitary since q lies on the

unit circle. It is shown in [OPd] that the multi-tableaux of shape λ are simultaneous eigenvectors of the

Jucys-Murphy elements. Moreover, it is also shown in [OPd] that for any two distinct multi-tableaux, there

exists a Jucys-Murphy element Li so that they have distinct eigenvalues for Li. Thus, any two multi-tableaux

are orthogonal under (, ) since they are eigenvectors with distinct eigenvalues of a unitary operator.

Let sgn(r) be the sign of the real number r. Define N(tp) = sgn((tp, tp)), the sign of the norm of tp. Note

that since the multi-tableaux of shape λ give an orthogonal basis for Sλ , the signature can be expressed as

∑
tp

N(tp). Thus, it suffices to compute N(tp) for every multi-tableau tp of shape λ . Moreover, to compute

the value of N(tp), only the change of sign from the special multi-tableau of shape λ is needed, since the

special multi-tableau has positive norm. Let D(tp) be the set of ordered pairs (i, l) with i > l so that either

fi < fl or fi = fl and di < dl , and let C(tp) be the set of i≥ 2 so that (i, i−1) ∈ D(tp).

Lemma 1. Let i ∈C(tp), and let tq be the multi-tableau formed by switching i and i−1 in tp. Then,

sgn(N(tp)) = sgn(N(tq)) · sgn(|u fi−qdi−1−diu fi−1 |− |q−1|).

Proof. Note that since the form is a contravariant form, and q, ui−1, and ui lie on the unit circle,

N(tp) = N(Ti−1tp) = N
(

u fi

u fi−qdi−1−diu fi−1

·
(
(q−1)tp +

qu fi

u fi−qdi−1−di−1u fi−1

tq

))
= sgn

(
|(q−1)u fi |2

|u fi−qdi−1−diu fi−1 |2
N(tp)+

|qu fiu fi |2

|u fi−qdi−1−diu fi−1 |2 · |u fi−qdi−1−di−1u fi−1 |2
N(tq)

)
= sgn

(
|(q−1)|2

|u fi−qdi−1−diu fi−1 |2
N(tp)+

1
|u fi−qdi−1−diu fi−1 |2 · |u fi−qdi−1−di−1u fi−1 |2

N(tq)
)
.

Rearranging gives that sgn(|u fi − qdi−1−diu fi−1 |2−|q− 1|2)N(tp) = N(tq). Dividing, taking the sign of both

7
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sides and noting that sgn(r) = sgn(1/r) for all real numbers r gives that

sgn(N(tp)) = sgn
(
(|u fi−qdi−1−diu fi−1 |2−|q−1|2)(|u fi−qdi−1−di−1u fi−1 |2)N(tq)

)
= sgn(N(tq)) · sgn

(
|u fi−qdi−1−diu fi−1 |− |q−1|

)
,

as desired.

Theorem 1. The value of N(tp) for tp as a multi-tableau in Sλ is given by

∏
(i,l)∈D(tp)

sgn(|u fi−qdl−diu fl |− |q−1|).

Proof. Let t1 be the special multi-tableau of λ . Let tp be a multi-tableau and let i be in the spot that n is

supposed to be in. Note that i must be in the last tableau. Suppose that i < n. If i+ 1 is in the last tableau

also, then di+1 > di since i+ 1 must be in a lower row number and greater column number than i and thus

the overall content of i+1 is greater than that of i. Therefore, either way (i+1, i) ∈ D(tp). Moreover, i and

i+1 can be switched. Switching i and i+1 makes the new content vector to be (d1, ...,di+1,di, ...,dn) and

the new find vector to be ( f1, ..., fi+1, fi, ..., fn).

Switching i and i+ 1 in tp gives a new multi-tableau tq with i+ 1 in the spot that n is supposed to be

in. Moreover the sign that was picked up is sgn(|u fi+1 −qdi−di+1u fi |− |q−1|) according to Lemma 1. Now

switch i+1 and i+2 and so on until n is supposed to be in the spot that it is in t1. Now n is in the spot that it

is supposed to be and the total sign that was picked up
n

∏
k=i+1

sgn(|u fk −qdi−dk u fi |− |q−1|). Apply this and

get n−1, n−2,..., 1 in the correct spot gives the desired formula for the norm.

Lemma 2. Let q = q2. The value |a1−qd ·a2

q−1
|−1 has the same sign as

(
qd−1 · a2

a1
−q−(d−1)

)(
qd+1− a1

a2
·q−(d+1)

)
.

Proof. Note that since (q−q−1)2 is a positive real number,

sgn(|a1−q2d ·a2

q2−1
|−1) = sgn(|q

−d ·a1−qd ·a2

q−q−1 |−1)

= sgn(
q−d ·a1−qd ·a2

q−q−1 ·
qd

a1
− q−d

a2

q−q−1 −1)

= sgn(q−2d · a1

a2
+2−q2d · a2

a1
− (q−q−1)2)

= sgn((qd−1 · a2

a1
−q−(d−1))(qd+1− a1

a2
·q−(d+1))),

as desired.
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2 THE HECKE ALGEBRA

Therefore, the value of N(tp) for a multi-tableau tp is given by

∏
(i,l)∈D(tp)

sgn((qdl−di−1 ·
u fl

u fi

−q−(dl−di−1))(qdl−di+1−
u fi

u fl

·q−(dl−di+1))).

Theorem 2. The value of the signature of Sλ is given by

∑
tp

∏
(i,l)∈D(tp)

sgn((qdl−di−1 ·
u fl

u fi

−q−(dl−di−1))(qdl−di+1−
u fi

u fl

·q−(dl−di+1)))

where the sum is taken over all the multi-tableaux tp of shape λ .

2.5 Consequences of the Signature

2.5.1 Comparison With Previous Results

In [Ven], the signatures of representations of the Hecke Algebra are computed when r = 1. When r = 1,

G(r,1,n) becomes Sn and therefore Hq(n,r) becomes the Hecke Algebra of Sn. The results obtained in this

paper are consistent with [Ven].

Corollary 1 ([Ven]). When r = 1, the norm of each multi-tableau tp is given by

∏
i>l

di<dl

sgn((qdi−dl−1−q−(di−dl−1))(qdi−dl+1−q−(di−dl+1))).

Proof. Note that the find value for all 1 ≤ i ≤ n is the same since r = 1. Thus, D(tp) is the set of ordered

pairs (i, l) such that i > l and di < dl . Thus, the norm of a given element is

∏
i>l

di<dl

sgn((qdi−dl−1−q−(di−dl−1))(qdi−dl+1−q−(di−dl+1)))

which is the expression in [Ven].

2.5.2 The Restriction Problem

Given Hq(n,r), the subalgebra generated by T0,T1, · · · ,Tn−2 is the Hecke Algebra of G(r,1,n−1). Let Sλ be

a representation of Hq(n,r). Note that Sλ can be restricted to a representation of Hq(n−1,r) by taking only

the actions of T0,T1, · · · ,Tn−2. Let R(λ ) be the set of Young multi-diagrams of size n−1 that can be obtained

by removing a square of λ . The restriction of Sλ to Hq(n−1,r) can be seen to be Sλ =
⊕

µ∈R(λ ) Sµ . This is

the branching rule where λ gets restricted to a representation of Hq(n−1,r) ([AK]). This can be generalized

for Hq(n,r) restricting to Hq(n−m,r) for any 0 ≤ m ≤ n by restricting one square at a time. Now, just as

the representation can be restricted, so can the contravariant form. The restriction of the contravariant form

to Sµ can be the same form, or the opposite form where the special multi-tableau has negative norm because

the generators of the algebra are still unitary and thus the form can only restrict to one of the two. The

9



3 THE CHEREDNIK ALGEBRA

goal of the restriction problem is to find out when the restricted form is the original form and when it is the

opposite form by looking at the special multi-tableau of Sµ as an element of Sλ .

Corollary 2. Let µ ∈ R(λ ). Let s be a special multi-tableau of µ , and let t be the multi-tableau of λ where

it is s with n being put in the remaining square. The restriction of the contravariant form to the form on Sµ

is the opposite form if and only if

∏
(i,l)∈D(t)

sgn((qdl−di−1 ·
u fl

u fi

−q−(dl−di−1))(qdl−di+1−
u fi

u fl

·q−(dl−di+1)))

is negative.

Proof. Note that the form is the opposite if and only if N(t)< 0 and the conclusion holds.

2.5.3 The Unitary Range

The unitary range is the range of values of the parameters of Hq(n,r) for which the contravariant form is

actually positive definite. For this to happen, all that is needed is for all the norms of nonzero elements to be

positive. Moreover, this is an important consequence of the computation of the norms because it gives more

information about certain representations of the Hecke Algebra.

Corollary 3. Suppose that q = eiθ1 where 2θ1 ∈ [0,2π). Suppose that two squares in the ith and lth tableau

have a content difference d, and u fl/u fi = eiθ2 . The representation is unitary if and only if for all θ2, there

exists some integer k so that

2θ1(d−1)≤ 2kπ−θ2 ≤ 2θ1(d +1).

Proof. Note that the norm change factor must be positive. Thus,

q2d u fl

u fi

−q−2d u fi

u fl

> q2 +q−2

which is equivalent to saying that cos(2dθ1 +θ2)> cos(2θ1). This implies the conclusion.

3 The Cherednik Algebra

3.1 Definition of the Cherednik Algebra

The group G(r,1,n) has a fundamental representation V =Cn on which it acts by complex reflections. There

is a classical construction of the semidirect tensor product S(V ⊕V ∗)⊗G(r,1,n) where the multiplication is

given by gvg−1 = g(v), and gv∗g−1 = g(v∗). This algebra is closely related to the algebra of regular functions

on the space (V ⊕V ∗)/C[G(r,1,n)] and thus is interesting in algebraic geometry ([EM]). The Cherednik

Algebra is, essentially, a quantum deformation of this space.

Before the Cherednik Algebra can be defined, some notation is needed. Let si j ∈ Sn be the transposition

(i, j) and let si be the transposition (i, i+1). Also, let ζ = e2πi/r and let ζ l
i be the element of G(r,1,n) with

all 1’s on its diagonal except for the ith row where it has ζ l .

10



3 THE CHEREDNIK ALGEBRA

Definition ([Gri3]). The Cherednik Algebra of W = G(r,1,n) with parameters κ,c0,c1, · · · ,cr−1 is the

algebra generated by C[x1, · · · ,xn], C[y1, · · · ,yn], and tw for w ∈W with twtv = twv, twx = (w · x)tw, and

twy = (w · y)tw for w, v ∈W , x ∈V ∗, and y ∈V ,

yix j = x jyi + c0

r−1

∑
l=0

ζ
−lt

ζ l
i si jζ

−l
i

for 1≤ i 6= j ≤ n, and

yixi = xiyi +κ−
r−1

∑
j=0

(d j−d j−1)εi j− c0 ∑
j 6=i

r−1

∑
l=0

t
ζ l

i si jζ
−l
i

where d j =
r−1

∑
l=1

ζ
l jcl and εi j =

1
r

r−1

∑
l=0

ζ
−l jt

ζ l
i
. The Cherednik Algebra will be denoted by H.

For generic parameters, H is semisimple. By the PBW Theorem (see [EM]), the Cherednik Algebra is

isomorphic to S(V )⊗C[G(r,1,n)]⊗S(V ∗) as a vector space. In fact, the semidirect tensor product S(V )⊗
C[G(r,1,n)] is a subalgebra of the Cherednik Algebra and the PBW theorem shows that the Cherednik

Algebra is free as a module over S(V )⊗C[G(r,1,n)] and freely generated by S(V ∗).

3.2 Construction of the Verma Module

For every multi Young diagram λ , define Vλ to be the representation of G(r,1,n) associated to λ . We

define the Verma module associated to an irreducible representation Vλ of G(r,1,n). We first extend this

representation to a representation of the subalgebra S(V )⊗C[G(r,1,n)] by letting polynomials in V act by

their constant terms. Then, we induce it up to the Cherednik algebra by setting Mλ =H⊗S(V )⊗C[G(r,1,n)]Vλ

([EM]). By the PBW theorem, this is isomorphic as a vector space to S(V ∗)⊗Vλ . In particular, this

representation is infinite dimensional but is non-negatively graded with the degree i piece corresponding

to degree i polynomials of S(V ∗) tensored with Vλ where each piece has finite dimension.

At generic values of parameters, the Verma modules are irreducible ([EM]). Additionally, it is shown

in [Sto] that if the values di are real, there exists a unique (up to scaling by a real number) non-degenerate

Hermitian form that extends a G(r,1,n)-invariant positive definite form on Vλ such that yi and xi are adjoint.

This is called the contravariant form.

The decomposition into degree i pieces of the Verma module is an orthogonal decomposition for this

contravariant form and hence there is a non-degenerate Hermitian form on each graded piece. So, the

signature character can be defined as
∞

∑
i=0

bi · t i where bi is the signature of the ith graded piece. The norms of

basis elements for any representation of the Cherednik Algebra is given in [Gri2], and the signature character

easily follows as a consequence. The signature character of the polynomial representation will be computed

in a different manner in order to come up with asymptotic formulas.
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3.3 Construction of Orthogonal Basis and Intertwining Operators

Define zi = yixi + c0 ∑
1≤ j<i

r−1

∑
l=0

t
ζ l

i si jζ
−l
i

. Define the operator πi as
r−1

∑
l=0

t
ζ l

i ζ
−l
i+1

, and intertwiners

σi = tsi +
c0

zi− zi+1
πi,

Φ = xntsn−1sn−2···s1 , and Ψ = y1ts1s2···sn−1 as defined in [Gri3].

A basis for the polynomial representation is given by fµ where µ = (µ1,µ2, · · · ,µn) ∈ Z≥0, where fµ is

equal to xµ + lower terms as given in [Gri3]. Note that the operators zi are self-adjoint. It is shown in [Gri3]

that fµ are simultaneous eigenvectors for zi, and for any two different fµ , there exists an element zi such that

the eigenvalues of these elements are different. Thus, the basis given by fµ is orthogonal.

In order to get a full description of the polynomial representation, the action of the intertwiners on the

Verma modules is needed. Let vµ(i) = |{ j < i|µ j < µi}|+ |{ j ≥ i|µ j ≤ µi}|.

Proposition ([Gri3]). The action of the intertwiners on fµ is given by σi fµ = fsiµ if µi 6≡ µi+1 (mod r) or

µi < µi+1, σi fµ = 0 if µi = µi+1, and

σi fµ =
δ 2− r2c2

0
δ 2 fsiµ

otherwise, where δ = κ(µi−µi+1)− c0r(vµ(i)− vµ(i+1)), Φ fµ = fφ µ , Ψ fµ = 0 if µn = 0, and if µn 6= 0,

Ψ fµ = (κµn− (d0−d−µn)− c0r(vµ(n)−1)) fψµ .

3.4 Computing the Signature Character

The sign of the norm of each of these elements will be computed and then the sum will give the signature

character. For convenience, let L(δ ) = sgn(δ 2− r2c2
0). Also, for τ ∈ Sn, define the ordered set

Ri = {1,2, · · · ,τ(i)−1}\{τ(1),τ(2), · · · ,τ(i−1)}.

Let N(µ) denote the sign of the norm of µ . Also, given two tuples µ and µ ′, let Chg(µ,µ ′) = N(µ)/N(µ ′).

Moreover, let Pµ = {τ ∈ Sn|µi = µ j, i < j =⇒ τ(i)< τ( j)}. For τ ∈ Pµ , let

τ(µ) = (µτ(1),µτ(2), · · · ,µτ(n)).

Lemma 3. Let µ = (µ1,µ2, · · · ,µn) and suppose that µi 6= µi+1. Let µ ′ = (µ1, · · · ,µi+1,µi, · · · ,µn). Then,

vµ ′( j) = vµ( j) if j 6= i or i+1, vµ ′(i) = vµ(i+1), and vµ ′(i+1) = vµ(i).

Proof. Note that the value of vµ ′( j) for j 6= i, i+ 1 is vµ( j) since nothing is affected by the swap of µi

and µi+1. Note that µi either contributes to vµ(i+ 1) or doesn’t, and the same holds after the swap. Thus,

vµ ′(i) = vµ(i+1). The other condition is similar.

Fix µ with µ1 ≤ µ2 ≤ ·· · ≤ µn and let Fµ(i) = |{k ≥ i|µk ≤ µi}|.
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Theorem 3. If τ ∈ Pµ , then,

Chg(µ,τ(µ)) =
n

∏
i=1

∏
j∈Ri

µτ(i)≡µ j (mod r)

L
(
κ(µτ(i)−µ j)− c0r(vµ(τ(i))− vµ( j))

)
.

Proof. Let αi = (µτ(1),µτ(2), · · · ,µτ(i−1),µh1 , · · · ,µhl ), where h1 < h2 < · · ·< hl is the ordered set

{1,2, · · · ,n}\{τ(1),τ(2), · · · ,τ(i−1)}.

Note that α1 = µ and αn = τ(µ). Suppose that hk and hk−1 are switched in αi. If µhk = µhk−1 , then it was

as if the switch did not occur, and thus there is no change in the norm. If µhk 6≡ µhk−1 (mod r), then there

is no change in the norm. Otherwise, the change is L(κ(µhk − µhk−1)− c0r(vµ(hk)− vµ(hk−1))) because

µhk > µhk−1 and µhk ≡ µhk−1 (mod r). Thus, in αi, the place where µτ(i) is needs to be moved to the place

where µh1 is by adjacent swaps to get to αi+1. This creates a change in the norm of

∏
j∈Ri

µτ(i)≡µ j (mod r)

L(κ(µτ(i)−µ j)− c0r(vµ(τ(i))− vµ( j)))

because µ j < µτ(i) for j ∈ Ri since τ ∈ Pµ . Thus, this value is equal to Chg(αi,αi+1). Therefore, multiplying

over all i gives the desired value for Chg(µ,τ(µ)).

Theorem 4. The value of N(µ) is the sign of

n

∏
i=1

µi−1

∏
m=0

(
(κ(m+1)− (d0−d−m−1)− c0r(i−1)) ·∏

j<i
r|m

m>0

L(κ ·m− c0r j)·

∏
i+1≤ j≤n

µ j≡m+1 (mod r)
µ j>m+1

L(κ(µ j−m−1)− c0rFµ( j))
)

Proof. Note that Chg(µ,(0,0, · · · ,0)) = N(µ) since (0,0, · · · ,0) has positive norm by convention. Let

α = (0,0, · · · ,m,µi+1, · · · ,µn) and let β = (0,0, · · · ,m+ 1,µi+1, · · · ,µn) where m < µi. First, m will be

moved to the front of α by adjacent transpositions. Note that m < m+1≤ µi+1. Thus, vµ(i) = i. Similarly,

for j < i, vµ( j) = i− j since µ j = 0. Moreover, when m is swapped with a previous value, the value of

vµ does not change for values before that. Thus, by applying the transformation that brings m to the first

component of α , the norm changes by

∏
j<i

m≡0 (mod r)
m>0

L(κm− c0r j).

Then, Φ is applied to go up the grading. The norm change is κ(m+ 1)− (d0− d−m−1)− c0r(i− 1). The
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tuple now looks like α ′ = (0,0, · · · ,µi+1,µi+2, · · · ,m+ 1). It is desired to move m+ 1 to its correct place

by adjacent swaps. To do this, m+ 1 only has to be swapped with values that are higher than it. Note that

vα ′(n) = i, and for i ≤ j ≤ n− 1, vα ′( j) = i+ |{ j ≥ i|µ j ≥ µi}| = i+Fµ( j). Thus, the norm change when

m+1 is moved to the correct position is

∏
i+1≤ j≤n

µ j≡m+1 (mod r)
µ j>m+1

L(κ(µ j−m−1)− c0rFµ( j))

as desired. Multiplying over all i and m gives the desired value of the change of norm.

3.5 Asymptotic Signature

In this section, we wish to compute the asymptotic behaviour of the signature character formula we derived

in the previous section. To do so, we need to pick a ray in our parameter space and then move towards

infinity. However, note that if we scale (κ,c0, . . . ,cr−1) all by a positive real number, then the value of

the signature is unchanged. Thus, the actual parameter space of the Cherednik algebra is the ratio of the

parameters ( c0
κ
, . . . , cr−1

κ
). Thus, taking a ray and moving towards infinity is the same as fixing c0, . . . ,cr−1

and taking the limit of κ → 0+. Thus, we make the following definition.

Definition. The asymptotic signature character of the polynomial representation of H in the direction

(c0, . . . ,cr−1) is the limit as κ → 0+ of the signature character of the polynomial representation with pa-

rameters (κ,c0,c1, . . . ,cr−1).

This definition was motivated in the introduction. For the purposes of the current paper, the reason we

study this asymptotic character is because it is much simpler than the full signature character and because

if we fix our attention on the tk coefficient in the signature character, then for κ small enough, the signature

character stops changing and the asymptotic signature character and the signature character agree up the

coefficient of tk for any smaller κ .

Lemma 4. If a and b are real numbers, then

lim
κ→0+

L(κ ·a+ c0r ·b) =


−1 if |b|< 1

1 if |b|> 1

sgn(abc0) if |b|= 1

Proof. Note that

lim
κ→0+

L(κ ·a+ c0r ·b) = lim
κ→0+

sgn
(
(κ ·a+ c0r ·b)2− r2c2

0
)

= lim
κ→0+

sgn
(
(
κ ·a
c0r

+b)2−1
)

= lim
κ→0+

sgn
(

κ2a2

c2
0r2 +

2κab
c0r

+b2−1
)
.
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If |b| 6= 1, then b2−1 6= 0. Thus, if |b| 6= 1, then

lim
κ→0+

L(κ ·a+ c0r ·b) = lim
κ→0+

sgn
(

κ2a2

c2
0r2 +

2κab
c0r

+b2−1
)

= sgn(b2−1)

which is 1 if |b|> 1 and −1 if |b|< 1. If |b|= 1, then b2−1 = 0. If |b|= 1, since κ > 0 and r > 0,

lim
κ→0+

L(κ ·a+ c0r ·b) = lim
κ→0+

sgn
(

κ2a2

c2
0r2 +

2κab
c0r

+b2−1
)

= lim
κ→0+

sgn(κ) · sgn
(

κa2

c2
0r2 +

2ab
c0r

)
= sgn(abc0),

as desired.

Let M(a,b) = limκ→0+ L(κ ·a+ c0r ·b) and µ = (µ1,µ2, · · · ,µn) with µ1 ≤ µ2 ≤ ·· · ≤ µn.

Corollary 4. The value of N(τ(µ)) is the sign of n

∏
i=1

∏
j∈Ri

µτ(i)≡µ j (mod r)

M
(
µτ(i)−µ j,vµ( j)− vµ(τ(i))

)×
n

∏
i=1

µi−1

∏
m=0

(
(κ(m+1)− (d0−d−m−1)− c0r(i−1))×∏

j<i
r|m

m>0

M(m,− j)× ∏
i+1≤ j≤n

µ j≡m+1 (mod r)
µ j>m+1

M(µ j−m−1,−Fµ( j))
)

as κ → 0+.

Proof. This follows straight from applying Lemma 4 to Theorems 3 and 4. The terms with κ are still

included because when i = 1 and m+1 is divisible by r, then

κ(m+1)− (d0−d−m−1)− c0r(i−1) = κ(m+1)

which is positive.

For the rest of this discussion, let c0 < 0 and κ → 0+. Let g j be the greatest positive integer that is at

most n so that d j < d0 + rc0(g j−1) for 1≤ j ≤ r−1. If no such positive integer exists, then let g j = 0.

Lemma 5. The value

lim
κ→0+

N(τ(µ)) =
r−1

∏
j=1

g j

∏
s=1

(−1)b
µs+ j

r c.

Proof. Note that if a > 0 and b <−1, then M(a,b) = 1 by Lemma 4. Also, if a > 0 and b =−1, then since

c0 < 0, M(a,b) = sgn(abc0) = 1 by Lemma 4. If j ∈ Ri, then µτ(i) > µ j since j < τ(i) and τ(i) is the least
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index k so that µk = µτ(i) because τ ∈ Pµ . Since µτ(i) > µ j, it is easy to see from the definition of vµ that

vµ(τ(i))> vµ( j). Thus, for all j ∈ Ri, it must be that

M(µτ(i)−µ j,vµ( j)− vµ(τ(i))) = 1.

Moreover, if m > 0 and j ≥ 1, then M(m,− j) = 1. Note that Fµ( j) ≥ 1 for all j. So, if µ j > m+ 1, then

M(µ j−m−1,−Fµ( j)) = 1. Therefore, by Corollary 4,

lim
κ→0+

N(τ(µ)) = lim
κ→0+

n

∏
i=1

µi−1

∏
m=0

(
(κ(m+1)− (d0−d−m−1)− c0r(i−1))

= lim
κ→0+

n

∏
i=1

µi

∏
m=1

(
(κ(m)− (d0−d−m)− c0r(i−1))

Fix some i ≤ n, and let 1 ≤ m ≤ µi. Suppose that −m ≡ j (mod r) where 0 ≤ j ≤ r− 1. If j = 0, then

d−m = d0 and

κ(m)− (d0−d−m)− c0r(i−1) = κ(m)− c0r(i−1)> 0.

Otherwise, if i > g j, then

κ(m)− (d0−d−m)− c0r(i−1)> κ(m)− (d0−d j)− c0r ·g j > 0,

and if i≤ g j, then

κ(m)− (d0−d−m)− c0r(i−1)≤ κ(m)− (d0−d j)− c0r(g j−1)< 0.

Thus, limκ→0+ N(τ(µ)) is equal to

r−1

∏
j=1

g j

∏
s=1

∏
1≤m≤µi

−m≡ j (mod r)

(−1) =
r−1

∏
j=1

g j

∏
s=1

(−1)b
µs+ j

r c,

since there are
⌊

µs+ j
r

⌋
values of m that are at most µi and equivalent to − j modulo r.

Corollary 5. Suppose that k ≥ 0 is an integer. If n > k+ max
1≤i≤r−1

gi, the coefficient of tk in the signature

character as κ → 0+ is (
n+ k

k

)
.

Proof. Let µ ∈ Zn
≥0 and suppose that µ1 + µ2 + · · ·+ µn = k. Since n > k + max

1≤i≤r−1
gi, there must be at

least max
1≤i≤r−1

gi of the values µ1,µ2, · · · ,µn that are 0. Thus, by Lemma 5, the norm of µ must be positive.

Therefore, the coefficient of tk in the signature character is the number of µ with µ1 + µ2 + · · ·+ µn = k

which is easily seen to be
(n+k

k

)
.

Note that the greatest integer g j so that d j < d0 + rc0(g j−1) is bounded above by d j−d0+rc0
rc0

. Therefore,
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for all

n > max
1≤ j≤r−1

max(0,
d j−d0 + rc0

rc0
)+ k,

the coefficient of tk in the asymptotic signature is
(n+k

k

)
.

Thus, we see that if we look at the signature character of the polynomial representations of the Cherednik

algebra for G(r,1,n), then for each k the tk coefficient ofthe asymptotic signature character for c0 < 0, grows

as
(n+k

k

)
, a polynomial in n for large enough n. In particular, this computation shows that for large enough

n, the degree k portion of the polynomial representation is unitary. Thus, we have proved the claim that we

made in the introduction regarding the stable unitarity of the polynomial representation, if c0 < 0.

3.6 Computation of the Asymptotic Signature for Certain Values of g and n

It is interesting to see a concrete formula for the asymptotic signature character. In this section, we derive

a recurrence relation for the asymptotic signature when r = 2 and c0 < 0, which allows us to compute the

value of the asymptotic signature for small values of n. Additionally, we use this recurrence to give an

alternative proof in the case of r = 2,c0 < 0 for the known fact that the asymptotic signature character is a

rational function in t.

Let pi,n = 1− tn−
(n

1

)
tn−1(1− t)−·· ·−

(n
i

)
tn−i(1− t)i for 0 ≤ i ≤ n. Let ai,n(t) and bi,n(t) be rational

functions of t so that a0,n = b0,n = 1/(1− t)n and

ai,n =
i

∑
j=1

(−1)i
(

n
j

)
· tn− j

1− (−1)it2n · (t
nai− j,n− j +(−1) jbi− j,n− j)+

pi,n((−1)itn +1)
(1− t)n(1− (−1)it2n)

bi,n =
i

∑
j=1

(
n
j

)
tn− j

1− (−1)it2n ((−1)i− jtn ·bi− j,n− j +ai− j,n− j)+
pi,n(tn +1)

(1− t)n(1− (−1)it2n)
,

for 1≤ i≤ n.

Theorem 5. Suppose that κ → 0+, c0 < 0 and r = 2. Moreover, let g be the greatest integer less than or

equal to n so that d1 < d0 +2c0(g−1). Then, the asymptotic signature is given by ag,n.

Proof. Define generating functions hi,n and gi,n as

hi,n(t) = ∑
µ=(µ1≤µ2≤···µn)

∑
τ∈Pµ

tµ1+µ2+···+µn(−1)
⌊

µ1+1
2

⌋
+
⌊

µ2+1
2

⌋
+···+

⌊
µi+1

2

⌋

and

gi,n(t) = ∑
µ=(µ1≤µ2≤···µn)

∑
τ∈Pµ

tµ1+µ2+···+µn(−1)b
µ1
2 c+b µ2

2 c+···+b µi
2 c.

It will be shown that hi,n = ai,n and gi,n = bi,n. Note that h0,n = g0,n = 1/(1− t)n since the representations

are unitary when i = 0, and in that case the generating functions just reduce down to the generating function

of 1/(1− t)n. Now, suppose that i≥ 1.

Let µ ∈ Zn
≥0 and let µg(1),µg(2), · · · ,µg(i) be the i smallest elements of µ . Suppose that l is the smallest

element of µ and that there are j copies of l in µ . Let µ ′ ∈ Zn− j
≥0 be the tuple formed by removing the

17



3 THE CHEREDNIK ALGEBRA

j values of l from µ and reducing all the other elements by l + 1. Let µh(1),µh(2), · · · ,µh(i− j) be the i− j

smallest elements of µ ′. Note that if j ≤ i and l = 2a for some integer a, then

(−1)

⌊
µg(1)+1

2

⌋
+

⌊
µg(2)+1

2

⌋
+···+

⌊
µg(i)+1

2

⌋
= (−1) ja · (−1)(i− j)(a+1) · (−1)

⌊
µ ′h(1)

2

⌋
+

⌊
µ ′h(2)

2

⌋
+···+

⌊
µ ′h(i− j)

2

⌋

while if i > j, then

(−1)

⌊
µg(1)+1

2

⌋
+

⌊
µg(2)+1

2

⌋
+···+

⌊
µg(i)+1

2

⌋
= (−1)ia.

Now, if l = 2a+1 for some integer a and i≤ j, then

(−1)

⌊
µg(1)+1

2

⌋
+

⌊
µg(2)+1

2

⌋
+···+

⌊
µg(i)+1

2

⌋
= (−1) j(a+1) · (−1)(i− j)(a+1) · (−1)

⌊
µ ′h(1)+1

2

⌋
+

⌊
µ ′h(2)+1

2

⌋
+···+

⌊
µ ′h(i− j)+1

2

⌋

while if i > j, then

(−1)

⌊
µg(1)+1

2

⌋
+

⌊
µg(2)+1

2

⌋
+···+

⌊
µg(i)+1

2

⌋
= (−1)i(a+1).

For a given l and j, there are
(n

j

)
ways to choose the positions in µ to be l. Also,

µ1 +µ2 + · · ·+µn = µ
′
1 +µ

′
2 + · · ·+µ

′
n− j +(l +1)(n− j)+ l j = µ

′
1 +µ

′
2 + · · ·+µ

′
n− j + ln+n− j.

Therefore,

hi,n(t) =
∞

∑
a=0

( i

∑
j=1

(−1) j(a+1)
(

n
j

)
(−1)(i− j)(a+1)hi− j,n− j(t) · t2an+2n− j

+
n

∑
j=i+1

(−1)i(a+1)
(

n
j

)
1

(1− t)n− j · t
2an+2n− j)

+
∞

∑
a=0

( i

∑
j=1

(−1) ja
(

n
j

)
(−1)(i− j)(a+1)gi− j,n− j · t2an+n− j

+
n

∑
j=i+1

(−1)ia
(

n
j

)
1

(1− t)n− j · t
2an+n− j).

The first sum over a and j is the case where the lowest value in µ is l = 2a+1 and there are j copies of l in

µ . The second sum over a and j is where l = 2a and there are j copies of l in µ . Simplifying the expression

gives that

hi,n =
i

∑
j=1

(−1)i
(

n
j

)
· tn− j

1− (−1)it2n · (t
nhi− j,n− j +(−1) jgi− j,n− j)+

pi,n((−1)itn +1)
(1− t)n(1− (−1)it2n)

.

By a similar analysis, the recurrence for gi,n is

gi,n =
i

∑
j=1

(
n
j

)
tn− j

1− (−1)it2n ((−1)i− jtn ·gi− j,n− j +hi− j,n− j)+
pi,n(tn +1)

(1− t)n(1− (−1)it2n)
.
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Note that since h0,n = a0,n, g0,n = b0,n, and hi,n and gi,n satisfy the same recurrence relations as ai,n and bi,n,

respectively, hi,n = ai,n and gi,n = bi,n. Since hg,n is exactly the value of the asymptotic signature, ag,n is the

asymptotic signature in this case.

Corollary 6. The functions ai,n and bi,n are rational functions of t.

Proof. The result will be proven by induction on i. Note that for i = 0, a0,n = b0,n = 1/(1− t)n for all n≥ 0.

Now, suppose that for all i ≤ m, ai,n and bi,n are rational functions of t for all n ≥ i. Now, suppose that

i = m+1 and n≥ i. Note that by the recurrence relation, ai,n and bi,n are sums of rational functions of t by

the inductive assumption. Therefore, ai,n and bi,n must be rational functions of t.

Example. Table 1 shows the asymptotic signature characters for small values of n (computed in SAGE).

Table 1: Asymptotic Signature for Small Values
n g ag,n (Asymptotic Signature)

1 1 1−t
t2+1

2 1 (t+1)2

t4+1

2 2 (t−1)2

(t2+1)2

3 1 −(t2+t+1)2

(t4−t2+1)(t2+1)(t−1)

3 2 t6+2t5−2t4−2t2+2t+1
(t4+1)(t2+t+1)(t2−t+1)(1−t)

3 3 (1−t)3

(t2+1)3

4 Conclusion and Future Studies

In this paper, we have computed the signatures of all the Specht modules for the Hecke algebra. We also

computed a formula for the asymptotic signature character of the polynomial representation of the Cherednik

Algebra for half of all parameter values. The immediate next step would be to extend the results to the other

half of the parameter values, and also extend the recurrence relation obtained for r = 2 to higher values of

r and refine the recurrence to get a better algorithm for computing the asymptotic signature character for

small values of n.

The full signature character of arbitrary Verma modules has already been computed by Steven Griffeth

but this formula is very messy. Simplifying those formulas would be useful in computing formulas for the

asymptotic signature character of arbitrary Verma modules similar to those we obtained here. This could

then be used to study the stability properties of the asymptotic signature. More precisely, given a Verma

module of the Cherednik algebra of G(r,1,n) associated to some multiparition λ of n, we can define a

multipartition λm of n+m by adding m boxes to the first row of the first tableau in the multitableau. For

example, if r = 2, n = 5 and the multiparition λ is ((2,1),(1,1)) then, λm is ((2+m,1),(1,1)). Each

λm defines a Verma module of the Cherednik algebra of G(r,1,n + m) and we call such a sequence of
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Verma modules a stable sequence. The dependence of the asymptotic signature character of such stable

sequences in n is interesting to study. In this paper, we showed that for half of the paramater values, each

coefficient of the asymptotic signature character of the polynomial representation was eventually polynomial

in n, and moreover, for large enough n the signature in degree k was unitary (with the cutoff value of n

depending linearly with k). It is expected that similar results for other stable sequences of Verma modules

and for all parameter values hold, namely that each coefficient of the asymptotic signature character is a

polynomial in m for large enough m. This should be true for general reasons, but a constructive proof would

give a better understanding of the actual value of the polynomial. The range of parameters for which the

asymptotic signature character is stably unitary would be an interesting consequence of knowing the value

of the polynomial.

This stable behavior of the asymptotic signature character has connections with the Deligne category

of the Cherednik Algebra. Any stable sequence of Verma modules as defined above gives an object in the

Deligne category, which has an associated signature character. There should exist some relationship between

the asymptotic signature character of the stable sequence and the signature character of the object in the

Deligne category but this is not well understood. The computation of the polynomial in m that represents

the stable limit of the coefficient of tk would help to better understand the relationship and to compute the

signature character of the object in the Deligne category.

In the polynomial representation studied here, and in general for all Verma modules of the Cherednik

Algebra, we can decompose each graded piece into irreducible representations of G(r,1,n). This decom-

position is orthogonal for the contravariant form and hence the form induces a non-degenerate form on

the multiplicity space of each irreducible of G(r,1,n). Refining the signature character by computing the

signatures of these forms on the multiplicity spaces would make the signature formula nicer.

Another direction is to see what happens at other values of parameters than the generic values. In

this case, the contravariant form on the Verma module is possibly degenerate, but the kernel of the form

coincides with the largest proper submodule of the Verma module. Thus, on the quotient module, there

exists a non-degenerate Hermitian form, and computing the signature of this form would be interesting.
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