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Abstract. We study the following questions:

(1) What are all solutions to f ◦ f̂ = g ◦ ĝ in complex rational functions f, g ∈ C(X)

and meromorphic functions f̂ , ĝ on the complex plane?

(2) For which rational functions f(X) and g(X) with coefficients in an algebraic

number field K does the equation f(a) = g(b) have infinitely many solutions with

a, b ∈ K?

We utilize various algebraic, geometric and analytic results in order to resolve both

questions in the case that the numerator of f(X) − g(Y ) is an irreducible polynomial

in C[X,Y ] of sufficiently large degree. Our work answers a 1973 question of Fried in

all but finitely many cases, and makes significant progress towards answering a 1924

question of Ritt and a 1997 question of Lyubich and Minsky.
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1. Introduction

Throughout the history of number theory, many mathematicians have studied special

cases of the following question:

Question 1.1. For which rational functions f, g ∈ Q(X) does the equation f(a) = g(b)

have infinitely many solutions in rational numbers a and b?

For example, Archimedes studied an instance of the Pell equation a2 = db2 + 1; we

now know that there are infinitely many integers a, b satisfying this equation for any

prescribed nonsquare positive integer d [20, p. 184]. More recently, Wiles [38] proved

that Fermat’s equation cn = dn + en has no solutions in nonzero integers c, d, e, n with

n > 2. Upon division by en, this result shows that an = bn + 1 has no solutions in

nonzero rational numbers a, b. Another prominent equation in modern number theory

is the Weierstrass equation Y 2 = X3 + cX +d, where c and d are fixed rational numbers

such that 4c3 6= −27d2. This equation defines an elliptic curve, and has infinitely many

solutions in rational numbers if and only if the corresponding elliptic curve has positive

rank; this rank is the key quantity in the Birch and Swinnerton–Dyer conjecture, which

is one of the most important open problems in mathematics [9]. This last example is

enlightening, because although there has been progress on describing “how often” such

an equation has infinitely many rational solutions [4–6], it seems that there is no hope

of finding all pairs (c, d) for which the equation has infinitely many solutions. However,

each equation of this form has infinitely many solutions in some algebraic number field

K, by which we mean a field which is a finite-dimensional Q-vector space. It is thus

natural to modify Question 1.1 as follows:

Question 1.2. For which rational functions f, g ∈ K(X), where K is an algebraic

number field, does the equation f(a) = g(b) have infinitely many solutions in K?

We prove the following result:

Theorem 1.3. For any number field K and any rational functions f, g ∈ K(X) such

that the numerator of f(X) − g(Y ) is an irreducible polynomial in C[X, Y ] of (total)
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degree at least 105, if the equation f(a) = g(b) has infinitely many solutions in K then

one of these holds:

(1.3.1) at least one of the extensions K(X)/K(f(X)) or K(X)/K(g(X)) has Galois

closure of genus 0 or 1,

(1.3.2) f = µ ◦Xc(X − 1)d ◦ ν1 and g = µ ◦ γXc(X − 1)d ◦ ν2 for some coprime positive

integers c, d, some γ ∈ K \ {0, 1}, and some degree-one µ, ν1, ν2 ∈ K(X).

Conversely, if (1.3.2) holds then f(X)−g(Y ) is irreducible in C[X, Y ] and f(a) = g(b)

has infinitely many solutions in K. These conclusions are sometimes satisfied when

(1.3.1) holds, but not always. However, for each f(X) ∈ K(X) such thatK(X)/K(f(X))

has Galois closure of genus 0 or 1, there exist rational functions g(X) ∈ K̂(X) of arbi-

trarily large degree (with coefficients in a number field K̂ containing K) for which these

conclusions are satisfied over K̂.

Since automorphism groups of function fields of genus 0 or 1 are well-understood,

condition (1.3.1) lets us give a precise description of either f or g. For instance, if the

Galois closure of K(X)/K(f(X)) has genus 0 and deg(f) > 60 then f(X) is either

Xm or Xm +X−m or a Chebyshev polynomial Tm(X), up to composition on both sides

with degree-one rational functions. Furthermore, when (1.3.1) holds we describe both

f(X) and g(X): for instance, if f(X) = Xm with m > 6 then there is some degree-one

ν ∈ K(X) for which g ◦ ν is Xch(X)m with h ∈ K(X) and c coprime to m. For more

results when (1.3.1) holds, see Theorem 4.1.

Most of the previous work on Question 1.1 addresses the much easier problem of

determining the polynomials f, g ∈ Z[X] for which f(a) = g(b) has infinitely many

solutions in integers a, b. This was solved by Bilu and Tichy [7], building on previous work

by Davenport, Fried, Lewis, Schinzel, Siegel, and others [12,15,36,37]. It is easy to reduce

this question to the case that f(X) − g(Y ) is irreducible in C[X, Y ]. Question 1.1 for

rational solutions has also been studied by several authors. The most general published

result was proved by Avanzi and Zannier [2], and addresses the case that f and g

are polynomials of coprime degrees. Very recently, Carney et al. have extended this
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to the case of arbitrary polynomials f and g [10, 11]. Our further extension to rational

functions (under some hypotheses) requires completely different methods than were used

previously.

The second main topic of this paper is functional equations, and specifically the fol-

lowing questions:

Question 1.4. What are all solutions to f ◦ f̂ = g ◦ ĝ in rational functions f, f̂ , g, ĝ ∈
C(X)?

Question 1.5. What are all solutions to f ◦ f̂ = g ◦ ĝ in rational functions f, g ∈ C(X)

and meromorphic functions f̂ , ĝ on the complex plane?

Here a meromorphic function is a ratio h1/h2 where h1, h2 are entire functions with

h2 6= 0, and an entire function is a function C → C defined by a single power series∑∞
i=0 αiX

i with infinite radius of convergence. For instance, eX is entire, as are all

polynomials, and all rational functions are meromorphic. Hence Question 1.4 is a more

restricted version of Question 1.5.

We prove the following result:

Theorem 1.6. For any f, g ∈ C(X) such that the numerator of f(X) − g(Y ) is an

irreducible polynomial in C[X, Y ] of degree at least 105, if there are nonconstant mero-

morphic functions f̂ , ĝ on the complex plane such that f ◦ f̂ = g ◦ ĝ then one of these

holds:

(1.6.1) at least one of the extensions C(X)/C(f(X)) or C(X)/C(g(X)) has Galois clo-

sure of genus 0 or 1

(1.6.2) f = µ ◦Xc(X − 1)d ◦ ν1 and g = µ ◦ γXc(X − 1)d ◦ ν2 for some coprime positive

integers c, d, some γ ∈ K \ {0, 1}, and some degree-one µ, ν1, ν2 ∈ C(X).

Conversely, if (1.6.2) holds then the meromorphic functions f̂ , ĝ satisfying f ◦ f̂ = g◦ ĝ
are given by

f̂ = ν−11 ◦
γbXc − 1

γa+bXc+d − 1
◦ h and ĝ = ν−12 ◦

γa+bXc+d − γaXd

γa+bXc+d − 1
◦ h
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where h is meromorphic and a, b are integers such that bd−ac = 1. Also, to some extent

we can describe all choices for f , g, f̂ and ĝ when (1.6.1) holds.

Questions 1.4 and 1.5 are of interest for several reasons. First, Nevanlinna showed

that if nonconstant meromorphic functions f̂ , ĝ satisfy f̂−1(α) = ĝ−1(α) for five dis-

tinct values of α ∈ C, then we must have f̂ = ĝ [26]. Subsequent authors have

sought analogous results when the values α are replaced by finite sets of complex num-

bers, and more generally when there are several pairs of finite sets (Si, Ti) such that

f̂−1(Si) = ĝ−1(Ti). If there are nonconstant rational functions f, g for which f ◦ f̂ = g◦ ĝ,

then f̂−1(f−1(U)) = ĝ−1(g−1(U)) for any U ⊂ C, so in this case there are infinitely many

pairs (Si, Ti) of finite subsets of C for which f̂−1(Si) = ĝ−1(Ti). Conversely, it is conceiv-

able that such an infinitude of pairs (Si, Ti) only exists when there exist such rational

functions f, g. Thus Question 1.5 is a fundamental question about the distribution of

preimages of meromorphic functions. We note that quite special cases of Question 1.5

have themselves been major results, for instance the case that f, g are polynomials and

b, d are entire [30]. Furthermore, Theorem 1.6 answers a question of Fried [15, Problem 1]

when max(deg f, deg g) is sufficiently large, thereby reducing Fried’s question to a finite

(albeit lengthy) computation. Question 1.4 was originally studied by Ritt [35]; Theo-

rem 1.6 comprises significant progress towards a solution of both Ritt’s question and a

question of Lyubich and Minsky [22, p. 83] on laminations in holomorphic dynamics.

In the special case that f, f̂ , g, ĝ are polynomials, Question 1.4 was solved by Ritt [34].

His result has been used to prove important theorems in algebra [39], algebraic geom-

etry [23], differential equations [8, 32], dynamical systems [3, 17, 18], logic [23], topol-

ogy [28], transcendental number theory [27], and other topics. Solutions to Questions 1.4

or 1.5 would yield vast improvements to all of these theorems. Prior to our work, these

polynomial results had been extended only slightly, to cases of Question 1.4 which were

not too far from the polynomial case; however, we note that already such extensions re-

quired significant effort [29,31,40]. Our Theorem 1.6 goes far beyond all these previous

results.
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This paper is organized as follows. In the next section we show that Theorems 1.3

and 1.6 are consequences of another result (Theorem 2.3), and present several important

tools. We use these tools in Section 3 in order to prove Theorem 2.3, and then in

Section 4 we refine the conclusions of these three theorems. We conclude in Section 5

with a discussion of future avenues of research.

2. Ramification and genus

In this section we show that the number-theoretic Theorem 1.3 and the analytic

Theorem 1.6 are both consequences of a single geometric theorem, and then present

several tools we will use to prove this theorem. We begin with some notation.

Definition 2.1 (Ramification Index). The ramification index ef (P ) of a rational func-

tion f(X) at a point P ∈ C∪ {∞} is the local degree of f(X) near X = P . Concretely,

if P, f(P ) ∈ C then ef (P ) is the multiplicity of X = P as a root of f(X) − f(P ), and

in other cases ef (P ) can be defined by changing variables to reduce to this case.

Definition 2.2 (Ramification Multiset). The ramification multiset Ef (Q) of a rational

function f at a point Q is the multiset of all values of ef (P ) for P ∈ f−1(Q).

We can now state our main geometric result. Here and elsewhere, the expression

[ac, bd, . . . ] denotes the multiset containing c copies of a, d copies of b, and so on. Also,

by the genus of a plane curve we mean the genus of the corresponding function field.

Theorem 2.3 (LCM Theorem). Let f, g ∈ C(X) have degrees m,n > 0, with n ≥
m > 1176 or n ≥ 84m. Let Q1, . . . , Qr be the points in C ∪ {∞} for which either

Ef (Qi) 6= [1m] or Eg(Qi) 6= [1n]. If the numerator of f(X)− g(Y ) defines an irreducible

curve of genus 0 or 1, then Fi := Ef (Qi) and Gi := Eg(Qi) satisfy one of the following:

(2.3.1)
∑r

i=1(1−
1

lcm(Fi)
) ≤ 2

(2.3.2)
∑r

i=1(1−
1

lcm(Gi)
) ≤ 2

(2.3.3) m = n, r = 4, and (after relabeling the Qi’s) we have F1 = G1 = [m], F2 = G2 =

[c,m− c] for some c coprime to m, F3 = G4 = [1m−2, 2], and F4 = G3 = [1m].
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Proof that Theorem 2.3 implies Theorems 1.3 and 1.6. By theorems of Faltings [13] and

Picard [33], if the hypotheses of either Theorem 1.3 or Theorem 1.6 hold then the

numerator of f(X) − g(Y ) defines a curve of genus 0 or 1. The hypotheses of either

theorem imply that m := deg(f) and n := deg(g) satisfy m+n ≥ 105, so that either m ≥

84n or n ≥ 84m or m,n ≥ 105

85
> 1176. By interchanging f and g if necessary (which

does not affect the truth of the conclusions of Theorems 1.3 and 1.6), we may assume

that n ≥ m, so that the hypotheses of Theorem 2.3 are satisfied. Hence Theorem 2.3

implies that one of (2.3.1)–(2.3.3) holds. Let N be the Galois closure of C(X)/C(f(X)),

and let d be the degree of the extension N /C(f(X)). Then Qi lies under d
lcm(Fi)

points of

N , each of which has ramification index lcm(Fi) in N /C(f(X)). Thus, by the Riemann–

Hurwitz formula, if (2.3.1) or (2.3.2) holds then (1.3.1) and (1.6.1) hold. Finally, suppose

that (2.3.3) holds. Upon replacing f and g by f ◦ ν1 and g ◦ ν2 for suitable degree-one

νi ∈ C(X), we may assume that f(∞) = Q1 = g(∞) and f−1(Q2) = {0, 1} = g−1(Q2)

where ef (0) = c = eg(0). Upon replacing f and g by µ ◦ f and µ ◦ g for a suitable

degree-one µ ∈ C(X), we may assume that Q1 = ∞, Q2 = 0, and the numerator and

denominator of f have the same leading coefficient. It follows that f = Xc(X − 1)m−c

and g = γXc(X − 1)m−c for some γ ∈ C∗, and the reducibility hypothesis ensures that

γ 6= 1. Hence the original f and g satisfy (1.3.2) and (1.6.2). �

Our proof of Theorem 2.3 proceeds by showing that if f, g satisfy the hypotheses of

Theorem 2.3 then the multisets Fi := Ef (Qi) and Gi := Eg(Qi) satisfy several numerical

conditions, and then solving the combinatorial problem of determining all collections of

multisets of positive integers which satisfy these conditions. We present these numerical

conditions in the remainder of this section, and then prove Theorem 2.3 in the next

section. We conclude in Section 4 by determining f and g when (2.3.1) or (2.3.2) holds.

The first two numerical conditions satisfied by ramification multisets are

∑
P∈f−1(Q)

ef (P ) = deg(f) for each Q ∈ C ∪ {∞}(2.4)

∑
Q∈C∪{∞}

(
deg(f)− |Ef (Q)|

)
= 2 deg(f)− 2.(2.5)
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Equation (2.5) is the Riemann–Hurwitz genus formula for the extension of function

fields C(X)/C(f(X)). If f, g ∈ C(X) have degrees m,n > 0, and the numerator of

f(X)− g(Y ) is irreducible, then this numerator defines a curve of genus g where

(2.6) 2g− 2 = −2m+
∑

Q∈C∪{∞}

∑
a∈Ef (Q)

∑
b∈Eg(Q)

(
a− gcd(a, b)

)
.

Equation (2.6) is a version of the Riemann–Hurwitz genus formula for the function

field extension C(X, Y )/C(Y ) (where f(X) = g(Y )), and was proved by Ritt [34]. In

particular, if g ∈ {0, 1} then

(2.7)
∑

Q∈C∪{∞}

∑
a∈Ef (Q)

∑
b∈Eg(Q)

(
a− gcd(a, b)

)
∈ {2m− 2, 2m}.

The next two lemmas give new types of constraints on the Fi’s and Gi’s which are

crucial for our work.

Lemma 2.8. If all elements of F1 ∪ F2 are even then, for each i > 2, the multiset Fi

can be written as the union of two submultisets each having sum m
2

.

Proof. Upon replacing f by µ ◦ f for some degree-one µ ∈ C(X), we may assume that

Q1 = 0 and Q2 = ∞, so by hypothesis f(X) = h(X)2 for some h ∈ C(X). Then for

i > 2 we have Ef (Qi) = Eh(
√
Qi) ∪ Eh(−

√
Qi), which implies the result by (2.4). �

Lemma 2.9. If the numerator of f(X)− g(Y ) is irreducible then both of these hold:

(2.9.1) For any distinct i, j we have gcd(Fi ∪ Fj ∪Gi ∪Gj) = 1.

(2.9.2) For any distinct i, j, k such that Fi ∪ Fj and Gi ∪ Gj each contain at most two

odd indices, we must have gcd(Fk ∪Gk) ≤ 2.

Proof. We prove the contrapositive. If (2.9.1) fails then, by replacing f and g by µ ◦ f
and µ ◦ g for some degree-one µ ∈ C(X), we may assume that Qi = 0 and Qj = ∞.

Since d := gcd(Fi ∪ Fj ∪Gi ∪Gj) divides gcd(Fi, Fj), we can write f = Xd ◦ f̂ for some

f̂ ∈ C(X), and likewise g = Xd ◦ ĝ. Therefore f(X)− g(Y ) =
∏

ζd=1

(
f̂(X)− ζĝ(Y )

)
is

reducible.
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Henceforth suppose that (2.9.2) fails. Again we may assume Qi = −1, Qj = 1 and

Qk = ∞. First suppose there is an odd prime p which divides gcd(Fk ∪ Gk). Then

the degree-p Chebyshev polynomial Tp(X) satisfies ETp(Qi) = ETp(Qj) = [1, 2(p−1)/2],

ETp(Qk) = [p], and ETp(Q`) = [1p] for ` /∈ {i, j, k}. Hence∑
S∈C∪∞

∑
a∈ETp (S)

∑
b∈Ea(S)

(
a− gcd(a, b)

)
≤ p− 1 < 2p− 2,

so by (2.6) the numerator of Tp(X)− f(Y ) must be reducible, since otherwise it would

define a curve having negative genus. Then [14, Prop. 2] implies that f = f1 ◦ f2 for

some f1, f2 ∈ C(X) such that the numerators of Tp(X) − z and f1(X) − z have the

same splitting field as one another over C(z), where z is transcendental over C. Since

the splitting field M of Tp(X) − z over C(z) is C(y) where yp + y−p = 2z, the Galois

group of M/C(z) is dihedral of order 2p, so that each non-Galois extension of C(z)

contained in M has the form C(x) where Tp(x) = z. Hence f1 = Tp ◦ h for some

h ∈ C(X), so f = Tp ◦ f̂2 where f̂2 := h ◦ f2. Likewise g = Tp ◦ g2, so that f(X)− g(Y )

equals Tp(f2(X)) − Tp(g2(Y )), whose numerator is reducible since it is divisible by the

numerator of f2(X)− g2(Y ).

The proof is similar but lengthier when gcd(Fk∪Gk) is a power of 2, so we just sketch

the argument. The main difference is that the ramification of T2(X) is slightly different

from that of Tp(X) for odd p, so that the above argument does not imply that the

numerator of T2(X)− f(Y ) is reducible. However, the above argument does imply that

the numerator of either T2(X) − f(Y ) or T2(X) + f(Y ) is reducible, so f = ±T2 ◦ f2.
Similarly, f = ±T4◦f2 and g = ±T4◦g2, and since both T4(X)−T4(Y ) and T4(X)+T4(Y )

are reducible it follows that the numerator of f(X)− g(Y ) is reducible. �

3. Proof of LCM Theorem

In this section we prove Theorem 2.3. We first give a quick proof in case n ≥ 84m.

Proposition 3.1 (Fixed m, Large n). Using the notation and assumptions of Theo-

rem 2.3, if n ≥ 84m then (2.3.1) holds.
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Proof. For each i we write Di for the multiset of elements of Gi which are not divisible

by lcm(Fi), and let di := |Di| and ci :=
∑

b∈Di
b. Then

|Gi| = di +
∑
b∈Gi

lcm(Fi)|b

1 ≤ di +
n− ci

lcm(Fi)
≤ di +

n− di
lcm(Fi)

.

By (2.7), we have

2m ≥
r∑
i=1

∑
b∈Si

∑
a∈Fi

(
a− gcd(a, b)

)
≥

r∑
i=1

∑
b∈Si

1 =
r∑
i=1

di.

Letting ` be the largest of all the values lcm(Fi) for 1 ≤ i ≤ r, it follows that

r∑
i=1

|Gi| ≤
r∑
i=1

(
n

lcm(Fi)
+ di ·

(
1− 1

lcm(Fi)

))
≤

r∑
i=1

n

lcm(Fi)
+ 2m ·

(
1− 1

`

)
.

Substituting this into (2.5) yields

2n− 2 =
r∑
i=1

(
n− |Gi|

)
≥

r∑
i=1

(
n− n

lcm(Fi)

)
+

2m

`
− 2m,

so that

n

( r∑
i=1

(
1− 1

lcm(Fi)

)
− 2

)
≤ 2m− 2m

`
− 2 < 2m ≤ n

42
.

Thus
∑r

i=1(1−
1

lcm(Fi)
) is less than 2 + 1

42
, which implies by Lemma 3.2 that in fact the

sum is at most 2, whence (2.3.1) holds. �

Lemma 3.2. If d1, . . . , dq is a finite sequence of integers greater than 1, then S :=∑q
i=1

(
1 − 1

di

)
lies in {0} ∪ [1

2
, 1] ∪ [7

6
, 2] ∪ [2 + 1

42
,∞). Furthermore, we have S ≤ 2 if

and only if either q ≤ 2 or the multiset of di’s is one of the following: [24], [33], [2, 42],

[2, 3, `] with 2 ≤ ` ≤ 6, or [22, k] with k > 1.

Proof. Write D for the multiset of di’s. Note that S = 2 when D is [24], [33], [2, 42], or

[2, 3, 6]. Since the value of S becomes strictly larger if we either append a 2 to D or

increase some element of D by 1, and by starting with each of the above four D’s and

repeatedly applying these operations we obtain every D with q > 2 except [2, 3, `] with

` < 6 and [22, k] with k > 1, this implies the last assertion in the result. Moreover, the

smallest value of S larger than 2 must occur when D arises from a single such operation,

so the smallest such S is 2 + 1
42

which occurs for D = [2, 3, 7]. Likewise, if D = ∅ or
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D = [22] then S = 0 or S = 1, so by the same argument the smallest values of S greater

than 0 or 1 occur when D = [2] or D = [2, 3], respectively, and are S = 1
2

and 7
6
. �

It remains to prove Theorem 2.3 when 1176 < m ≤ n ≤ 84m, so we assume these

inequalities for the rest of this section. Our next result provides a crucial constraint on

the multisets Fi and Gi.

Proposition 3.3. Suppose that f and g satisfy the hypotheses of Theorem 2.3, and also

1176 < m ≤ n ≤ 84m. For any i, put F := Ef (Qi) and G := Eg(Qi), and let fa and

ga be the numbers of copies of the integer a in F and G, respectively. For any integer c

such that 0 ≤ c ≤ 6, one of the following holds:

(3.3.1) There is a positive integer d ≤ c such that fd >
m
d
− (2d+ 3).

(3.3.2) fa, ga ≤ 4 for 1 ≤ a ≤ c.

Proof. We prove Proposition 3.3 by induction on c. The base case is c = 0, where (3.3.2)

is vacuously true. For the inductive step it is enough to prove that if fa, ga ≤ 4 for

1 ≤ a ≤ c− 1 then either fc >
m
c
− (2c+ 3) or fc, gc ≤ 4. By condition (2.7), we have

2m ≥ gc

∞∑
a=1

fa ·
(
a− gcd(a, c)

)
≥ gc

∞∑
a=c+1

fa ·
a

2
≥ gc ·

1

2

(
m− cfc −

c−1∑
a=1

afa

)
,

where we used the facts that m =
∑

a afa and if a > c then gcd(a, c) ≤ a
2
. The above

inequality then implies that

(3.4) 4m ≥ gc

(
m− cfc−

c−1∑
a=1

afa

)
≥ gc

(
m− cfc−

c−1∑
a=1

4a
)
≥ gc

(
m− cfc− 2c(c− 1)

)
.

Similarly,

(3.5) 4n ≥ fc

(
n− cgc −

c−1∑
a=1

aga

)
≥ fc

(
n− cgc −

c−1∑
a=1

4a
)
≥ fc

(
n− cgc − 2c(c− 1)

)
.

Assume that 5 ≤ fc ≤ m
c
− (2c+ 3); we now show that this leads to a contradiction.

Here m− cfc − 2c(c− 1) > 0 and fc > 0, so we may combine (3.4) and (3.5) to get

4m

m− cfc − 2c(c− 1)
≥ gc ≥

1

c

(
n− 2c(c− 1)− 4n

fc

)
.
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By clearing denominators we obtain h(fc) ≥ 0, where h(X) is the polynomial

cX2
(
n−2c(c−1)

)
+X

(
4mc−4nc−

(
m−2c(c−1)

)(
n−2c(c−1)

))
+4n

(
m−2c(c−1)

)
.

It is easy to check that h(X) is negative when X is either 5 or m
c
− (2c+ 3). Since h(X)

has degree at most 2, and the coefficient of X2 in h(X) is nonnegative, it follows that

h(X) is negative for all X with 5 ≤ X ≤ m
c
− (2c + 3). This yields the contradiction

h(fc) < 0, so our assumption was incorrect and thus either fc ≤ 4 or fc >
m
c
− (2c+ 3).

If fc >
m
c
− (2c+ 3) then we are done. If fc ≤ 4 then (3.4) implies that

4m ≥ gc

(
m− cfc − 2c(c− 1)

)
≥ gc

(
m− 4c− 2c(c− 1)

)
= gc

(
m− 2c(c+ 1)

)
;

hence gc ≤ 4m
m−2c(c+1)

< 5, which completes the proof. �

We can improve Proposition 3.3 by strengthening the inequalities used in its proof.

In particular, we can replace (3.4) by

(3.6) 4m ≥
c∑
j=1

gj

(
m− jfj −

j−1∑
a=1

afa

)
,

we can make a similar improvement to (3.5), and also for each fixed c we can improve

the inequality gcd(a, c) ≤ a
2

by using the actual value if a ≤ 2c and otherwise using the

bound gcd(a, c) ≤ c. Applying these improvements requires the separate treatment of a

large number of cases, depending on the values of fa and ga for several choices of a, and

was done with the assistance of a computer program. This yields the following result.

Proposition 3.7. Under the hypotheses of Proposition 3.3, if c is an integer with 1 ≤
c ≤ 6 then one of the following holds:

(3.7.1) There is a positive integer d ≤ c such that fd >
m−wd

d
, where w1 = 5, w2 = 12,

w3 = 15, w4 = w5 = 24, and w6 = 36

(3.7.2)
∑

a≤c fa ≤ 4 and
∑

a≤c ga ≤ 4.

Propositions 3.3 and 3.7 show that, for each i, either there is some (necessarily unique)

integer di with 1 ≤ di ≤ 6 for which the sum of the elements of Fi different from di is
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bounded by an absolute constant, or else Fi contains a bounded number of elements

smaller than 7 (in which case we define di := ∞). In our proof of Theorem 2.3, we

combine this information across all the different points Qi in order to determine the

possibilities for the multiset D consisting of all di’s greater than 1. We first give a

heuristic argument illustrating our approach. If di ≤ 6 then |Fi| ≈ m
di

, and if di =∞ then

|Fi| is at most m
7

+c for some small constant c. By (2.5), we have 2m−2 =
∑r

i=1(m−|Fi|),
so that

(3.8) 2m−
∑
i: di≤6

m
(

1− 1

di

)
≈

∑
i: di=∞

(m− |Fi|),

where each summand on the right side is between 6m
7
− c and m. By Lemma 3.2, the

quantity
∑

i: di≤6(1−
1
di

) is either 0 or an element of one of the intervals [1
2
, 1] or [7

6
,∞),

so the left side of (3.8) is either 2m or an element of [m, 3m
2

] or (−∞, 5m
6

]. Since the

right side of (3.8) is a sum of elements of [6m
7
− c,m], the only possibility is that each

summand on the right side is approximately m, whence
∑

d∈D(1− 1
d
) = 2. This equation

implies that D is one of the multisets

[2, 2, 2, 2], [2, 4, 4], [3, 3, 3], [2, 3, 6], [2, 2,∞], [∞,∞].

Below we prove Theorem 2.3 via a rigorous version of this heuristic argument, first

restricting the possibilities for the Fi’s and then deducing the desired conclusion.

In what follows, we write fi,a for the number of copies of a in the multiset Fi.

Lemma 3.9. If fi,2 >
m
2
− 6 for 1 ≤ i ≤ 4, then

⋃4
i=1Gi = [14, 22n−2] and Gi = [1n] for

i > 4. In particular, (2.3.2) holds.

Proof. Let k be the number of odd elements in
⋃4
i=1Gi. If k ≥ 5 then

2m− 2 ≥
4∑
i=1

∑
a∈Fi

∑
b∈Gi

(
a− gcd(a, b)

)
≥

4∑
i=1

∑
a∈Fi
a=2

∑
b∈Gi
b odd

1 > 5
(m

2
− 6
)
> 2m− 2,

a contradiction. Hence k ≤ 4, so by (2.5) we have

2n− 2 =
r∑
i=1

(
n− |Gi|

)
≥

4∑
i=1

(
n− |Gi|

)
≥ 4n−

(
k +

4n− k
2

)
=

4n− k
2

≥ 2n− 2.

12



Thus this chain of inequalities must consist of equalities; proceeding from left to right,

it follows that if i > 4 then |Gi| = n (and hence Gi = [1n]); if i ≤ 4 then Gi contains

only 1’s and 2’s; and finally, k = 4. This yields the desired conclusion. �

Proof of Theorem 2.3 when fi,1 ≤ 4 for at least four i’s. Without loss of generality, we

may assume that fi,1 ≤ 4 for 1 ≤ i ≤ 4, so that |Fi| ≤ 4 + m−4
2

= m
2

+ 2 and m− |Fi| ≥
m
2
− 2 for 1 ≤ i ≤ 4. If f1,1 + f1,2 ≤ 4 then |F1| ≤ 4 + m−4

3
= m+8

3
and therefore

m − |F1| ≥ 2m−8
3

. Then
∑

1≤i≤4(m − |Fi|) ≥ 3(m
2
− 2) + 2m−8

3
= 13m

6
− 26

3
> 2m − 2, a

contradiction. Thus f1,1+f1,2 > 4, and then by Proposition 3.7 we must have f1,2 >
m
2
−6

and similarly fi,2 >
m
2
− 6 for 2 ≤ i ≤ 4. Lemma 3.9 yields the desired conclusion. �

Lemma 3.10. If |Fi| = 1 then gcd(Fi, Gi) = m or
∑

a∈Fi

∑
b∈Gi

(
a − (a, b)

)
≥ m

2
. If

|Fi| = 2 and n ≤ m + 4 then gcd(Fi, Gi) = m
2

or
∑

a∈Fi

∑
b∈Gi

(
a − (a, b)

)
≥ m

4
. If

|Fi| = 3 and n ≤ m+ 4 then gcd(Fi, Gi) ∈ {m3 ,
m
4
, m

6
} or

∑
a∈Fi

∑
b∈Gi

(
a− (a, b)

)
≥ m

6
.

Proof. We prove Lemma 3.10 when |Fi| = 1 and Fi = [m]. If m divides each element of

Gi then gcd(Fi, Gi) = m. If Gi contains an element c which is not divisible by m, then∑
a∈Fi

∑
b∈Gi

(
a − (a, b)

)
≥ m − (m, c) ≥ m

2
. The proofs of the other two assertions are

a bit more complicated, but are based on similar ideas. �

Proof of Theorem 2.3 when at most two i’s satisfy fi,1 ≤ 4. By Proposition 3.7, if fi,1 >

4 then fi,1 ≥ m− 5, so that |Fi| ≥ m− 4 and therefore m− |Fi| ≤ 4. By (3.5) it follows

that gi,1 ≥ n− 4n
fi,1
≥ n− 4n

m−4 ≥ n− 4 · 85 = n− 340 because n ≤ 84m. Hence there are

at most two i’s for which 4 < fi,1 < m, since otherwise

2m =
r∑
i=1

∑
a∈Fi

∑
b∈Gi

(
a− (a, b)

)
≥ 3(n− 340) > 2m.

Since each such i satisfies m − |Fi| ≤ 4, it follows that the sum of the corresponding

values of (m − |Fi|) is at most 8, so (2.5) implies that fi,1 ≤ 4 for at least two (hence

exactly two) values of i.

We may assume that fi,1 ≤ 4 if and only if i ≤ 2. Then gi,1 ≥ n− 340 for i ≥ 3, so

2m ≥
∑
i≥3

gi,1
∑
a∈Fi

(a− 1) ≥
∑
i≥3

gi,1(m− |Fi|) ≥ (n− 340)
∑
i≥3

(m− |Fi|).

13



This implies
∑

i≥3(m− |Fi|) ≤
2m

n−340 < 3 because n ≤ 84m. If
∑

i≥3(m− |Fi|) = 2, then

by (2.5), 2m−2 = m−|F1|+m−|F2|+
∑

i≥3(m−|Fi|) so |F1|+ |F2| = 4. In particular,

1 ≤ |F1| ≤ 3. We must also have

2∑
i=1

∑
a∈Fi

∑
b∈Gi

(a− (a, b)) ≤ 2m− 2(n− 4n

m− 5
) < 9;

this also implies n ≤ m + 4. If |F1| = 1 and |F2| = 3 then by Lemma 3.10 we can

conclude that gcd(F1, G1) = m, since m
2
> 9, and that gcd(F2, G2) ∈ {m3 ,

m
4
, m

6
}, since

m
6
> 9. Then gcd(F1, F2, G1, G2) > 1, which contradicts (2.9.1). A similar argument

demonstrates that when |F1| = |F2| = 2 or |F1| = 3 and |F2| = 1, we must again have

gcd(F1, F2, G1, G2) > 1, a contradiction. Thus
∑

i≥3(m − |Fi|) ≤ 1, and then by (2.5),

2m − 2 = m − |F1| + m − |F2| +
∑

i≥3(m − |Fi|), so |F1| + |F2| ≤ 3. If |F1| + |F2| = 2,

we must have F1 = F2 = [m] and then (2.3.1) holds. If |F1| + |F2| = 3, we can write

F1 = [m] and F2 = [c,m− c]. Now an analysis of the multisets Gi, using (2.5) and (2.7),

yields (2.3.3). �

Proof of Theorem 2.3 when exactly three i’s satisfy fi,1 ≤ 4. We split this case into four

subcases based on how many of the three points satisfy fi,2 > 4. Three of these four

subcases are resolved via the methods used to treat the case when fi,1 ≤ 4 for at least

four i’s. The fourth subcase, when exactly two i’s satisfy fi,2 > 4, is more difficult. We

resolve this subcase by combining several tools, including Lemmas 2.8 and 2.9, a more

general version of Lemma 3.10, and a series of computer programs. �

We have indicated the main arguments in all cases, which concludes our proof of

Theorem 2.3.

4. From the LCM Theorem to Rational Functions

In this section we describe the possibilities for the ramification multisets Fi and Gi

which satisfy the hypotheses of Theorem 2.3 when (2.3.1) or (2.3.2) holds. By symmetry

it suffices to do this when (2.3.1) holds, that is,
∑r

i=1

(
1 − 1

lcm(Fi)

)
≤ 2. It is easy to

determine all corresponding possibilities for the sequence of lcm(Fi)’s. For each such
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sequence, we use (2.5) to find the Fi’s, and then we use (2.7) to determine the Gi’s.

In some cases we go further and describe the corresponding rational functions f(X)

and g(X). To simplify the description of these functions, we often change variables by

replacing f and g by µ ◦ f ◦ ν1 and µ ◦ g ◦ ν2 for some degree-one µ, ν1, ν2 ∈ C(X); such

a change does not affect whether the numerator of f(X) − g(Y ) defines an irreducible

curve of genus 0 or 1, or whether (2.3.1) holds. Our result when m > 60 is as follows;

the result when m ≤ 60 is similar but longer.

Theorem 4.1. If (2.3.1) holds, m > 60, and the numerator of f(X) − g(Y ) defines

an irreducible curve of genus 0 or 1, then we can relabel the Qi’s so that one of these

occurs:

(4.1.1) F1 = F2 = [m] and Fi = [1m] for all i > 2. Up to a change of variables, in this

case f(X) = Xm and g(X) = Xah(X)m for some integer a coprime to m and

some h ∈ C(X).

(4.1.2) F1 ∪ F2 = [12, 2m−1] and F3 = [m], while Fi = [1m] for all i > 3. Up to a change

of variables, in this case f(X) = Tm(X), Q1 = 1, Q2 = −1, Q3 = ∞, and one

of the following holds, where G′i := [gcd(b, lcm(Fi)) : b ∈ Gi, lcm(Fi) - b]:

• G′1 ∪ G′2 = [12c], G′3 = [12−c], where c ∈ {0, 1, 2} and if m even then |G′1| =

|G′2|
• m is even, G′1 = G′3 = ∅, G′2 = [14]

• m is even, G′1 = ∅, G′2 = [12], G′3 = [2].

(4.1.3) F1 = F2 = [2m/2] and F3 = [
(
m
2

)2
], while Fi = [1m] for all i > 3. Up to a change

of variables, in this case f(X) = Xm/2 + X−m/2, Q1 = 2, Q2 = −2, Q3 = ∞,

G′1 ∪ G′2 = [12c], and G′3 = [12−c] for some c ∈ {1, 2} (where we use the same

notation as in (4.1.2)).

(4.1.4)
⋃4
i=1 Fi = [14, 22m−2],

⋃4
i=1Gi = [14, 22n−2], and r = 4.

(4.1.5)
⋃3
i=1 Fi = [13, 3m−1],

⋃3
i=1Gi = [13, 3n−1], and r = 3.

(4.1.6) F1 = [1a1 , 2
m−a1

2 ], G1 = [1a2 , 2
m−a2

2 ], F2 ∪ F3 = [1b1 , 2c1 , 4
2m−b1−2c1

4 ], G2 ∪ G3 =

[1b2 , 2c2 , 4
2m−b2−2c2

4 ], and r = 3, where aj, bj, cj are nonnegative integers satisfying

2(aj + cj) + 3bj = 8 for j ∈ {1, 2}.
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(4.1.7) F1 = [1a1 , 2
m−a1

2 ], G1 = [1a2 , 2
m−a2

2 ], F2 = [1b1 , 3
m−b1

3 ], G2 = [1b2 , 3
m−b2

3 ], F3 =

[1c1 , 2d1 , 3e1 , 6
m−c1−2d1−3e1

6 ], G3 = [1c2 , 2d2 , 3e2 , 6
m−c2−2d2−3d2

6 ], and r = 3, where aj,

bj, cj, dj, ej are nonnegative integers satisfying 3(aj + ej) +4(bj +dj) +5cj = 12.

Proof. We first determine the possibilities for the Fi’s. Let C denote the multiset of all

values lcm(Fi), and let D be the multiset of elements in C which are at least 2. By

(2.3.1) we have

2 ≥
∑
c∈C

(
1− 1

c

)
=
∑
c∈D

(
1− 1

c

)
.

Thus Lemma 3.2 implies that either |D| ≤ 2 or D is one of [24], [33], [2, 42], [2, 3, `] with

2 ≤ ` ≤ 6, or [22, k] with k > 1. We analyze each case in succession. For instance,

if |D| = 2 then Fi equals [1m] for all but two values of i, which we may assume are

i = 1 and i = 2. Then (2.5) implies that
∑2

i=1(m − |Fi|) = 2m − 2, so
∑2

i=1|Fi| = 2

and thus F1 = F2 = [m], as in (4.1.1). Likewise, if D = [24] then Fi = [1ci , 2di ] for

some nonnegative integers ci, di, where we may assume that di = 0 when i > 4. Since

ci + 2di = m, we have |Fi| = m+ci
2

, so that (2.5) implies that
∑4

i=1 ci = 4, as in (4.1.4).

Via similar arguments, we can solve for the Fi’s in every case, obtaining Fi’s as in one

of (4.1.1)–(4.1.7) in all cases except when F1 = F2 = [2m/2] and |F3| = 2; in that case

Lemma 2.8 implies that F3 = [
(
m
2

)2
], so that the Fi’s are as in (4.1.3).

Now we compute the possibilities for the Gi’s and, when possible, for the functions f

and g. First suppose that the Fi’s are as in (4.1.1). Then (2.7) becomes

2∑
i=1

∑
b∈Gi

(
m− (m, b)

)
∈ {2m− 2, 2m}.

Letting D be the multiset of values m
(m,b)

where b ∈ G1 ∪G2 and m - b, we see that D is

a finite multiset of integers greater than 1 and
∑

d∈D
(
1− 1

d

)
≤ 2. By Lemma 3.2, either

|D| ≤ 2 or D is one of [24], [33], [2, 42], [22, k] with k > 1, or [2, 3, `] with 2 ≤ ` ≤ 6. By

(2.9.1), the least common multiple of the elements of D must be m, so either |D| ≤ 2 or

D = [22, k]. In the latter case, at least one of G1 and G2 (say G1) consists of elements

divisible by m
2

, so m
2

divides the sum of the elements in G1, which is n. Hence m
2

also

divides the sum of the elements in G2; since m
2

divides all but at most one element of

G2, it must divide all elements of G2, so m
2
| m
k

and thus k | 2, contrary to the condition
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lcm(D) = m. Thus |D| ≤ 2, so since
∑

d∈D
(
m− m

d

)
≥ 2m− 2 we must have D = [m2].

By replacing f and g by f ◦ν1 and g ◦ν2 for some degree-one νi ∈ C(X), we may assume

that f(0) = Q1, f(∞) = Q2, and that the two points P in g−1({Q1, Q2}) for which

m - eg(P ) are 0 and ∞. By replacing f and g by µ ◦ f and µ ◦ g for some degree-one

µ ∈ C(X), we may assume that Q1 = 0, Q2 =∞, and the numerator and denominator

of f have the same leading coefficient. It follows that f(X) = Xm and g(X) = Xah(X)m

for some a coprime to m and some h ∈ C(X), so that (4.1.1) holds.

Next suppose that the Fi’s are as in (4.1.2). Then the numbers of 1’s in F1 and F2 are

d and 2− d, where we may assume that d > 0 by interchanging Q1 and Q2 if necessary.

Putting p := |G′1|, q := |G′2|, and D := [m
b

: b ∈ G′3], (2.7) becomes

(4.2)
m− d

2
p+

m+ d− 2

2
q +

∑
b∈D

(
m− m

b

)
∈ {2m− 2, 2m}.

Hence m−2
2

(p+q) ≤ 2m, so that p+q < 5. Since the sum of the elements in G1∪G2 is 2n,

and this sum is congruent mod 2 to p+q, it follows that p+q is even, so p+q ∈ {0, 2, 4}.
If p + q = 4 then (4.2) implies that D = ∅, and that if in addition m is even (so that

d = 2) then p ∈ {0, 2}. Now assume p + q ≤ 2, so by (2.9.2) we have lcm(D) ≥ m
2

.

Since 2 >
∑

b∈D
(
1 − 1

b

)
, Lemma 3.2 implies that either |D| ≤ 2 or D = [22, k] with

k ≥ m
4

. If p + q = 0 then by (4.2) we have either D = [12] or D = [22, m
2

], but the

latter possibility cannot occur since exactly one element of G3 is not divisible by m
2

,

contradicting Lemma 2.8. If p + q = 2 then (4.2) rules out D = [22, k], and one easily

checks that (since lcm(D) ≥ m
2

) the only possibilities are either D = [m
2

] with d = 2 and

p = 0, or D = [m] with 1 ∈ {d, p}. Finally, by replacing f and g by µ◦f ◦ν1 and µ◦g for

some degree-one µ, ν1 ∈ C(X), we may assume that f(1) = 1 = Q1, f(∞) = ∞ = Q3,

Q2 = −1, and ef (1) = 1 = ef (−1); since the Fi’s are as in (4.1.2), these conditions imply

that f(X) = Tm(X) [34], so that (4.1.2) holds.

Lemma 3.9 implies the result when the Fi’s are as in (4.1.4), and we have used similar

arguments to prove Theorem 4.1 in the remaining cases.

�
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Theorem 4.1 describes a short list of candidate ramification types for f and g. How-

ever, it is not always true that each such candidate ramification type is actually the

ramification type of a rational function. For instance, the theory of elliptic curves, along

with an analytic result due to Milnor [24, Thm. 3.1], implies that there exists f ∈ C(X)

with ramification as in (4.1.5) if and only if m can be written as c2 + cd + d2 for some

nonnegative integers c and d. In general, the existence of a rational function with pre-

scribed ramification type can be determined by means of the following result of Hurwitz,

which reduces the question to examining tuples of elements in a finite symmetric group

(which is a finite problem for any prescribed degree):

Theorem 4.3 (Hurwitz). For any positive integer m, any multisets A1, . . . , Ar con-

sisting of positive integers, and any distinct Q1, . . . , Qr ∈ C ∪ {∞}, the following are

equivalent:

(4.3.1) there exists a degree-m rational function f(X) ∈ C(X) such that Ef (Qi) = Ai

and Ef (Q) = [1m] for each Q /∈ {Q1, . . . , Qr}
(4.3.2) all three of the following hold:

•
∑

a∈Ai
a = m for each i with 1 ≤ i ≤ r

•
∑r

i=1(m− |Ai|) = 2m− 2

• there are elements g1, . . . , gr ∈ Sm such that the multiset of cycle lengths of

gi is Ai, the product g1g2 . . . gr is the identity permutation, and the subgroup

of Sm generated by g1, . . . , gr is transitive.

Furthermore, Theorem 4.3 can be combined with (2.7) and Fried’s reducibility theorem

[14] in order to give a similar characterization of the ramification types of pairs of rational

functions (f, g) for which the numerator of f(X)− g(Y ) defines an irreducible curve of

genus 0 or 1. Thus it is a finite problem to determine the ramification types of all such

pairs of rational functions having prescribed degrees. In particular, it is a finite problem

to determine all solutions to Questions 1.4 or 1.5 which do not satisfy the hypotheses of

Theorem 1.6.
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5. Conclusion

In this paper, we use combinatorial and algebraic methods to prove geometric re-

sults (Theorems 2.3 and 4.1) describing the ramification of large-degree complex ratio-

nal functions f and g for which the numerator of f(X) − g(Y ) defines an irreducible

curve of genus 0 or 1. We deduce two consequences: the number theoretic Theorem 1.3

addressing rational functions f, g ∈ Q(X) for which f(Q) ∩ g(Q) is infinite, and the

analytic Theorem 1.6 about the functional equation f ◦ f̂ = g ◦ ĝ with f, g ∈ C(X)

and f̂ , ĝ meromorphic on C. The results show that the rational functions satisfying any

of these conditions are unexpectedly nice: it must be that either the Galois closure of

C(X)/C(f(X)) has genus 0 or 1 (in which case all corresponding functions are under-

stood), or the analogous condition holds for g, or there is a change of variables turning

the equation f(X) = g(Y ) into the special equation Xc(X − 1)d = γY c(Y − 1)d.

In the future, the numerical bounds will hopefully be removed from the hypotheses

of Theorems 1.3, 1.6, and 2.3. Another idea is exploring the possibility of using the

case where the numerator of f(X)− g(Y ) is irreducible as the base case for an inductive

approach that resolves the case where the numerator of f(X)−g(Y ) is reducible. Finally,

Theorem 4.3 and other results can be used to determine which of the ramification types

in the conclusion of Theorem 4.1 actually correspond to pairs of rational functions f, g ∈
C(X) satisfying the hypotheses of that result.
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