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Extremal Functions of Forbidden Multidimensional Matrices

Abstract

Pattern avoidance is a central topic in graph theory and combinatorics. Pattern avoidance in matrices

has applications in computer science and engineering, such as robot motion planning and VLSI circuit

design. A d-dimensional zero-one matrix A avoids another d-dimensional zero-one matrix P if no sub-

matrix of A can be transformed to P by changing some ones to zeros. A fundamental problem is to

study the maximum number of nonzero entries in a d-dimensional n×·· ·×n matrix that avoids P. This

maximum number, denoted by f (n,P,d), is called the extremal function.

We advance the extremal theory of matrices in two directions. The methods that we use come

from combinatorics, probability, and analysis. Firstly, we obtain non-trivial lower and upper bounds

on f (n,P⊗R,d) when n is large, where P is a d-dimensional permutation matrix, R is a k1× ·· ·× kd

matrix of all ones, and P⊗R is the d-dimensional matrix obtained by replacing each 1-entry of P with

a copy of R and each 0-entry of P with a zero matrix the same size as R. In particular, we establish the

tight bound Θ(nd−1) on the extremal function for every d-dimensional tuple permutation matrix P⊗R,

where exactly one of k1, . . . ,kd is greater than unity. This tight bound is in the lowest possible order that

an extremal function of a nontrivial matrix can ever achieve.

Secondly, we show that f (n,P,d) is a super-homogeneous function of n in multiple dimensions for

a class of permutation matrices. We use this super-homogeneity to show that the limit inferior of the

sequence { f (n,P,d)
nd−1 } has a lower bound 2Ω(k1/d) for a family of k×·· ·× k permutation matrices. We also

improve the upper bound on the limit superior from 2O(k logk) to 2O(k) for all k× ·· · × k permutation

matrices and show that this new upper bound also holds for tuple permutation matrices.



1 Introduction

Pattern avoidance is a central topic in graph theory and combinatorics [2, 7, 14, 16, 18, 21, 24, 25, 26]. In

this paper, we study d-dimensional matrices (or arrays) with only two distinct entries, 0 and 1, that avoid

certain patterns. We are interested in the extremal problem of finding the largest number of ones in these

matrices.

The extremal theory of matrices was initiated in papers [1, 9, 22] around 1990 to study specific problems

arising in computational and discrete geometry. Mitchell produced an algorithm for computing a shortest

rectilinear path avoiding rectilinear obstacles in the plane [22]. He showed that the complexity of this

algorithm is bounded above by the solution of the extremal problem of certain matrices. Bienstock and

Györi [1] found an upper bound on the solution of the extremal problem, thus bounding the complexity of

the algorithm. Mitchell’s algorithm can be directly applied to motion planning in robotics and wire routing

in VLSI circuit design [20]. Füredi [9] used the extremal problem to derive an upper bound on Erdős-Moser

[4] problem of determining the maximum number of unit distances in a convex n-gon.

Matrix extremal problems also find applications to graph theory and other areas of combinatorics. If

we associate 2-dimensional 0-1 matrices with ordered bipartite graphs by relating rows and columns to

the two ordered partite sets of vertices and interpreting ones as edges, then this extremal problem can be

viewed as the Turán extremal problem for ordered bipartite graphs [23]. The most recent surge in interest

in the extremal theory of matrices is due to the resolution of the Stanley-Wilf conjecture in enumerative

combinatorics using the extremal problem of matrices [17, 21].

We denote a d-dimensional n1×·· ·× nd matrix by A = (ai1,...,id ), where 1 ≤ il ≤ n` for ` = 1,2, . . . ,d.

Matrix A is called a 0-1 matrix if all its entries are either 0 or 1. A multidimensional matrix is also called

a multidimensional array in computer science. We use the word “matrix" instead of “array" throughout the

paper since virtually all literature uses the word “matrix" in this context.

We may view a d-dimensional 0-1 matrix A = (ai1,...,id ) geometrically as a d-dimensional rectangular

box of lattice points with coordinates (i1, . . . , id). An `-cross section of matrix A is the set of all the entries

ai1,...,id whose `th coordinates have the same value. An `-row of matrix A is the collection of all the entries

ai1,...,id whose coordinates other than the `th coordinate have fixed values.

A d-dimensional k×·· ·× k zero-one matrix is a permutation matrix if each of its l-cross sections con-

tains exactly one nonzero entry for every ` = 1, . . . ,d. The Kronecker product of two d-dimensional 0-1
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matrices M and N, denoted by M⊗N, is a d-dimensional matrix obtained by replacing each 1-entry of M

with a copy of N and each 0-entry of M with a zero matrix the same size as N.

We say that a d-dimensional 0-1 matrix A contains another 0-1 matrix P if A has a submatrix that can

be transformed into P by changing any number of ones to zeros. Otherwise, A is said to avoid P. Denote by

f (n,P,d) the maximum number of ones in a d-dimensional n×·· ·×n zero-one matrix that avoids a given

d-dimensional 0-1 matrix P. We are interested in the asymptotic behavior of the extremal function f (n,P,d)

for large n.

A motivation to study the extremal problem of multidimensional matrices comes from graph theory. A

2-dimensional n× n zero-one matrix can be represented as an ordered bipartite graph with partite sets of

size n. Similarly, a d-dimensional 0-1 matrix corresponds to an ordered d-partite, d-uniform hypergraph.

The extremal function f (n,P,d) is the maximum number of hyperedges in an ordered d-partite, d-uniform

hypergraph where each partite set has n vertices. Avoiding a given pattern P amounts to avoiding the

corresponding ordered hypergraph.

It is easy to obtain trivial lower and upper bounds on f (n,P,d).

Proposition 1.1. If P is a 0-1 matrix that contains at least two ones, then nd−1 ≤ f (n,P,d)≤ nd .

Proof: We can always choose a d-dimensional n× ·· · × n zero-one matrix A, with 1-entries on a single

l-cross section for some l and 0-entries elsewhere, such that A avoids P. Matrix A has exactly nd−1 ones, so

the first inequality follows.

The second inequality follows from the fact that every d-dimensional n×·· ·×n zero-one matrix has a

total of nd entries and that the matrix hence has at most nd ones.

The upper bound in Proposition 1.1 is one order higher than the lower bound. The main problem is to

improve the lower and upper bounds on f (n,P,d) so that their orders are as close as possible.

The two-dimensional case of d = 2 has been well studied. Füredi and Hajnal conjectured that f (n,P,2)=

O(n) for all permutation matrices P [10]. Klazar showed that this conjecture implies the Stanley-Wilf

conjecture [17]. Marcus and Tardos proved the Füredi and Hajnal conjecture [21] and hence settled the

Stanley-Wilf conjecture. Keszegh conjectured that f (n,P,2) = O(n) for all tuple permutation matrices P

[15]. Geneson proved that the conjecture is true [11].

When R is a k1× k2 matrix of all ones, the extremal problem for f (n,R,2) is the matrix version of the

classical Zarankiewicz problem. Kővári, Sós, and Turán found an upper bound O(n2−max(k1 ,k2)
k1k2 ) on f (n,R,2)
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[19]. A lower bound Ω(n2− k1+k2−2
k1k2−1 ) was also known [5]. Hesterberg extended these bounds to f (n,P⊗R,2)

where P is a permutation matrix [12, 13].

Pach and Tardos showed that f (n,P,2) is super-additive in n [23]. By Fekete’s Lemma on super-additive

sequences [6], the sequence { f (n,P,2)
n } is convergent. The limit is known as the Füredi-Hajnal limit and has

recently attracted great attention [3, 7]. Cibulka [3] showed that this limit is always at least 2(k− 1) when

P is a k× k permutation matrix and that the limit is exactly 2(k− 1) when P is the identity matrix. Fox

showed that the Füredi-Hajnal limit has a lower bound 2Ω((k
1
2 ) for a family of k× k permutation matrices

[8]. Marcus and Tardos [21] showed that this limit has an upper bound 2O(k logk) for every k×k permutation

matrix P, and Fox [7] improved this upper bound to 2O(k).

Little has been done on the multidimensional case. Klazar and Marcus [18] studied the extremal function

when the d-dimensional matrix P is a permutation matrix of size k×·· ·×k and found f (n,P,d) = O(nd−1),

generalizing the d = 2 results [21]. In particular, they showed that f (n,P,d)
nd−1 = 2O(k logk), which is the multidi-

mensional generalization of the Marcus and Tardos upper bound on the Füredi-Hajnal limit [21].

In this paper, we advance the extremal theory of matrices in two directions. In the first direction, we

study the extremal functions f (n,R,d) and f (n,P⊗R,d), where P is a permutation matrix and R is a k1×

·· ·×kd matrix of ones only; matrix P⊗R is called a block permutation matrix. We show that both f (n,R,d)

and f (n,P⊗R,d) have a lower bound Ω(nd−β ) and an upper bound O(nd−α), where α = max(k1,...,kd)
k1·k2···kd

and

β = k1+···+kd−d
k1·k2···kd−1 . These bounds significantly improve the trivial ones given in Proposition 1.1.

Both the lower bound Ω(nd−β ) and upper bound O(nd−α) are in the same order as Θ(nd−1) whenever

α = β . This is exactly when only one of k1, . . . ,kd of R is larger than 1; the corresponding P⊗R is a tuple

permutation matrix.

When α 6= β , our results on f (n,R,d) generalize the Kővári-Sós-Turán upper bound [19] from two

dimensions to multiple dimensions. Our results on f (n,P⊗R,d) also extend Hesterberg’s results [12] from

d = 2 to d > 2.

When α = β , our result that f (n,P,d) = Θ(nd−1) for every d-dimensional tuple permutation matrix P,

on one hand, generalizes Geneson’s result [11] from d = 2 to d ≥ 2. On the other hand, even when d = 2

our ideas improve some key calculations in Geneson’s paper [11]. These improvements are vital in our

derivation of a new upper bound on the limit superior of the sequence { f (n,P,d)
nd−1 } that we discuss below.

The importance of our result f (n,P,d) = Θ(nd−1) for every d-dimensional tuple permutation matrix P
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lies in the fact that, in view of Proposition 1.1, Θ(nd−1) is the lowest possible order for the extremal function

of any nontrivial d-dimensional matrix.

In the second direction, we study the limit inferior and limit superior of the sequence { f (n,P,d)
nd−1 } where

P satisfies f (n,P,d) = Θ(nd−1). These are the multidimensional analogues of the Füredi-Hajnal limit. We

show that the limit inferior is at least d(k− 1) for k×·· ·× k permutation matrices, generalizing Cibulka’s

result [3] from d = 2 to all d ≥ 2.

We observe that f (n,P,d) is super-homogeneous in higher dimensions, i.e., f (sn,P,d)≥Ksd−1 f (n,P,d)

for some positive constant K. This super-homogeneity is key to our proof that the limit inferior of { f (n,P,d)
nd−1 }

has a lower bound 2Ω(k1/d) for a family of k×·· ·×k permutation matrices, generalizing Fox’s result [8] from

d = 2 to d ≥ 2.

Finally, we show that the limit superior of the sequence { f (n,P,d)
nd−1 } is bounded above by 2O(k) for all

k× ·· ·× k permutation matrices P. This is a substantial improvement of Klazar and Marcus upper bound

2O(k logk) for d > 2 in paper [18] and it also generalizes Fox’s bound 2O(k) on the Füredi-Hajnal limit in two

dimensions [7]. We further show that this upper bound 2O(k) is also true for every tuple permutation matrix P,

which is a new result even for d = 2. We are able to extend the new upper bound from permutation matrices

to tuple permutation matrices mainly because of our improvement of Geneson’s approach as mentioned

above.

The rest of the paper is organized as follows. In Section 2, we study f (n,P,d) when P is a block

permutation matrix but not a tuple permutation matrix. The more difficult case when P is a tuple permutation

matrix is analyzed in Section 3. In Section 4, we study the limit inferior and limit superior of the sequence

{ f (n,P,d)
nd−1 } for permutation and tuple permutation matrices P. We conclude the paper and discuss our future

directions in Section 5.

2 Block permutation matrices

In this section, we study the extremal function of a variant of d-dimensional permutation matrices. We

are interested in the forbidden matrices which can be written as the Kronecker product of a d-dimensional

permutation matrix and a d-dimensional matrix of 1-entries only.

Let Rk1,...,kd be the d-dimensional k1×·· ·×kd all-ones matrix. We study lower and upper bounds on the

extremal function of block permutation matrix P⊗Rk1,...,kd , where P is a d-dimensional permutation matrix.
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We first study the extremal function of Rk1,...,kd . We use the probabilistic method to obtain a lower bound

on f (n,Rk1,...,kd ,d). When d = 2, this lower bound is classical [5].

Theorem 2.1. If k1 · k2 · · ·kd > 1, then f (n,Rk1,...,kd ,d) = Ω
(
nd−β (k1,k2,...,kd)

)
, where β = k1+···+kd−d

k1·k2···kd−1 .

Proof: Let each entry of a d-dimensional n×·· ·×n zero-one matrix A be chosen to be 1 with probability

p = n−β (k1,...,kd) and 0 with probability 1− p. The expected number of 1-entries in A is pnd . There are( n
k1

)
·
( n

k2

)
· · ·
( n

kd

)
possible copies of Rk1,...,kd in matrix A and each has a probability of pk1·k2···kd of occurring.

The expected number of copies of Rk1,...,kd in A is(
n
k1

)
·
(

n
k2

)
· · ·
(

n
kd

)
pk1·k2···kd ≤Cnk1+···+kd pk1·k2···kd ,

where, since at least one of k1, . . . , kd is greater than one, C is a positive constant less than 1.

Let A′ be the matrix formed by changing a single 1-entry in each copy of Rk1,...,kd in A to a 0-entry.

Then A′ avoids Rk1,...,kd and the expected number of 1-entries in A′ is at least pnd−Cnk1+k2+···+kd pk1·k2···kd =

(1−C) nd−β (k1,k2,...,kd). As a consequence, there exists some matrix A′ that avoids Rk1,...,kd and has at least

so many 1-entries.

We now obtain an upper bound on the extremal function of Rk1,...,kd . When d = 2, this upper bound is

due to Kővári, Sós, and Turán [19].

Theorem 2.2. f (n,Rk1,...,kd ,d) = O(nd−α(k1,...,kd)), where α = max(k1,...,kd)
k1·k2···kd

.

Proof: We prove the theorem by induction on d. The base case of d = 1 is trivial. Assuming that

f (n,Rk1,...,kd−1 ,d−1)=O(nd−1−α(k1,...,kd−1)) for some d≥ 2, we show that f (n,Rk1,...,kd ,d)=O(nd−α(k1,...,kd)).

Throughout the proof, we let A = (ai1,...,id ) be a d-dimensional n×·· ·×n matrix that avoids Rk1,...,kd and

has the maximum number, f (n,Rk1,...,kd ,d), of ones. We need the following lemma on the number of d-rows

that have 1-entries in each of any predetermined kd d-cross sections.

Lemma 2.3. For any set of kd d-cross sections of A, there are O
(
nd−1−α(k1,...,kd−1)

)
d-rows in A which

contain a 1-entry in each of these d-cross sections.

Proof: Let the dth coordinates of these d-cross sections be `1, . . . , `kd . Define a (d− 1)-dimensional n×

·· ·×n matrix B = (bi1,...,id−1) such that bi1,...,id−1 = 1 if ai1,...,id−1,`1 = · · ·= ai1,...,id−1,`kd
= 1 and bi1,...,id−1 = 0

otherwise.
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We claim that matrix B must avoid Rk1,...,kd−1 . Suppose to the contrary that B contains Rk1,...,kd−1 . Let

e1, . . . ,ek1·k2···kd−1 be all the 1-entries in B that represent Rk1,...,kd−1 . By the construction of B, there are kd

nonzero entries with coordinates (x1, . . . ,xd−1, `1), . . . ,(x1, . . . ,xd−1, `kd ) in A corresponding to each ei with

coordinates (x1, . . . ,xd−1) in B. All these k1 · k2 · · ·kd nonzero entries form a copy of Rk1,...,kd in A, a con-

tradiction. Thus B must avoid Rk1,...,kd−1 and by our inductive assumption, B must have O(nd−1−α(k1,...,kd−1))

ones. The result follows.

Suppose all the d-rows of A have r1, . . . ,rnd−1 non-zero entries, respectively. Counting the total number

of sets of kd nonzero entries in the same d-row in two different ways yields

nd−1

∑
i=1

(
ri

kd

)
=

(
n
kd

)
O
(

nd−1−α(k1,...,kd−1)
)
, (2.1)

where we use Lemma 2.3 to obtain the right hand side.

Matrix A avoids Rk1,...,kd and has the largest possible number of 1-entries, so ri ≥ kd−1 for 1≤ i≤ nd−1.

Since
(r

k

)
is a convex function of r for r ≥ k−1, we apply Jensen’s inequality to obtain

nd−1

∑
i=1

(
ri

kd

)
≥ nd−1

( 1
nd−1 ∑

nd−1

i=1 ri

kd

)
= nd−1

( 1
nd−1 f (n,Rk1,...,kd ,d)

kd

)
,

where, in the equality, we use the assumption that A has f (n,Rk1,...,kd ,d) total 1-entries. Substituting this

into equation (2.1) yields

nd−1
( 1

nd−1 f (n,Rk1,...,kd ,d)
kd

)
=

(
n
kd

)
O
(

nd−1−α(k1,...,kd−1)
)
,

which together with
(n

k

)
= Θ(nk) gives

nd−1
(

1
nd−1 f (n,Rk1,...,kd ,d)

)kd

= O
(

nkd ·nd−1−α(k1,...,kd−1)
)
.

This implies

f
(

n,Rk1,...,kd ,d
)
= O

(
nd− α(k1 ,...,kd−1)

kd

)
.

Similarly, we have

f (n,Rk1,...,kd ,d) = O
(

nd− α(k2 ,...,kd )
k1

)
.

Note that max
(

α(k2,...,kd)
k1

, α(k1,...,kd−1)
kd

)
= α(k1, . . . ,kd). Thus taking the smaller of the two upper bounds
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gives

f (n,Rk1,...,kd ,d) = O
(

nd−α(k1,...,kd)
)

which completes the inductive step, and thus Theorem 2.2 is proved.

We make the following observation on α(k1, . . . ,kd) and β (k1, . . . ,kd).

Proposition 2.4. Suppose d > 1 and k1, . . . ,kd be positive integers such that k1 · k2 · · ·kd > 1. If only

one of k1, . . . ,kd is greater than 1, then α(k1, . . . ,kd) = β (k1, . . . ,kd) = 1. Otherwise, 0 < α(k1, . . . ,kd) <

β (k1, . . . ,kd)< 1.

We omit the proof since it is straightforward. Proposition 2.4 implies that the lower bound of Theorem

2.1 and the upper bound of Theorem 2.2 are significant improvements of the bounds in Proposition 1.1.

We now study the extremal function of the Kronecker product P⊗Rk1,...,kd , where P is a d-dimensional

permutation matrix. We show that the extremal functions of P⊗Rk1,...,kd and Rk1,...,kd share the same lower

and upper bounds.

Theorem 2.5. If P is a d-dimensional permutation matrix and at least two of k1, . . . ,kd are greater than 1,

then there exist constants C1 and C2 such that for all n,

C1nd−β (k1,...,kd) ≤ f (n,P⊗Rk1,...,kd ,d)≤C2nd−α(k1,...,kd) (2.2)

Proof: We first have

f (n,Rk1,...,kd ,d)≤ f (n,P⊗Rk1,...,kd ,d). (2.3)

This follows from the fact that any matrix that avoids Rk1,...,kd must also avoid P⊗Rk1,...,kd . The left inequality

of (2.2) is then the result of (2.3) and Theorem 2.1.

To prove the right inequality of (2.2), we follow Hesterberg’s idea for the 2-dimensional case [13] to

estimate f (n,P⊗Rk1,...,kd ,d) first for n = cm, where c is a positive integer to be determined, and then for all

other positive integers n.

We make use of the upper bound in Theorem 2.2

f (n,Rk1,...,kd ,d)≤ g(n) , (2.4)

7



where g(n) = Knd−α(k1,...,kd) for some positive constant K, and claim that

f (cm,P⊗Rk1,...,kd ,d)≤ 2cdg(cm). (2.5)

We justify the claim by induction. The base case of m = 0 is trivially true. Suppose that

f (n,P⊗Rk1,...,kd ,d)≤ 2cdg(n) (2.6)

for n = cm. We show that f (cn,P⊗Rk1,...,kd ,d)≤ 2cdg(cn).

Let A be a d-dimensional cn×·· ·× cn matrix avoiding P⊗Rk1,...,kd with f (cn,P⊗Rk1,...,kd ,d) total 1-

entries. We divide A = (ai1,...,id ) into cd disjoint submatrices of size n×·· ·×n. We label these submatrices

by S(i1, . . . , id) = (s j1,..., jd ), where

s j1,..., jd = a j1+n(i1−1),..., jd+n(id−1) .

These are called S submatrices throughout the paper.

Let C be the d-dimensional c×·· ·×c matrix such that ci1,...,id = 1 if submatrix S(i1, . . . , id) of A contains

Rk1,...,kd and that ci1,...,id = 0 otherwise. Since any two 1-entries of the permutation matrix P differ in all

coordinates, C must avoid P or else A contains P⊗Rk1,...,kd .

We can classify all the S submatrices of A into two classes.

Case 1: S contains Rk1,...,kd

Since C avoids P, there are at most f (c,P,d) such S submatrices. Clearly each S submatrix must avoid

P⊗Rk1,...,kd , so it has at most f (n,P⊗Rk1,...,kd ,d) 1-entries. There are at most f (c,P,d) f (n,P⊗Rk1,...,kd ,d)

1-entries from this type of S submatrices.

Case 2: S avoids Rk1,...,kd

There are at most cd such submatrices in total. Each has at most f (n,Rk1,...,kd ,d) 1-entries. There are at

most cd f (n,Rk1,...,kd ,d) 1-entries from the second type of S submatrices.

Summing the numbers of 1-entries in both cases gives

f (cn,P⊗Rk1,...,kd ,d)≤ f (c,P,d) f (n,P⊗Rk1,...,kd ,d)+ cd f (n,Rk1,...,kd ,d).

On the right hand side of the inequality, f (n,P⊗Rk1,...,kd ,d) has an upper bound 2cdg(n) because of the

inductive assumption (2.6) and f (n,Rk1,...,kd ,d) has an upper bound g(n) by (2.4). Since f (c,P,d) =O(cd−1)
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for any permutation matrix P [18], there exists a constant L such that f (c,P,d) ≤ Lcd−1. Because at least

two of k1,k2, . . . ,kd are greater than 1, it follows from Proposition 2.4 that α < 1. Hence, the integer c can

be chosen so large that 2Lcα−1 ≤ 1. Therefore,

f (cn,P⊗Rk1,...,kd ,d)≤ (Lcd−1)(2cdg(n))+ cdg(n)≤ [2Lcα(k1,...,kd)−1]cdg(cn)+ cdg(cn)≤ 2cdg(cn) ,

where we use g(n) = Knd−α in the second inequality. This completes our induction and hence proves

equation (2.5).

Finally, we estimate f (n,P⊗Rk1,...,kd ,d) for all positive integers n.

f (n,P⊗Rk1,...,kd ,d) = f (clogc n,P⊗Rk1,...,kd ,d)

≤ f (cdlogc ne,P⊗Rk1,...,kd ,d)

≤ 2cdg(cdlogc ne)

≤ 2cdg(clogc n+1)

= 2cdg(cn)

≤ 2cdcdg(n),

where dlogc ne is the smallest integer ≥ logc n, and we use (2.5) in the second inequality and g(n) = Knd−α

in the last inequality. This proves the right inequality of (2.2).

The proof of Theorem 2.5 is completed.

We conclude this section with an observation. If only one of k1, . . . ,kd is greater than one, the matrix

P⊗Rk1,...,kd is a tuple permutation matrix. By Proposition 2.4, α(k1, . . . ,kd) = 1. The proof of Theorem

2.5 fails in this case, but it can be modified to show that f (n,P⊗Rk1,...,kd ,d) = O(nd−1+ε), where ε is an

arbitrarily small positive number. To see this, we can replace g(n) of (2.4) by g(n) = Knd−1+ε and choose

c so large that 2Lc−ε ≤ 1. In the next section, we improve this result and show that f (n,P⊗Rk1,...,kd ,d) =

O(nd−1). The method is quite different from that of this section.

3 Tuple permutation matrices

In this section, we study the extremal function of an arbitrary tuple permutation matrix. As previously

mentioned, a tuple permutation matrix is the Kronecker product of a d-dimensional permutation matrix and
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Rk1,...,kd , where only one of k1, . . . ,kd is larger than unity. We improve Geneson’s ideas for d = 2 case [11]

and obtain a tight bound on the extremal function for d ≥ 2.

Suppose P is a permutation matrix. We call a matrix P⊗Rk1,...,kd a j-tuple permutation matrix generated

by P if one of k1, . . . ,kd is equal to j and the rest are unity. In particular, a j-tuple permutation matrix is

called a double permutation matrix if j = 2.

Let

F(n, j,k,d) = max
M

f (n,M,d) ,

where M ranges through all d-dimensional j-tuple permutations matrices generated by d-dimensional k×

·· ·× k permutation matrices.

Theorem 3.1. For all j ≥ 2, F(n, j,k,d) = Θ(nd−1).

The proof of this theorem is based on a series of lemmas.

Since F(n, j,k,d) has nd−1 as a lower bound in view of Proposition 1.1, it suffices to prove that it has

upper bound O(nd−1).

We first observe that F(n, j,k,d) and F(n,2,k,d) are bounded by each other.

Lemma 3.2. F(n,2,k,d)≤ F(n, j,k,d)≤ ( j−1)F(n,2,k,d) for j > 2 .

Proof: It suffices to show that

f (n,P,d)≤ f (n,P′,d)≤ ( j−1) f (n,P,d), (3.1)

where P is a double permutation 2k× k×·· ·× k matrix, P′ is a j-tuple permutation jk× k×·· ·× k matrix,

and both P and P′ are generated from the same arbitrary permutation matrix of size k×·· ·× k.

The left inequality of (3.1) follows from the fact that a d-dimensional n×·· ·× n matrix that avoids P

must also avoid P′.

To prove the right inequality, we suppose A is a d-dimensional n×·· ·×n matrix that avoids P′ and has

f (n,P′,d) nonzero entries. In each 1-row of A, we list all the 1-entries e1,e2, . . . in the order of increasing

first coordinates and then change all the 1-entries in this 1-row except e1,e j,e2 j−1, . . . to 0-entries. In this

way, we obtain a new matrix A′, which avoids P since A avoids P′. This together with |A| ≤ ( j− 1)|A′|,

where |M| denotes the number of 1-entries in M, justifies the right inequality of (3.1).
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In view of Lemma 3.2, it suffices to study the upper bound on f (n,P,d), where P is a d-dimensional

double permutation matrix of size 2k× k×·· ·× k.

Suppose A is an arbitrary d-dimensional kn×·· ·× kn matrix that avoids P. As in Section 2, we study

the S submatrices of A, which are constructed by dividing A into nd disjoint submatrices of size k×·· ·× k

and labeling these submatrices as S(i1, . . . , id).

The contraction matrix of A is defined to be the d-dimensional n×·· ·× n matrix C = (ci1,i2,...,id ) such

that ci1,i2,...,id = 1 if S(i1, i2, . . . , id) is a nonzero matrix and ci1,i2,...,id = 0 if S(i1, i2, . . . , id) is a zero matrix.

We now construct a d-dimensional n× ·· · × n zero-one matrix Q = (qi1,...,id ). Each entry qi1,...,id is

defined based on the S submatrices of A.

1. qi1,...,id = 0 if S(i1, . . . , id) is a zero matrix.

2. qi1,...,id = 1 if S(i1, i2, . . . , id) is a nonzero matrix and S(1, i2, . . . , id), . . ., S(i1−1, i2, . . . , id) are all zero

matrices.

3. Let x be the largest integer less than i1 for which qx,i2,...,id = 1. Then define qi1,i2,...,id = 1 if the

augmented matrix formed by submatrices S(x, i2, . . . , id), . . . , S(i1, i2, . . . , id) contains at least two

1-entries in the same 1-row, and qi1,...,id = 0 otherwise.

Lemma 3.3. Q avoids P.

Proof: Suppose to the contrary that Q contains P. Suppose the 1-entries e1, e2, . . . , e2k, where e2i−1 and e2i

are in the same 1-row, form a copy of P in Q. Denote e2i−1 = qx1,x2,...,xd and e2i = qx′1,x2,...,xd
, where x1 < x′1.

Then, by the definition of matrix Q, the augmented matrix formed by S(x1,x2, . . . ,xd), . . . ,S(x′1,x2, . . . ,xd)

contains two 1-entries, denoted by f2i−1 and f2i, in the same 1-row of A. The one-entries f1, . . . , f2k form a

copy of P in A, a contradiction.

We now study those S submatrices of A which contain two nonzero entries in the same 1-row. The next

lemma is the key difference between our approach and Geneson’s approach [11] even for d = 2.

Lemma 3.4. A has at most F(n,1,k,d) total S submatrices with two nonzero entries in the same 1-row.

Proof: We assume to the contrary that A has more than F(n,1,k,d) such S submatrices. Let A′ be formed

by changing all 1-entries in all other S submatrices to 0-entries in A. Suppose that the double permutation
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matrix P is generated from the permutation matrix P′ and that C′ is the contraction matrix of A′. Matrix C′

has more than F(n,1,k,d)≥ f (n,P′,d) 1-entries, so it must contain P′. Denote by e1, . . . ,ek the 1-entries in

C′ forming a copy of P′. Then each of S(e1), . . . ,S(ek) is a S submatrix of A′ that has at least two nonzero

entries in the same 1-row. All of these pairs of nonzero entries in S(e1), . . . ,S(ek) form a copy of P in A′.

Hence, A′ contains P and so does A, a contradiction.

For each 1-entry qi1,i2,...,id = 1 of Q, we define a chunk C∗(i1, i2, . . . , id), which is an augmented matrix

formed by consecutive S submatrices, as follows [11].

1. If qi1,i2,...,id = 1 and i′1 is the smallest integer greater than i1 such that qi′1,i2,...,id
= 1, then the chunk

C∗(i1, i2, . . . , id) is defined to be the augmented matrix formed by S(i1, i2, . . . , id), . . . , S(i′1−1, i2, . . . , id).

2. If qi1,i2,...,id = 1 and there is no i′1 > i1 such that qi′1,i2,...,id
= 1, then C∗(i1, i2, . . . , id) is the augmented

matrix formed by S(i1, i2, . . . , id), . . . , S(n, i2, . . . , id).

We call a chunk j-tall, where j = 2,3, . . . ,d, if each of its j-cross sections contains at least one 1-entry.

The (d−1)-dimensional matrix M′ = (m′i1,...,i j−1,i j+1,...,id ) is called the j-remainder of a d-dimensional matrix

M = (mi1,...,id ) if m′i1,...,i j−1,i j+1,...,id is defined to be 1 when there exists i j such that mi1,...,id = 1 and to be 0

otherwise.

Lemma 3.5. For each j = 2,3, . . . ,d and each m = 1, . . . ,n, A has at most F(n,1+kd−2,k,d−1) total j-tall

chunks of the form C∗(i1, . . . , i j−1,m, i j+1, . . . , id).

Proof: Assume to the contrary that A has r chunks C∗1 ,C
∗
2 , . . . ,C

∗
r , where r > F(n,1+ kd−2,k,d−1), of the

form C∗(i1, . . . , i j−1,m, i j+1, . . . , id) that have 1-entries in all their j-cross sections. Let S1,S2, . . . ,Sr be the

starting S submatrices of the chunks C∗1 ,C
∗
2 , · · · ,C∗r , respectively. Let A′ be the matrix formed by changing

all 1-entries of A that do not lie in the chunks C∗1 , . . . ,C
∗
r to 0-entries. We further change all the 1-entries of

A′ that do not sit in S1, . . . ,Sr to 0-entries and denote the resulting matrix by A′′. Denote by C the contraction

matrix of the j-remainder of A′′. Then C is a (d−1)-dimensional n×·· ·× n matrix and it has r ones so it

contains every (1+ kd−2)-tuple (d−1)-dimensional permutation matrix.

We now pick a (d− 1)-dimensional (1+ kd−2)-tuple permutation matrix. Since P is a d-dimensional

double permutation matrix of size 2k× k×·· ·× k and j 6= 1, the j-remainder of P is a (d−1)-dimensional

double permutation matrix of size 2k×k×·· ·×k. We denote by P′ the (d−1)-dimensional (1+kd−2)-tuple
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permutation matrix of size (1+kd−2)k×k×·· ·×k such that P′ and the j-remainder of P are generated from

the same (d−1)-dimensional permutation matrix.

For each pair of ones in a row of P with coordinates (x1,x2, . . . ,xd) and (x1 +1,x2, . . . ,xd), P′ has corre-

sponding (1+ kd−2) ones with coordinates (x̃1,x2, . . . ,x j−1,x j+1, . . . ,xd), (x̃1 + 1,x2, . . . ,x j−1,x j+1, . . . ,xd),

· · · , (x̃1 + kd−2,x2, . . . ,x j−1,x j+1, . . . ,xd) in a single 1-row. Since C contains P′, this set of (1+ kd−2) ones

is represented by 1-entries with coordinates (t1(λ ), t2, . . . , t j−1, t j+1, . . . , td), where λ = 1,2, . . . ,1+ kd−2, in

the same 1-row of C.

Let S(t1(λ ), t2, . . . , t j−1,m, t j+1, . . . , td), 1≤ λ ≤ 1+ kd−2, be the corresponding S submatrices of A′. By

the construction of A′, A′′ and C, these S submatrices are the starting S submatrices of some of the chunks

C∗1 , . . . ,C
∗
r . Each of these (1+ kd−2) chunks has 1-entries in every j-cross section; in particular each chunk

has a nonzero entry with the same jth coordinate (m−1)k+ x j. There are at least 1+ kd−2 nonzero entries

with this given jth coordinate in these chunks, but there are kd−2 1-rows in a j-cross section of these chunks.

By the pigeonhole principle, there exist a pair of 1-entries in the same 1-row of A′.

Hence, for each pair of ones in the same 1-row of P, we have a corresponding pair of ones in the same

1-row of A′. Since two 1-entries of P not in the same 1-row differ in all their coordinates, A′ contains P, and

so does A; a contradiction.

We can now derive a recursive inequality on F(n, j,k,d), the resolution of which gives an upper bound

on F(n, j,k,d).

Lemma 3.6. Let d, s, n be positive integers where d ≥ 2. Then

F(kn,2,k,d) ≤ (d−1)nkd−1F(n,1+ kd−2,k,d−1)+ kdF(n,1,k,d)+(k−1)d−1F(n,2,k,d). (3.2)

Proof: We count the maximum number of 1-entries in A by counting the number of ones in three types of

chunks of A.

Case 1: chunk has two 1-entries in the same 1-row

In view of the definitions of matrix Q and a chunk, such a chunk has only one nonzero S submatrix so

it has at most kd nonzero entries. By Lemma 3.4, there are at most F(n,1,k,d) such S submatrices. Chunks

of this type contain at most kdF(n,1,k,d) nonzero entries.

Case 2: chunk is j-tall for some j = 2,3, . . . ,d and has no two 1-entries in the same 1-row
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There are (d−1) choices for j-tall since j = 2,3, . . . ,d. For each j, the integer m of Lemma 3.5 can be

1, . . . ,n. A j-tall chunk with no two 1-entries in the same row has at most kd−1 1-entries. For each pair of j

and m, there are at most F(n,1+ kd−2,k,d−1) such chunks in view of Lemma 3.5. In total, chunks of this

type contain at most (d−1)nkd−1F(n,1+ kd−2,k,d−1) nonzero entries.

Case 3: chunk is not j-tall for any j = 2,3, . . . ,d and has no two 1-entries in the same 1-row

Such a chunk has at most (k−1)d−1 ones. By the definition of a chunk, the number of chunks is equal to

the number of nonzero entries in matrix Q, which, by Lemma 3.3, has at most F(n,2,k,d) nonzero entries.

There are at most (k−1)d−1F(n,2,k,d) ones in chunks of this type.

Summing all cases proves Lemma 3.6.

We are now ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1: We proceed by induction on d. The base case of d = 1 is trivial. We then make the

inductive assumption that

F(n, j,k,d−1) = O(nd−2) for some d ≥ 2 (3.3)

and prove that F(n, j,k,d) = O(nd−1).

We first use Lemma 3.6 to show that

F(n,2,k,d)≤ k(c+dk)nd−1, (3.4)

where c is a positive constant to be determined.

We simplify inequality (3.2) of Lemma 3.6. Inductive assumption (3.3) implies that F(n,1+kd−2,k,d−

1) = O(nd−2). We also have F(n,1,k,d) = O(nd−1), which was proven by Marcus and Tardos [21] for d = 2

and by Klazar and Marcus [18] for d > 2. Hence, we can choose a sufficiently large constant c such that the

sum of the first two terms on the right hand side of (3.2) is bounded by cnd−1. Therefore,

F(kn,2,k,d)≤ (k−1)d−1F(n,2,k,d)+ cnd−1 for all n. (3.5)

We then use another induction, which is a strong induction on n, to prove inequality (3.4). The base case

of n≤ k is trivial. Assuming that (3.4) is true for all n < m, we show that (3.4) also holds for n = m.

Let N be the maximum integer that is less than m and divisible by k. A d-dimensional m× ·· · ×m

zero-one matrix has at most md −Nd ≤ md − (m− k)d ≤ dkmd−1 more entries than a d-dimensional N×
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N×·· ·×N matrix. Thus we have F(m,2,k,d)≤ F(N,2,k,d)+dkmd−1. This together with (3.5) gives

F(m,2,k,d) ≤ (k−1)d−1F
(

N
k
,2,k,d

)
+ c
(

N
k

)d−1

+dkmd−1

≤ (k−1)d−1k(c+dk)
(

N
k

)d−1

+ c
(

N
k

)d−1

+dkmd−1

≤ (k−1)(c+dk)Nd−1 +(c+dk)md−1

≤ k(c+dk)md−1 ,

where we use the strong inductive assumption in the second inequality. Hence, inequality (3.4) holds for

n = m. The strong induction shows that (3.4) is true for all positive integers n.

Having verified the inequality (3.4), we continue to complete the induction on d by showing that

F(n, j,k,d) = O(nd−1). This easily follows from inequality (3.4) and Lemma 3.2. We have completed

the induction.

Since F(n, j,k,d) = Ω(nd−1) in view of Proposition 1.1, this together with F(n, j,k,d) = O(nd−1) com-

pletes the proof of Theorem 3.1.

We conclude this section with a remark. In the paragraph between two inequalities (3.4) and (3.5),

we use Klazar and Marcus’ result [18] F(n,1,k,d) = O(nd−1) to choose the constant c in (3.4). In fact,

Klazar and Marcus gave a more refined upper bound F(n,1,k,d)
nd−1 = 2O(k logk). This allows us to improve the

inductive assumption (3.3) to F(n, j,k,d−1)
nd−2 = 2O(k logk) and choose c = 2O(k logk). In this way, we are able to

prove F(n, j,k,d)
nd−1 = 2O(k logk).

In the next section, we improve Klazar and Marcus upper bound from 2O(k logk) to 2O(k). As a con-

sequence, c = 2O(k) and hence F(n, j,k,d)
nd−1 = 2O(k). Lemma 3.4 is crucial in making the extension from

F(n,1,k,d)
nd−1 = 2O(k) to F(n, j,k,d)

nd−1 = 2O(k) possible.

4 Limit inferior and limit superior

In this section, we consider matrices P such that f (n,P,d) = Θ(nd−1). This tight bound implies that

{ f (n,P,d)
nd−1 } is a bounded sequence. We are interested in the limits of this sequence.

When d = 2, Pach and Tardos showed that f (n,P,2) is super-additive [23]. By Fekete’s Lemma on

super-additive sequences [6], the sequence { f (n,P,2)
n } is convergent. The limit is known as the Füredi-Hajnal

limit.
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When d > 2, it is still an open problem to prove the convergence of the sequence { f (n,P,d)
nd−1 }. Instead, we

consider the limit inferior and limit superior of the sequence and define

I(P,d) = liminf
n→∞

f (n,P,d)
nd−1 , S(P,d) = limsup

n→∞

f (n,P,d)
nd−1 .

We derive lower bounds on I(P,d) and an upper bound on S(P,d). These bounds are written in terms of the

size of P.

The main ideas in this section are Fox’s interval minor containment [7] and our observation that the

extremal function is super-homogeneous in higher dimensions.

4.1 An improved upper bound

Klazar and Marcus [18] showed that S(P,d) = 2O(k logk) for k× ·· · × k permutation matrices P. In this

subsection, we extend Fox’s ideas for the d = 2 case [7] to improve this upper bound to 2O(k) for d ≥ 2. We

then show that the new upper bound also holds for tuple permutation matrices, which is a new result even

for d = 2.

Theorem 4.1. If P is a d-dimensional k×·· ·×k permutation matrix or a tuple permutation matrix generated

by such a permutation matrix, then S(P,d) = 2O(k).

The proof uses the notion of cross section contraction and interval minor containment [7]. Contracting

several consecutive `-cross sections of a d-dimensional matrix means that we replace these `-cross sections

by a single `-cross section, placing a one in an entry of the new cross section if at least one of the corre-

sponding entries in the original `-cross sections is a 1-entry and otherwise placing a zero in that entry of

the new cross section. The contraction matrix, as defined in Section 3, of an sn×·· ·× sn matrix A can be

obtained by contracting every s consecutive `-cross sections of A uniformly for 1≤ `≤ d.

We say that A contains B as an interval minor if we can use repeated cross section contraction to trans-

form A into a matrix which contains B. Matrix A avoids B as an interval minor if A does not contain B as an

interval minor.

Equivalently, a k1× k2×·· ·× kd matrix B = (bi1,i2,...,id ) is an interval minor of a matrix A if

• for each i= 1, . . . ,d, there are ki disjoint intervals, Wi,1, . . . ,Wi,ki , which are sets of consecutive positive

integers,
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• and if bi1,...,id = 1 then the submatrix W1,i1×·· ·×Wd,id of A contains a 1-entry.

The containment in previous sections is generally stronger than containment as an interval minor. In-

deed, A contains B implies that A contains B as an interval minor. However, since a permutation matrix has

only one 1-entry in every cross section, containment of a permutation matrix P is equivalent to containment

of P as an interval minor.

Analogous to f (n,P,d), we define m(n,P,d) to be the maximum number of 1-entries in a d-dimensional

n×·· ·×n zero-one matrix that avoids P as an interval minor.

We observe that

f (n,P,d)≤ m(n,Rk,...,k,d) (4.1)

for every k× ·· · × k permutation matrix P. This follows from the fact that containment of Rk,...,k as an

interval minor implies containment of P. Hence, we seek an upper bound on m(n,Rk,...,k,d). We denote

by fk1,...,kd (n, t,s,d) the maximum number of 1-rows that have at least s nonzero entries in a d-dimensional

t×n×·· ·×n matrix that avoids Rk1,...,kd as an interval minor.

Lemma 4.2.

m(tn,Rk,...,k,d)≤ sdm(n,Rk,...,k,d)+dntd fk,...,k(n, t,s,d), (4.2)

Proof: Let A be a d-dimensional tn× ·· · × tn matrix that avoids Rk,...,k as an interval minor and has

m(tn,Rk,...,k,d) 1-entries. Partition A uniformly into S submatrices of size t × ·· · × t. Let C be the con-

traction matrix of A as defined in Section 3.

We do casework based on whether an S submatrix of A has s nonzero `-cross sections for some `.

We first count the number of 1-entries from the S submatrices which do not have s nonzero `-cross

sections for any `. The contraction matrix C has at most m(n,Rk,...,k,d) 1-entries for, otherwise, C contains

Rk,...,k as an interval minor, and thus A contains Rk,...,k as an interval minor as well, a contradiction. Hence, A

has at most m(n,Rk,...,k,d) such S submatrices, each of which contains at most (s−1)d < sd 1-entries. There

are at most sdm(n,Rk,...,k,d) 1-entries from the S submatrices of this type.

We next count the number of 1-entries from the S submatrices that have s nonzero `-cross sections for

some `. Let A′ be the matrix obtained from A by changing all the 1-entries from the S submatrices of A that

do not have s nonzero `-cross sections to 0-entries. Without loss of generality we let `= 1. Divide A′ into n

blocks, each of which is a t× tn×·· ·× tn submatrix of A′. For each block, contract every t consecutive j-
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cross sections uniformly for all j 6= 1 to get a t×n×·· ·×n matrix, which has at most fk,...,k(n, t,s,d) 1-rows

with at least s nonzero entries in each 1-row. Hence, in each block, there are at most fk,...,k(n, t,s,d) nonzero

S submatrices. As we range over all n blocks and as ` ranges from 1 to d, we have at most dntd fk,...,k(n, t,s,d)

ones from S submatrices of this type.

Summing both cases proves Lemma 4.2.

It remains to find an upper bound on fk,...,k(n, t,s,d). We prove the following recursive inequality.

Lemma 4.3. fk1,...,kd (n,2t,2s,d)≤ 2 fk1,...,kd (n, t,2s,d)+2 fk1−1,k2,...,kd (n, t,s,d).

Proof: Let A be a d-dimensional 2t× n× ·· ·× n matrix that avoids Rk1,··· ,kd as an interval minor and has

fk1,...,kd (n,2t,2s,d) 1-rows, each of which has at least 2s ones.

The first type of these 1-rows have all their 1-entries among their first t or last t entries. There are clearly

at most 2 fk1,...,kd (n, t,2s,d) such 1-rows in A.

The other type of these 1-rows must have at least one 1-entry among both the first t and the last t entries.

Since each 1-row in question has at least 2s ones, there are at least s ones among either the first or last t

entries. Without loss of generality, we consider those 1-rows in which the first t entries contain at least s

1-entries. Let A′ be the matrix obtained from A by changing all 1-entries to 0-entries in all other 1-rows and

then contracting the last t 1-cross sections. Hence, the last entry in each nonzero 1-row of A′ is a 1-entry.

The first t 1-cross sections of A′ must avoid Rk1−1,...,kd as an interval minor for, otherwise, A′ contains Rk1,...,kd

as an interval minor and so does A, a contradiction. Thus, there are at most 2 fk1−1,k2,...,kd (n, t,s,d) 1-rows in

which both the first t and last t entries include at least one 1-entry.

Adding up both cases gives the result.

The recursive inequality of Lemma 4.3 allows us to get an upper bound on fl,k,...,k(n, t,s,d).

Lemma 4.4. If s, t are powers of 2 and 2`−1 ≤ s≤ t, then f`,k,...,k(n, t,s,d)≤ 2`−1t2

s m(n,Rk,...,k,d−1).

Proof: We induct on `. For ` = 1, we show that f1,k,...,k(n, t,s,d) ≤ m(n,Rk,...,k,d− 1). Suppose on the

contrary f1,k,...,k(n, t,s,d)> m(n,Rk,...,k,d−1). Then there is a t×n×·· ·×n matrix A which avoids R1,k,...,k

as an interval minor and has more than m(n,Rk,...,k,d− 1) 1-rows with at least s 1-entries in each 1-row.

Let B be the 1× n×·· ·× n matrix obtained from A by contracting all the 1-cross sections. Then B, which

can be viewed as a (d−1)-dimensional matrix, has over m(n,Rk,...,k,d−1) 1-entries and thus contains the
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(d−1)-dimensional matrix Rk,...,k as an interval minor. Consequently, A contains the d-dimensional R1,k,...,k

as an interval minor, a contradiction. Therefore,

f1,k,...,k(n, t,s,d)≤ m(n,Rk,...,k,d−1)≤ 21−1t2

s
m(n,Rk,...,k,d−1) ,

which proves the base case.

Assuming that for all s and t that are powers of 2 satisfying 2`−2 ≤ s≤ t we have

f`−1,k,...,k(n, t,s,d)≤
2`−2t2

s
m(n,Rk,...,k,d−1) (4.3)

for some `≥ 2, we need to show that

f`,k,...,k(n, t,s,d)≤
2`−1t2

s
m(n,Rk,...,k,d−1) (4.4)

for all s and t that are powers of 2 satisfying 2`−1 ≤ s≤ t.

We use another induction on t to show that (4.4) is true for all t ≥ s that are powers of 2. The base case

of t = s is trivial. If f`,k,...,k(n, t,s,d)≤ 2`−1t2

s m(n,Rk,...,k,d−1) for some t ≥ s that is a power of 2, we prove

the same inequality for 2t. By Lemma 4.3, we have

f`,k,...,k(n,2t,s,d) ≤ 2 f`,k,...,k(n, t,s,d)+2 f`−1,k,...,k(n, t,s/2,d)

≤ 2
2`−1t2

s
m(n,Rk,...,k,d−1)+2

2`−2t2

s/2
m(n,Rk,...,k,d−1)

=
2`−1(2t)2

s
m(n,Rk,...,k,d−1) ,

where we use the two inductive assumptions in the second inequality. Thus our induction on t is complete

and (4.4) is proved. As a result, our induction on l is also complete.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1: We first bound the right hand side of inequality (4.1). We claim that

m(n,Rk,...,k,d)
nd−1 = 2O(k) . (4.5)

The base case of d = 1 is trivial. Assuming that (4.5) is true for (d−1), we combine Lemmas 4.2 and

4.4 to get

m(tn,Rk,...,k,d)≤ sdm(n,Rk,...,k,d)+dtd 2k−1t2

s
2O(k)nd−1.
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Choosing t = 2dk and s = 2k−1 yields

m(2dkn,Rk,...,k,d)≤ 2(k−1)dm(n,Rk,...,k,d)+d2kd(d+2)2O(k)nd−1.

In particular, if n is a positive integer power of 2dk, iterating this inequality yields

m((2dk)L,Rk,...,k,d)

≤ 2(k−1)dm((2dk)L−1,Rk,...,k,d)+d2kd(d+2)2O(k)(2dk)(L−1)(d−1)

≤ 22(k−1)dm((2dk)L−2,Rk,...,k,d)+ d2kd(d+2)2O(k)
(

1+
1

2d(dk−2k+1)

)
(2dk)(L−1)(d−1)

≤ 2L(k−1)dm(1,Rk,...,k,d)+ d2kd(d+2)2O(k)
(

1+
1

2d(dk−2k+1) +
1

22d(dk−2k+1) + · · ·
)
(2dk)(L−1)(d−1)

= 2O(k)(2dk)(L−1)(d−1) .

Hence, if (2kd)L−1 ≤ n < (2kd)L, then

m(n,Rk,...,k,d)≤ m((2dk)L,Rk,...,k,d) = 2O(k)(2dk)(L−1)(d−1) ≤ 2O(k)nd−1 .

This completes the induction on d, and hence (4.5) is proved.

It follows from (4.1) and (4.5) that Theorem 4.1 is true for every permutation matrix P. By the remark

at the end of Section 3, this result can be extended to tuple permutation matrices. The proof of Theorem 4.1

is completed.

4.2 Lower bounds and super-homogeneity

We first use Cibulka’s method in [3] to show that I(P,d) ≥ d(k− 1) for all permutation matrices of size

k×·· ·× k and extend this lower bound to tuple permutation matrices.

Theorem 4.5. If P is a d-dimensional k×·· ·×k permutation matrix or a tuple permutation matrix generated

by such a permutation matrix, then I(P,d)≥ d(k−1). Furthermore, if P is the identity matrix, then I(P,d) =

S(P,d) = d(k−1).

Proof: We first show that, for all n≥ k−1, we have

f (n,P,d)≥ nd− (n− k+1)d (4.6)

for every permutation matrix P. Pick one nonzero entry pi1,...,id = 1 of P. Construct a d-dimensional n×
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· · ·× n matrix A with entries such that a j1,..., jd = 0 if il ≤ jl ≤ n− k+ il for all 1 ≤ l ≤ d and a j1,..., jd = 1

otherwise. We first show that A avoids P. Suppose to the contrary that A contains P. Let the special nonzero

entry pi1,...,id = 1 of P be represented by entry ay1,...,yd of A. By the construction of A, we must have either

yl ≤ il−1 or yl ≥ n− k+ il +1. If yl ≤ il−1, since A contains P, A has il−1 other nonzero entries whose

lth coordinates are smaller than yl ≤ il−1 to represent 1-entries of P, an impossibility. If yl ≥ n−k+ il +1,

a similar argument leads to another impossibility. Counting the number of 1-entries in A proves (4.6).

We next show that

f (n,P,d)≤ nd− (n− k+1)d (4.7)

when P is the identity matrix, i.e., pi1,...,id is one on the main diagonal i1 = · · · = id and zero otherwise. If

A is a matrix that avoids P, each diagonal of A, which is parallel to the main diagonal, has at most k− 1

nonzero entries. Summing over the maximum numbers of 1-entries in all diagonals proves (4.7).

The second part of Theorem 4.5 follows immediately from (4.6) and (4.7). The first part is obvious for

a permutation matrix P because of (4.6). The first part is also true for a tuple permutation matrix P′ since

f (n,P,d)≤ f (n,P′,d) if P′ is generated by a permutation matrix P.

The lower bound given in Theorem 4.5 is linear in k. One may ask how large a lower bound on I(P,d)

can be for some P. In the the rest of this section, we extend Fox’s idea for the d = 2 case [7, 8] to show that

a lower bound can be as large as an exponential function in k in multiple dimensions. The crucial part in our

approach is our observation that f (n,P,d) is super-homogeneous.

Theorem 4.6. For each large k, there exists a family of d-dimensional k×·· ·× k permutation matrices P

such that I(P,d) = 2Ω(k1/d).

The proof uses the super-homogeneity of extremal functions. In dimension two, the extremal function

was shown to be super-additive [23], i.e., f (m+n,P,2)≥ f (m,P,2)+ f (n,P,2). This was the key in showing

the convergence of the sequence { f (n,P,2)
n } for those matrices P whose extremal functions are Θ(n). The limit

is the well-known Füredi-Hajnal limit [10].

We note that the super-additivity of f (n,P,2) implies super-homogeneity, i.e., f (sn,P,2) ≥ s f (n,P,2)

for every positive integer s. In higher dimensions, we show that f (n,P,d) is super-homogeneous of a higher

degree.

A corner entry of a k1×·· ·×kd matrix P = (pi1,...,id ) is defined to be an entry pi1,...,id located at a corner
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of P, i.e., where iτ = 1 or kτ for 1≤ τ ≤ d.

Lemma 4.7. If P is a d-dimensional matrix with a corner 1-entry, then f (sn,P,d)≥ sd−1

(d−1)! f (n,P,d).

Proof: Without loss of generality, we assume that p1,...,1 = 1 is the corner 1-entry in P. Let M be an

s×·· ·× s matrix with 1-entries at the coordinates (i1, . . . , id) where i1 + · · ·+ id = s+ d− 1 and 0-entries

everywhere else, so M has
(s+d−2

d−1

)
≥ sd−1

(d−1)! 1-entries. Let N be an n×·· ·×n matrix that avoids P and has

f (n,P,d) 1-entries. It then suffices to prove that M⊗N avoids P.

Assume for contradiction that the Kronecker product M⊗N contains P. Pick an arbitrary 1-entry p∗ in

P other than p1,...,1. Suppose that p1,...,1 and p∗ are represented by e1 and e2 in M⊗N, respectively. We

consider the n× ·· ·× n S submatrices of M⊗N. We may assume that e1 and e2 are in the S-submatrices

S(i1, . . . , id) and S( j1, . . . , jd), respectively. Note that i1 + · · ·+ id = j1 + · · ·+ jd . Since p∗ has larger coor-

dinates than p1,...,1 in P, entry e2 must also have larger coordinates than e1 in M⊗N and hence iτ ≤ jτ for

τ = 1,2, . . . ,d. It then follows from i1 + · · ·+ id = j1 + · · ·+ jd that iτ = jτ for τ = 1,2, . . . ,d, i.e., the two

entries e1 and e2 must be in the same S submatrix in M⊗N. Since p∗ is an arbitrary 1-entry other than p1,...,1

in P, the S submatrix contains P. But this is a contradiction since each nonzero S submatrix in M⊗N is an

exact copy of N, which avoids P. Thus M⊗N avoids P.

Just as super-additivity leads to the Füredi-Hajnal limit in dimension two, super-homogeneity also pro-

duces an interesting result on limits.

Lemma 4.8. If P is a d-dimensional matrix which contains a corner 1-entry, then for any positive integer

m,

I(P,d)≥ 1
(d−1)!

f (m,P,d)
md−1 .

Proof: For each fixed positive integer m, we write n as n = sm+ r, where 0≤ r < m. Then

f (n,P,d)
nd−1 =

f (sm+ r,P,d)
(sm+ r)d−1 ≥

f (sm,P,d)
(sm+ r)d−1 ≥

sd−1

(d−1)!
f (m,P,d)

(sm+ r)d−1 ,

where we use Lemma 4.7 in the second inequality. Now we take the limit inferior of the left side as n goes

to ∞. Since m is fixed and r is bounded, s = n−r
m goes to ∞ as well. Hence,

liminf
n→∞

f (n,P,d)
nd−1 ≥ lim

s→∞

sd−1

(d−1)!
f (m,P,d)

(sm+ r)d−1 =
1

(d−1)!
f (m,P,d)

md−1 .
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The following lemma gives a lower bound on the right hand side of the inequality in Lemma 4.8 for a

particular m = N. The proof is based on Fox’s ideas in his lecture [8] for d = 2 case.

Lemma 4.9. There exists a d-dimensional N × ·· · ×N matrix A, where N = 2Ω(`), that has Θ(Nd−1/2)

1-entries and avoids R`,...,` as an interval minor.

Proof: We prove the lemma for ` that are multiples of 20 and the result can then be easily extended to all `.

Let r = `
20 , q = ln2

2rd−1 , and N = 2r.

Define a dyadic interval to be a set of consecutive integers of the form {(s−1)2t +1, . . . ,s2t} for nonneg-

ative integers s and t, and a dyadic hyper-rectangle to be the Cartesian product of d dyadic intervals. We con-

sider only dyadic intervals which are subsets of {1, . . . ,N}. Note that there are exactly ∑
r
t=0 2t = 2N−1 such

dyadic intervals and (2N− 1)d such dyadic hyper-rectangles. There are (r + 1)d dyadic hyper-rectangles

containing each lattice point (i1, . . . , id), where i j = 1,2, . . . ,N and j = 1,2, . . . ,d, since each i j is contained

in exactly r+1 dyadic intervals.

Let R be a random collection of these dyadic hyper-rectangles, each included independently with prob-

ability q. Define A to be the N × ·· · ×N d-dimensional matrix such that ai1,...,id = 1 if (i1, . . . , id) is not

contained in any dyadic hyper-rectangle of R and ai1,...,id = 0 otherwise. The expected number of 1-entries

in A is

(1−q)(r+1)d
Nd = [(1−q)1/q]q(r+1)d

Nd = Θ(e−qrd
Nd) = Θ(2−r/2Nd) = Θ(Nd−1/2),

where we use (1−q)1/q = Θ(e−1) for small q in the second equality.

Denote by X and Y the events that A contains and avoids R`,...,` as an interval minor, respectively. We

estimate the probability P(X). If B is a set of dyadic intervals, let χ(B) be the number of dyadic intervals

that contain at least one interval in B as a subset. Then we define h(x) to be the number of sets B containing

` dyadic intervals such that χ(B) = x.

If A contains R`,...,` as an interval minor, then there are intervals of consecutive integers, denoted by

Wi,1, . . . ,Wi,`, partitioning the set {1,2, . . . ,N} in the ith dimension such that every submatrix W1, j1×W2, j2×

·· ·×Wd, jd of A contains at least one 1-entry. We denote by Ii, j the unique smallest-length dyadic interval

which contains Wi, j. If there are xi dyadic intervals which contain at least one of the dyadic intervals in

Bi = {Ii,1, . . . , Ii,`}, then xi ≥ ` and there are h(xi) possible sets Bi. Thus there are h(x1) · · ·h(xd) choices for

B1, . . . ,Bd and there are x1 · · ·xd dyadic hyper-rectangles which contain at least one of the `d dyadic hyper-

rectangles of the form I1,i1 ×·· ·× Id,id . Since these x1 · · ·xd dyadic hyper-rectangles contain 1-entries of A,
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none of them is in R. Hence, the probability

P(X)≤ ∑
x1,...,xd≥`

(1−q)x1···xd h(x1) · · ·h(xd). (4.8)

To find a bound on h(x), we estimate the number of sets U = {u1, . . . ,u`} of dyadic intervals such that

χ(U) = x. Let v1, . . . ,v` be the integers such that v1 = χ({u1}) and vi = χ({u1, . . . ,ui})−χ({u1, . . . ,ui−1}),

for i = 2, . . . , `. Since v1 + · · ·+ v` = x, there are at most
(x+`−1

`−1

)
possible values for v1, . . . ,v`. Given

v1, . . . ,v`, there are at most 2v1 choices for u1 and at most 2vi+1 χ({u1, . . . ,ui}) choices for ui+1. Calculating

the number of possible choices for U gives

h(x)≤
(x+`−1

`−1

)
2v1 ∏

`−1
i=1 2vi+1 χ({u1, . . . ,ui})

`!
≤
(x+`−1

`−1

)
2xx`

`!
.

Substituting this into (4.8) yields

P(X)≤ ∑
x1,...,xd≥`

(1−q)x1···xd
d

∏
i=1

(xi+`−1
`−1

)
2xixi

`

`!
.

The summand

r(x1, . . . ,xd) = (1−q)x1···xd
d

∏
i=1

(xi+`−1
`−1

)
2xix`i

`!

is a symmetric function of its variables. Note that the ratio r(x1 +1, . . . ,xd)/r(x1, . . . ,xd) is equal to

2(1−q)x2···xd
(x1 + `)

x1 +1
(1+

1
x1
)` ≤ 4e−qx2···xd (1+

1
x1
)x1 ≤ e−q`d−1

4e = 2−20d−1/24e≤ 1/2 ,

where we use (1−q)1/q ≤ 1/e for small q > 0 and (1+1/x1)
x1 ≤ e for x1 ≥ 1. We also note that

r(`, . . . , `) = (1−q)`
d
[(

2`−1
`−1

)
2`
``

`!

]d

≤ e−q`d
(22`−12`e`)d ≤ 2−20d−1`/2(23`−1e`)d ≤ (2N)−d ,

where we use Stirling’s inequality and
(2`−1
`−1

)
≤ 22`−1. We now use the symmetry of r(x1, · · · ,xd) to obtain

P(X)≤ ∑
x1,...,xd≥`

r(x1, . . . ,xd)≤

(
∞

∑
i=0

(1/2)i

)d

r(`, . . . , `)≤ 2d(2N)−d = N−d .

We now estimate conditional expectation E(ξ |Y ), where ξ = |A|. Note that E(ξ |Y )P(Y ) = E(ξ )−

E(ξ |X)P(X) ≥ Θ(Nd−1/2)−NdN−d = Θ(Nd−1/2) so E(ξ |Y ) = Θ(Nd−1/2). Thus, there exists an A that

avoids Rl,...,l as an interval minor and has at least Θ(Nd−1/2) 1-entries.

We are now ready to prove Theorem 4.6.
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Proof of Theorem 4.6: Let `= bk1/dc be the largest integer less than or equal to k1/d . There is a family of

d-dimensional permutation matrices of size `d×·· ·× `d that contain R`,...,` as an interval minor and have at

least one corner 1-entry. To see this, many such permutation matrices can be constructed so that they have

exactly one 1-entry in each of their S-submatrices of size `d−1×·· ·× `d−1, including a corner 1-entry.

Since k ≥ `d , there is a family of permutation matrices P of size k× ·· · × k that contain R`,...,` as an

interval minor and have at least one corner 1-entry. Each P has a corner 1-entry, so we can apply Lemma

4.8 to obtain

I(P,d)≥ 1
(d−1)!

f (N,P,d)
Nd−1 , (4.9)

where N can be chosen to be the positive integer given in Lemma 4.9.

Matrix P contains R`,...,` as an interval minor, so f (N,P,d)≥m(N,R`,...,`,d), which along with (4.9) and

Lemma 4.9 yields

I(P,d)≥ 1
(d−1)!

m(N,R`,...,`,d)
Nd−1 ≥Θ(N

1
2 ) = 2Ω(`) = 2Ω(k1/d).

This completes the proof of Theorem 4.6.

5 Conclusions and future directions

We obtained non-trivial lower and upper bound on f (n,P,d) when n is large for block permutation matrices

P. In particular, we established the tight bound Θ(nd−1) on f (n,P,d) for every d-dimensional tuple permu-

tation matrix P. We improved the previous upper bound on the limit superior of the sequence { f (n,P,d)
nd−1 } for

all permutation and tuple permutation matrices. We used the super-homogeneity of the extremal function to

show that the limit inferior is exponential in k for a family of k×·· ·× k permutation matrices. Our results

substantially advance the extremal theory of matrices. We believe that super-homogeneity is fundamental to

pattern avoidance in multidimensional matrices.

One possible direction for future research would be to strengthen the super-homogeneity as expressed

in Lemma 4.7 to f (sn,P,d) ≥ sd−1 f (n,P,d). We have successfully tested this super-homogeneity on the

identity matrix and the matrices whose 1-entries are on rectilinear paths. If this super-homogeneity is true

for permutation matrices P, we can then use a Fekete-like lemma to show the convergence of the sequence

{ f (n,P,d)
nd−1 }.

Another possible direction would be to extend Theorem 4.6 from a family of permutation matrices to
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almost all permutation matrices. We think this becomes possible if the corner 1-entry condition is removed

in Lemmas 4.7 and 4.8.
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[5] P. Erdős and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.

[6] M. Fekete, Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit. ganzzahligen

Koeffizienten, Mathematische Zeitschrift 17 (1) (1923), 228-249.

[7] J. Fox, Stanley-Wilf limits are typically exponential, arXiv:1310.8378, 2013.

[8] J. Fox, Combinatorics of permutations, http://www.math.uni-frankfurt.de/dm2014/Fox.pdf, 2014

26



[9] Z. Füredi, The maximum number of unit distance in a convex n-gon, J, Combin. Theory Ser. A, 55

(1990), 316-320.

[10] Z. Füredi and P. Hajnal, Davenport-Schinzel theory of matrices, Discrete Math., 103 (3) (1992), 233-

251.

[11] J.T. Geneson, Extremal functions of forbidden double permutation matrices, J. Combin. Theory Ser.

A, 116 (7) (2009), 1235-1244.

[12] A. Hesterberg, Extremal functions of excluded block permutation matrices, preprint, 2009.

[13] A. Hesterberg, Extremal functions of excluded tensor products of permutation matrices, Discrete

Math., 312 (10) (2012), 1646-1649.

[14] S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2009.

[15] B. Keszegh, On linear forbidden submatrices, J. Combin. Theory Ser. A, 116 (1) (2009), 232-241.

[16] S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011.

[17] M. Klazar, The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture, in: D. Krob, A.A

Mikhalev, A.V. Mikhalev (Eds), Formal Power Series and Algebraic Combinatorics, Springer, Berlin,

2000, 250-255.

[18] M. Klazar and A. Marcus, Extensions of the linear bound in the Furedi-Hajnal conjecture, Advances

in Applied Mathematics, 38 (2) (2007), 258-266.
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