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Abstract

We study multiplicity space signatures in tensor products of sl2 and Uq(sl2) representations and their
applications. We completely classify definite multiplicity spaces for generic tensor products of sl2 Verma
modules. This provides a classification of a family of unitary representations of a basic quantized quiver
variety, one of the first such classifications for any quantized quiver variety. We use multiplicity space
signatures to provide the first real critical point lower bound for generic sl2 master functions. As a corollary
of this bound, we obtain a simple and asymptotically correct approximation for the number of real critical
points of a generic sl2 master function. We obtain a formula for multiplicity space signatures in tensor
products of finite dimensional simple Uq(sl2) representations. Our formula also gives multiplicity space
signatures in generic tensor products of sl2 Verma modules and generic tensor products of real Uq(sl2)
Verma modules. Our results have relations with knot theory, statistical mechanics, quantum physics, and
geometric representation theory.
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1 Introduction and results

Verma modules form an important class of infinite dimensional representations of classical Lie algebras
and quantum groups. Any simple Verma module with real highest weight (and |q| = 1 if applicable)
carries a unique invariant nondegenerate Hermitian form known as the Shapovalov form. The signature of
the Shapovalov form is closely related to several topics in representation theory and topology, including
the unitary representation theory of quantized quiver varieties, the critical points of master functions, and
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1 INTRODUCTION AND RESULTS

the behavior of the Jones polynomial of knot sequences on the unit circle. In 2005, Yee used Kazhdan-
Lustzig polynomials to explicitly compute the signatures of the Shapovalov forms of Verma modules [1].
This development has opened the door to studying signatures and applications arising from constructions
based on Verma modules.

For any complex λ /∈ Z+, the sl2 Verma module Mλ is the unique simple highest weight representation
of sl2 of weight λ. It has a basis {vi}∞i=0 defined by vi = F iv0, on which E and H act by Evi = i(λ−i+1)vi−1

and Hvi = (λ − 2i)vi. When λ is real and not in Z+, the Shapovalov form on Mλ is nondegenerate and
satisfies the adjointness conditions H∗ = H , E∗ = F , and F ∗ = E. Given a set of real Verma modules
Mλ1 ,Mλ2 , ...,Mλn , the tensor product

⊗n
i=1 Mλi carries a Hermitian form equal to the product of the forms

on each factor.
A fundamental problem related to tensor products is the decomposition problem: Given a tensor product

of representations, rewrite it as a direct sum. In the case of simple real sl2 Verma modules satisfying the
condition that the sum of highest weights is not in Z+, this type of decomposition exists and is unique.
More precisely, we have

⊗n
i=1 Mλi =

⊕∞
m=0 M(

∑
λi)−2m ⊗Em, where each level m multiplicity space Em has

dimension
(
m+n−2
n−2

)
and is isomorphic to the space Hom(M(

∑
λi)−2m,

⊗
i Mλi). Moreover, the Shapovalov

forms on the Verma modules induce a natural Hermitian form (and therefore a signature) on each multi-
plicity space. The direct sum over m of the product of the forms on M∑

(λi)−2m and Em equals the form on
the tensor product

⊗n
i=1 Mλi .

The goal of this paper is to study the multiplicity space signatures and applications arising from Verma
module tensor products, in the context of the Lie algebra sl2. Our main results are Theorems 1.1, 1.2, and
1.3. In particular, we completely classify the definite multiplicity spaces in any generic tensor product 1 of
sl2 Verma modules.

Theorem 1.1. The classification list in Appendix A classifies all definite multiplicity spaces in any tensor product of
generic sl2 Verma modules.

Remark. The definite multiplicity space classification gives the definite weight subspace classification as a
corollary.

The classification of definite multiplicity spaces given by Theorem 1.1 is especially interesting because
it provides a classification of a family of unitary representations of a basic quantized quiver variety, one of
the first such classifications for any quantized quiver variety. The quantized quiver variety arises from the
universal enveloping algebra reduction and quantum Hamiltonian reduction given by Bezrukavnikov and
Losev [2].

We then use signatures of multiplicity spaces to study a problem in differential topology. There is a
family of sl2 master functions that arises in the study of Knizhnik-Zamolodchikov equations and spin chain
Gaudin models [3]. Each master function Fz,λ,m : Cm → C associated to the Gaudin model is indexed by
two sequences of n real parameters, denoted z = (z1, ..., zn) and λ = (λ1, ..., λn), and a positive integer
m. For an m-tuple (t1, t2, ..., tm) ∈ Cm, the master function Fz,λ,m is defined as Fz,λ,m(t1, t2, ..., tm) =

Disc(Q) ·
∏

i |Q(zi)|−λi , where Q ∈ C[x] is defined as Q(x) =
∏m

i=1(x − ti) and Disc(Q) =
∏

i<j(ti − tj)
2

is its discriminant. A critical point of Fz,λ,m is said to be real if the corresponding Q-polynomial has all
real coefficients. The computation of the number of real critical points (denoted Nz,λ,m) of an arbitrary
master function Fz,λ,m is an open and difficult problem. Recently, Mukhin and Tarasov [4] have shown that

1We call a set of reals generic if they are not nonnegative integers and their sum is not a nonnegative integer. We call a set of real
Verma modules generic if their highest weights are generic.
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1 INTRODUCTION AND RESULTS

signatures of Hermitian forms can be used along with the Bethe ansatz method to compute lower bounds
for the numbers of real solutions to topological problems. We study real critical points of the master function
using an approach based on Mukhin and Tarasov’s work, a Bethe ansatz setup due to Etingof, Frenkel, and
Kirillov [5], and a Bethe vector characterization due to Feigin, Frenkel, and Rybnikov [6]. Our second main
result, Theorem 1.2, uses multiplicity space signatures to give the first lower bound for the number of real
critical points of a generic 2 sl2 master function.

Theorem 1.2. For a generic sl2 master function Fz,λ,m, we have | sgn(Em)| ≤ Nz,λ,m, where sgn(Em) denotes the
signature of the space Em in the decomposition of

⊗n
i=1 Mλi .

We use our Theorem 1.2 lower bound on Nz,λ,m along with an upper bound on Nz,λ,m given by Mukhin
and Varchenko [7] to show that dim(Em) =

(
m+n−2
n−2

)
is a good approximation for Nz,λ,m for m large.

Corollary 1.1. For fixed generic λ and z sequences, we have limm→∞
Nz,λ,m

(m+n−2
n−2 )

= 1.

Finally, we extend our work to quantum groups and compute signatures of Hermitian forms in q-
deformed multiplicity spaces. For generic 3 q on the complex unit circle, the quantum enveloping algebra
Uq(sl2) is the standard q-deformation of the enveloping algebra of sl2 [8]. For each nonnegative integer a,
there is a unique (a+ 1)-dimensional simple representation of Uq(sl2), denoted Ṽa, and this representation
carries a Shapovalov form. Moreover, a tensor product of two simple finite dimensional representations
Ṽa ⊗ Ṽb is a representation of Uq(sl2). The tensor product carries a unique invariant nondegenerate Her-
mitian form induced by the Drinfeld coboundary structure [9]. The form is induced as follows. There is a
standard universal R-matrix, defined for our choice of coproduct as R = q

H⊗H
2

∑
i≥0 q

(i2) · (q−q−1)i

[i]! · F i ⊗ Ei,

where [i] = qi−q−1

q−q−1 and [i]! = [1][2]...[i]. The matrix R of the Drinfeld coboundary structure is defined
in terms of the R-matrix by R = R(R21R)−1/2. The form on the tensor product Ṽa ⊗ Ṽb is given by
(v1⊗w1, v2⊗w2) =

∑
i(aiv1, v2) · (biw1, w2), where R =

∑
i ai⊗ bi and the pairings (v1, v2) and (w1, w2) are

computed using the forms on Ṽa and Ṽb. This construction can be extended to a construction of a unique
Hermitian form on any tensor product of finite dimensional simple Uq(sl2) representations. The form on a
tensor product is contravariant due to the R factor, so the tensor product can be decomposed with multi-
plicity spaces, each carrying its own induced form. Our third main result, Theorem 1.3, is a formula for the
multiplicity space signatures in an arbitrary tensor product of finite dimensional simple Uq(sl2) represen-
tations. A convenient feature of our formula is that it is combinatorial, in that it has only additions, and no
subtractions.

Theorem 1.3. We have the decomposition
⊗n

i=1 Ṽai
∼=
⊕

m≥0 Ṽ(
∑

i ai)−2m ⊗ Ẽm, where

sgn(Ẽm) =
∑

m1+m2+···+mn−1=m

n−1∏
j=1

sign
[(1 +∑j+1

k=1 ak −
∑j

k=1 mk

mj

)
q

(∑j
k=1 aj −

∑j−1
k=1 mk)

mj

)
q

(
aj+1

mj

)
q

]
.

Remark. Theorem 1.3 lifts to an identical result for a tensor product of Uq(sl2) Verma modules of real highest
weights. When q = 1, the formula is still valid (even though 1 is not generic) and gives multiplicity space
signatures for a tensor product of generic sl2 Verma modules.

The paper is organized as follows. In Section 2, we cover definitions and background information. In
Section 3, we prove the classification given by Theorem 1.1. In Section 4, we prove the critical point bound

2We call a master function generic if its real parameters are generic.
3We call a number on the complex unit circle generic if it is not a root of unity.
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2 PRELIMINARIES

given by Theorem 1.2 and the approximation given by Corollary 1.1. In Section 5, we prove the signature
formula given by Theorem 1.3.

2 Preliminaries

2.1 Signatures in sl2 weight representations

A weight representation of sl2 is a representation which carries a unique Hermitian form and is isomorphic to
a direct sum of finite dimensional H-weight spaces, with the weights bounded from above. The Hermitian
form on the weight representation must also satisfy the condition that the weight spaces are orthogonal and
H∗ = H , E∗ = F , and F ∗ = E. For instance, the Verma modules are weight representations due to their
Shapovalov forms.

To any weight representation of sl2, we can associate a signature character, which is a (possibly infinite)
sum of powers of the formal symbol e with coefficients in the ring Z[s]/(s2−1). For a weight representation
V , the signature character, denoted by chs(V ), is defined as

∑
α(aα + bαs)e

α, where the sum is taken over
all weights α. For the weight space of weight α, the number of orthogonal basis vectors which pair with
themselves to give a positive real is aα, while the number of orthogonal basis vectors which pair with
themselves to give a negative real is bα. Hence, the dimension of the α-weight space is aα + bα while the
signature of the α-weight space is aα−bα. The signature characters satisfy some nice properties for standard
constructions involving weight representations. Namely, for any weight representations Vi, their tensor
product and direct sum are both weight representations with chs(

⊗
i Vi) =

∏
i chs(Vi) and chs(

⊕
i Vi) =∑

i chs(Vi).

Since Verma modules are weight representations, we can study their tensor product decompositions
using signature characters. Let λ1, λ2, ..., λn be generic reals. For simplicity, from here on out, we will
denote βλi = chs(Mλi).

Proposition 2.1. We have chs(Mλi) = βλi =


∑∞

j=0 s
jeλi−2j if λi < 0,∑⌊λi⌋

j=0 eλi−2j +
∑∞

j=⌈λi⌉ s
j+⌈λi⌉eλ−2j if λi > 0.

There is a unique decomposition of signature characters
∏n

i=1 βλi =
∑∞

m=0(am + sbm) · βλ−2m. This
decomposition exactly encodes the tensor product decomposition

⊗n
i=1 Mλi

∼=
⊕∞

m=0 Mλ−2m ⊗Em, in the
sense that each multiplicity space Em has dimension equal to

(
m+n−2
n−2

)
= am + bm and signature equal to

am − bm. Hence, determining when Em is definite amounts to determining when am = 0 or bm = 0. The
signature character interpretation of the definite multiplicity space classification problem is useful because
it translates a representation theoretic problem into a more tractable combinatorial problem.

2.2 Quantum groups case

For q on the complex unit circle, the deformed algebra Uq(sl2) over C[q, q−1, 1
q−q−1 ] is generated by E,F,K,K−1

with defining relations KEK−1 = q2E, KFK−1 = q−2F , and EF − FE = K−K−1

q−q−1 . For each a, the unique
(a+1)-dimensional simple Uq(sl2) representation Ṽa is generated by a highest weight vector v0. In a certain
basis {vi}ai=0, the operators E, F , and K act by Evi = [a− i+ 1]vi−1, Fvi = [i+ 1]vi+1, and Kvi = qa−2ivi,
where [k] = qk−q−k

q−q−1 . As in the classical case, the representation Ṽa carries a Shapovalov form.
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3 CLASSIFICATION OF DEFINITE MULTIPLICITY SPACES

Proposition 2.2. Under the Shapovalov form (, ) and the normalization (v0, v0) = 1, we have (vi, vi) =
(
a
i

)
q
=∏a

j=1[j]∏i
j=1[j]·

∏a−i
j=1 [j]

.

From Hopf algebra theory, we know that any tensor product
⊗n

i=1 Ṽai can be made into a representation
of Uq(sl2) under the iteration of the coproduct map defined by ∆(E) = E⊗1+K⊗E, ∆(F ) = 1⊗F+F⊗K−1,
and ∆(K±1) = K±1 ⊗ K±1. Furthermore, the Shapovalov forms and the Drinfeld coboundary induce a
Hermitan form on the representation

⊗n
i=1 Ṽai . This tensor product can be uniquely decomposed into

a sum of finite dimensional simple Uq(sl2) representations tensored with multiplicity spaces, where each
multiplicity space carries an induced Hermitian form. We outline the proof of the Theorem 1.3 signature
formula for the induced forms of these multiplicity spaces in Section 5

3 Classification of definite multiplicity spaces

In this section we use signature characters to prove the Theorem 1.1 definite multiplicity space classification
for the decomposition of an arbitrary tensor product

Mλ1 ⊗Mλ2 ⊗ · · · ⊗Mλn .

Throughout this section, let λ =
∑n

i=1 λi, and assume the λi’s are reals in decreasing order, with the first p
of them positive (0 ≤ p ≤ n). Refer to the tensor product

⊗n
i=1 Mλi as the original tensor. By the formula

for signature characters, we have that the signatures of the multiplicity spaces depend only on the values
⌊λ⌋, ⌊λ1⌋, ..., ⌊λn⌋. Thus, we define the explicit type of the original tensor to be ⟨⌊λ⌋, ⌊λ1⌋, ..., ⌊λn⌋⟩ and the
implicit type to be ⟨⌊λ1⌋, ..., ⌊λn⌋⟩. We first classify definite spaces in the p = 0, n = 2, and n = 3 cases, and
then apply those results to solve the n ≥ 4 case. Then we tie together our results to prove the classification
given by Theorem 1.1

3.1 Case: p = 0

Take 0 > λ1 > · · · > λn.

Theorem 3.1. In the decomposition
n⊗

i=1

Mλi
∼=

∞⊕
m=0

Mλ−2m ⊗ Em,

each multiplicity space Em is definite. The even-level spaces are positive definite and the odd-level spaces are negative
definite.

Proof. The proof of this classification is a standard counting argument.

3.2 Case: n = 2

Take arbitrary λ1 > λ2, and define a function g as in Appendix A.1.

Theorem 3.2. In the decomposition

Mλ1 ⊗Mλ2
∼=

∞⊕
m=0

Mλ−2m ⊗ Em,

6



3 CLASSIFICATION OF DEFINITE MULTIPLICITY SPACES 3.3 Case: p = 1, n = 3

every multiplicity space is definite. The level m space is positive definite if g(λ1, λ2,m) is positive and negative
definite if g(λ1, λ2,m) is negative.

Proof. See Appendix B.

3.3 Case: p = 1, n = 3

Take λ1 > 0 > λ2 ≥ λ3.

Theorem 3.3. In the decomposition

Mλ1 ⊗Mλ2 ⊗Mλ3
∼=

∞⊕
m=0

Mλ−2m ⊗ Em,

we have the following classification for definite spaces. The definite spaces are exactly those with levels 0 through
max{0, ⌈λ

2 ⌉}. The even-level spaces in this range are positive definite and the odd-level spaces in this range are
negative definite.

Proof. See Appendix C.

3.4 Case: p = 2, n = 3

Take λ1 ≥ λ2 > 0 > λ3.

Theorem 3.4. In the decomposition

Mλ1 ⊗Mλ2 ⊗Mλ3
∼=

∞⊕
m=0

Mλ−2m ⊗ Em,

we have the following classification for definite spaces:

Case 1. λ < 0

There are ⌈λ2 + 1⌉ definite spaces. They are positive definite and have levels 0 through ⌈λ1⌉.

Case 2. λ > 0 and ⌈λ+ 1⌉ ≤ ⌈λ2⌉
There are ⌈λ2⌉−⌊λ⌋ definite spaces. They are positive definite and they have levels 0 and ⌈λ+1⌉ through ⌈λ2⌉.

Case 3. λ > 0 and ⌈λ+ 1⌉ > ⌈λ2⌉
Except for one exception, only the level 0 space is definite (it is positive definite). The exception is explicit type
⟨1, 0, 0,−1⟩, in which there is one other definite space: it is the level 2 space and it is negative definite.

Proof. See Appendix D.

3.5 Case: p = 3, n = 3

Take λ1 ≥ λ2 ≥ λ3 > 0.

Theorem 3.5. In the decomposition

Mλ1 ⊗Mλ2 ⊗Mλ3
∼=

∞⊕
m=0

Mλ−2m ⊗ Em,

7



3 CLASSIFICATION OF DEFINITE MULTIPLICITY SPACES 3.6 Case: p ≥ 1, n ≥ 4

we have the following classification for definite spaces. The spaces with level 0 through ⌈λ3⌉ are all positive definite.
Except for the following exceptions, these are the only definite spaces.

Exceptions:

• For d ≥ 0 and explicit type ⟨3d, d, d, d⟩, the level 2d+ 1 and 2d+ 2 spaces are positive definite.

• For d ≥ 0 and explicit type ⟨3d+ 2, d, d, d⟩, the level 2d+ 2 and 2d+ 3 spaces are negative definite.

• For d ≥ 1 and explicit type ⟨3d− 1, d, d, d− 1⟩, the level 2d+ 1 space is positive definite.

• For d ≥ 1 and explicit type ⟨3d+ 1, d, d, d− 1⟩, the level 2d+ 2 space is negative definite.

• For d ≥ 1 and explicit type ⟨3d− 2, d, d− 1, d− 1⟩, the level 2d space is positive definite.

• For d ≥ 1 and explicit type ⟨3d, d, d− 1, d− 1⟩, the level 2d+ 1 space is negative definite.

Proof. See Appendix E.

3.6 Case: p ≥ 1, n ≥ 4

Theorem 3.6. In the decomposition
n⊗

i=1

Mλi
∼=

∞⊕
m=0

Mλ−2m ⊗ Em,

we have the following classification for definite spaces.

Case 1. p = 1

There are 1+max{0, ⌈λ
2 ⌉} definite spaces. They have levels 0 through max{0, ⌈λ

2 ⌉}. In this range, the even-level
spaces are positive definite and the odd-level spaces are negative definite.

Case 2. 2 ≤ p ≤ n− 2

There is one definite space. It is the level 0 space and it is positive definite.

Case 3. p = n− 1

– If λ < 0, there are ⌈λp + 1⌉ definite spaces. They are positive definite and have levels 0 through ⌈λp⌉.

– If λ > 0 and ⌈λ+1⌉ ≤ ⌈λp⌉, then there are ⌈λp⌉−⌊λ⌋ definite spaces. They are positive definite and they
have levels 0 and ⌈λ+ 1⌉ through ⌈λp⌉.

– If λ > 0 and ⌈λ + 1⌉ > ⌈λp⌉, then there is one definite space. It is the level 0 space and it is positive
definite.

Case 4. p = n

Except for the exceptions listed below, there are ⌈λp + 1⌉ definite spaces. They have levels 0 through ⌈λp⌉ and
they are positive definite.

Exceptions:

– For any p ≥ 4, explicit type ⟨0, 0, 0, ..., 0⟩ has 3 definite spaces. They are the level 0,1,2 spaces and they
are positive definite.
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4 CRITICAL POINT BOUND 3.7 Proof of Theorem 1.1

– For any p ≥ 4, explicit type ⟨1, 1, 0, ..., 0⟩ has 3 definite spaces. They are the level 0,1,2 spaces and they
are positive definite.

– For p = 4, explicit type ⟨3, 0, 0, 0, 0⟩ has 3 definite spaces. They are the level 0 and 1 spaces (which are
positive definite) and the level 3 space (which is negative definite).

– For p = 4, explicit type ⟨4, 1, 1, 1, 1⟩ has 4 definite spaces. They are the level 0,1,2,4 spaces and they are
positive definite.

Proof. See Appendix F.

3.7 Proof of Theorem 1.1

Refer to the classification list in Appendix A. Theorem 3.1 gives the classification for Case 1. Theorem 3.2
gives the classification for Case 2. Theorem 3.3 gives the classification for Case 3. Theorem 3.6 gives the
classification for Case 4. Theorems 3.4 and 3.6 give the classification for Case 5. Theorems 3.5 and 3.6 give
the classification for Case 6.

4 Critical point bound

In this section we use the Bethe ansatz method to prove the lower bound on the number of real critical
points of the master function given by Theorem 1.2. Then we use the bound to derive the asymptotic ap-
proximation for the number of real critical points of the master function given by Corollary 1.1 . Throughout
this section, fix a generic λ-sequence and a generic z-sequence, each in Rn, and consider the master function
Fz,λ,m

Fz,λ,m(t1, t2, ..., tm) =
∏
i<j

(ti − tj)
2 ·
∏
i,k

(ti − zk)
−λk .

4.1 Preliminaries for the proof of Theorem 1.2

We begin with some definitions and preliminary results.

Definition. For any X ∈ U(sl2) and any i with 1 ≤ i ≤ n, define an operator Xi on
⊗n

j=1 Mλj by Xi =

1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1 operators

⊗X ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i operators

.

Definition. For each i and j with 1 ≤ i ̸= j ≤ n, define the Casimir tensor Ωij by Ωij = Ei ⊗ Fj + Fi ⊗ Ej +
Hi⊗Hj

2 .

Definition. For each i with 1 ≤ i ≤ n, define the Gaudin model Hamiltonian Hi by Hi =
∑

j ̸=i
Ωij

zi−zj
.

Definition. For any (t1, ..., tm) ∈ Cm, take the polynomial Q to be Q(x) =
∏m

i=1(x− ti).

Definition. For any complex t with t ̸= zi, define an operator Z(t) =
∑n

i=1
Hi

t−zi
.

Definition. For any complex t with t ̸= zi for each i, define an operator Y (t) by Y (t) =
∑n

i=1
Fi

t−zi
.

Denote the highest weight vector of each Mλi by vi, and denote v =
⊗

i vi.

Definition. For any complex critical point (s1, s2, ..., sm) of Fz,λ,m, define a vector bQ by bQ = Y (s1)Y (s2) · · ·Y (sm)v.

We are now ready to begin with preliminary results. For the proofs of these preliminary results, we use
arguments similar to those developed in [5].
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4 CRITICAL POINT BOUND 4.2 Proof of Theorem 1.2

Lemma 4.1. The Hi’s commute with each other, and they are Hermitian under the induced Hermitian form on
Hom(M(

∑
i λi)−2m,

⊗
i Mλi).

Proof. See Appendix G.1.

Lemma 4.2. We have EbQ = 0.

Proof. See Appendix G.2.

Lemma 4.3. We have
[Z(sa), Y (sb)] =

2

sa − sb
(Y (sa)− Y (sb)).

Proof. We write

2

sa − sb
(Y (sa)− Y (sb)) =

2

sa − sb

n∑
j=1

(
Fj

sa − zj
− Fj

sb − zj

)

=
2

sa − sb

n∑
j=1

(
Fj(sb − sa)

(sa − zj)(sb − zj)

)

=
n∑

j=1

(
−2Fj

(sa − zj)(sb − zj)

)
= [Z(sa), Y (sb)],

where in the last line we have used the commutation relations [Hj , Fj ] = −2Fj and [Hi, Fj ] = 0 (i ̸= j).

Lemma 4.4. We have [Hi, Y (s1)Y (s2) · · ·Y (sm)]v = −λiQ
′(zi)

Q(zi)
bQ.

As a corollary of Lemma 4.4, we have that bQ is an eigenvector of each Hi with eigenvalue −λiQ
′(zi)

Q(zi)
+(

λi

2

∑n
j ̸=i

λj

zi−zj

)
. (This is just the eigenvalue computed in Lemma 4.4 plus the Hi-eigenvalue of v.)

Lemma 4.5 (known, see [6]). The joint eigenvalues of the operators Hi each have multiplicity 1, and the eigenvectors
of the form Y (s1)Y (s2) · · ·Y (sm)v are all the joint eigenvectors up to scalars.

Lemma 4.6. If the joint eigenvector bQ has real joint eigenvalue, then the critical point (s1, ..., sm) is real. That is,
the corresponding Q-polynomial has real coefficients.

Proof. See Appendix G.4.

4.2 Proof of Theorem 1.2

We now tie together the results from Section 4.1 to prove the critical point bound. Since EbQ = 0 and HbQ =

(−2m+
∑

i λi)bQ, we have that bQ corresponds uniquely to a vector in the space Hom(M(
∑

i λi)−2m,
⊗

i Mλi),
which is isomorphic to the multiplicity space Em in the decomposition of

⊗
i Mλi . Note that the Gaudin

Hamiltonians Hi descend to commuting Hermitian operators on the space Em. Thus, each real eigenvector
of Em gives rise to a real critical point of the master function Fz,λ,m. Since the absolute value of the signature
of Em is a lower bound for the number of real eigenvectors for the commuting Hermitian operators Hi, it
is also a lower bound for the number of real critical points. Hence | sgn(Em)| ≤ Nz,λ,m.
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4 CRITICAL POINT BOUND 4.3 Preliminaries for the proof of Corollary 1.1

4.3 Preliminaries for the proof of Corollary 1.1

Definition. Define βn for integer n by
βn = e−ϵβn+ϵ

for any 0 < ϵ < 1. This is well-defined.

Definition. For any real µ, let β−
µ be βµ evaluated at s = −1.

Definition. For each nonnegative integer n, define a polynomial Vn by

Vn(x) = 1 + 2x+ 2x2 + · · ·+ 2xn.

We state the following results without proofs.

Lemma 4.7. For an integer n, we have

β−
n =

β−
−1 · en+1 · Vn+1(e

−2) if n ≥ 0

β−
−1 · en+1 if n < 0.

Lemma 4.8. For any integer n1 and any negative integer n2, we have

en1βn2 = βn1+n2

if n1 + n2 < 0. Also, if n1 + n2 ≥ 0, then en1βn2 can be written as a finite sum of signature characters.

4.4 Proof of Corollary 1.1

Recall that Nz,λ,m denotes the number of real critical points of Fz,λ,m. From Theorem 1.2, we know
| sgn(Em)| ≤ Nm ≤ dim(Em) =

(
m+n−2
n−2

)
. We will show, for fixed generic λi’s, that as m approaches

infinity, the ratio
| sgn(Em)|(

m+n−2
n−2

)
approaches 1. This will prove Corollary 1.1.

The tensor product π =
⊗n

i=1 Mλi has signature character equal to
∏n

i=1 βλi . We need to examine
the signatures of the multiplicity spaces Em in the decomposition of π, which amounts to examining the
coefficients of β−

λ−2m in the decomposition of
∏n

i=1 β
−
λi

. We have

n∏
i=1

β−
λi

= e
∑n

i=1{λi} ·
n∏

i=1

β−
⌊λi⌋

= e
∑n

i=1{λi} ·

(
p∏

i=1

β−
−1 · e⌈λi⌉ · V⌈λi⌉(e

−2)

)
·

 n∏
i=p+1

β−
−1 · e⌈λi⌉


= e

∑n
i=1⌈λi⌉+{λi} ·

(
β−
−1

)n ·

(
p∏

i=1

V⌈λi⌉(e
−2)

)

= e
∑n

i=1⌈λi⌉+{λi} ·

( ∞∑
m=0

β−
−n−2m · (−1)m ·

(
m+ n− 2

n− 2

))
·

(
p∏

i=1

V⌈λi⌉(e
−2)

)
.

11



5 SIGNATURES FOR THE QUANTUM GROUP CASE

Combining the above computation with Lemma 4.8, we obtain that for all sufficiently large m,

sgn(Em) · (−1)m =

T∑
i=0

(
m+ n− 2− i

n− 2

)
· (−1)i · ci, (1)

where T =
∑p

i=1⌈λi⌉ and the ci’s are defined by the polynomial identity

p∏
i=1

V⌈λi⌉(x) =
T∑

i=0

cix
i.

The RHS in (1) is a polynomial in m of degree n− 2. Its leading term is

mn−2

(n− 2)!
· (c0 − c1 + · · ·+ (−1)T cT ).

We will show that this leading term is nonzero and compute it explicitly. We have
∑T

i=0(−1)ici =
∏p

i=1 V⌈λi⌉(−1).
But V⌈λi⌉(−1) is equal to +1 or −1 for each i, so

∑T
i=0(−1)ici also equals +1 or −1. Therefore, we obtain

that ± mn−2

(n−2)! is the leading term of a polynomial which equals sgn(Em) · (−1)m for all sufficiently large m.

We also know that mn−2

(n−2)! is the leading term of the polynomial in m defined by the binomial coefficient(
m+n−2
n−2

)
. Hence

lim
m→∞

| sgn(Em)|(
m+n−2
n−2

) = 1

as desired.

5 Signatures for the quantum group case

In this section we prove the signature formula given by Theorem 1.3. Throughout this section, fix a generic
q on the complex unit circle and nonnegative integers a and b. We start by proving some preliminary results.

5.1 Preliminaries for the proof of Theorem 1.3

Fix highest weight vectors v0 and w0 in the simple representations Ṽa and Ṽb of Uq(sl2), respectively. We
know that the tensor product Ṽa ⊗ Ṽb admits a Shapovalov form (this form is defined using an R-matrix).
As a consequence of the Clebsch-Gordan formula, the tensor product decomposes as

Ṽa ⊗ Ṽb
∼=

min{a,b}⊕
m=0

Ṽa+b−2m ⊗ Ẽm,

where each multiplicity space has dimension 1 and an associated scalar. The sign of this scalar (+1 or −1)
is the signature of the multiplicity space. For each subrepresentation Ṽa+b−2m ⊂ Ṽa ⊗ Ṽb, there is a unique
highest weight vector of the form

v0 ⊗ wm +

m∑
i=1

cm,i · vi ⊗ wm−i,

12



5 SIGNATURES FOR THE QUANTUM GROUP CASE 5.1 Preliminaries for the proof of Theorem 1.3

where cm,i are scalars. We will call the highest weight vector determined by these scalars the unit-normalized
highest weight vector. Given the unit-normalized highest weight vector u of Ṽa+b−2m ⊂ Ṽa ⊗ Ṽb, define the
R-normalized highest weight vector u′ of the twisted subrepresentation Ṽa+b−2m ⊂ Ṽb ⊗ Ṽa by u′ = TRu,
where T is the twist operator and R is the universal R-matrix

R = q
H⊗H

2

∑
n≥0

q(
n
2) · (q − q−1)n

[n]!
Fn ⊗ En.

In the next two lemmas we explicitly compute the scalars for the unit-normalized and R-normalized highest
weight vectors.

Lemma 5.1. In the subrepresentation Ṽa+b−2m ⊂ Ṽa ⊗ Ṽb, the unit-normalized highest weight vector u is

m∑
i=0

cm,i · vi ⊗ wm−i,

where

cm,i = (−1)i · qai−i2+i ·

(
b−m+i

i

)
q(

a
i

)
q

.

Proof. We have cm,0 = 1 by definition. Write

u =

m∑
i=0

cm,i · vi ⊗ wm−i.

Since u is a highest weight vector, it is killed by the operator E:

0 = ∆(E)u = (E ⊗ 1 +K ⊗ E)u =
m∑
i=1

cm,i · Evi ⊗ wm−i + cm,i−1 ·Kvi−1 ⊗ Ewm−i+1.

Next,
Evi = [a− i+ 1] · vi−1,

Kvi−1 = qa−2i+2 · vi−1,

Ewm−i+1 = [b−m+ i] · wm−i.

Using the construction of tensor product bases, we obtain:

[a− i+ 1]cm,i · vi−1 ⊗ wm−i = −cm,i−1 · qa−2i+2[b−m+ i] · vi−1 ⊗ wm−i

so
cm,i = (−1) · cm,i−1 ·

[b−m+ i]

[a− i+ 1]
.

Solving this recursion with the initial condition cm,0 = 1, we get

cm,i = (−1)i · qai−i2+i ·

(
b−m+i

i

)
q(

a
i

)
q

as desired.
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5 SIGNATURES FOR THE QUANTUM GROUP CASE 5.2 Proof of Theorem 1.3

Lemma 5.2. In the twisted subrepresentation Ṽa+b−2m ⊂ Ṽb ⊗ Ṽb, the R-normalized highest weight vector u′ is

m∑
i=0

c′m,i · vi ⊗ wm,

where

c′m,0 = (−1)m · q0.5ab−am−bm+m2−m ·

(
b
m

)
q(

a
m

)
q

and

c′m,i = c′m,0 · (−1)i · qbi−i2+i ·

(
a−m+i

i

)
q(

b
i

)
q

.

Proof. Since the R-normalized highest weight vector of the twisted subrepresentation Ṽa+b−2m is a scalar
multiple of the unit-normalized highest weight vector of the twisted subrepresentation Ṽa+b−2m, it suffices
to show that c′m,0 is the right value. Using the operation of F , we get that

TRu = qa(b−2m)/2 · wm ⊗ v0 +
m−1∑
i=0

c′m,i · wi ⊗ vm−i.

Hence, we have the equation

c′m,0 · (−1)m · qbm−m2+m ·

(
a
m

)
q(

b
m

)
q

= q0.5ab−am,

from which the lemma follows.

5.2 Proof of Theorem 1.3

Consider the decomposition with multiplicity spaces which preserves the Shapovalov form

Ṽa ⊗ Ṽb
∼=

min{a,b}⊕
m=0

Ṽa+b−2m ⊗ Ẽm.

To prove Theorem 1.3, it suffices to show that the signature of each Ẽm is equal to the sign (+1 or −1) of(
a
m

)
q

(
b
m

)
q

(
a+b+1−m

m

)
q
. (Iterating the two-factors formula gives the expression in Theorem 1.3.) Fix an m.

From the Clebsch-Gordan formula, we know that dim(Ẽm) = 1. Thus, the signature sgn(Ẽm) is equal to
+1 or −1. From R-matrix theory, we know that the sgn(Ẽm) equals the sign of (u, u′), where u is the unit-
normalized highest weight vector of the subrepresentation Ṽa+b−2m and u′ is the R-normalized highest
weight vector of the twisted subrepresentation Ṽa+b−2m. By Lemmas 5.1 and 5.2, we have u =

∑m
i=0 cm,ivi⊗

wm−i and u′ =
∑m

i=0 c
′
m,iwi ⊗ vm−i. From the orthogonality of the canonical bases under the Shapovalov
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form, we get that in (u, u′), the cm,i term in u interacts only with the c′m,m−i term in u′. We have

(cm,ivi ⊗ wm−i, c
′
m,m−iwm−i ⊗ vi) = cm,ic̄

′
m,m−i · (vi, vi) · (wm−i, wm−i)

= cm,ic̄
′
m,m−i ·

(
a

i

)
q

(
b

m− i

)
q

= (−1)m · c̄′m,0 · q−bm+m2−m+ai+bi−2mi+2i ·

(
b−m+i

i

)
q

(
a−i
m−i

)
q(

a
i

)
q

(
b

m−i

)
q

·
(
a

i

)
q

(
b

m− i

)
q

= (−1)m · c̄′m,0 · q−bm+m2−m · q(a+b+2−2m)i ·
(
b−m+ i

i

)
q

(
a− i

m− i

)
q

.

Hence (u, u′) is

(u, u′) = (−1)m · c̄′m,0 · q−bm+m2−m ·
m∑
i=0

q(a+b+2−2m)i ·
(
b−m+ i

i

)
q

(
a− i

m− i

)
q

.

Using the relation
(
l1
l2

)
q
= (−1)l2

(
l2−l1−1

l2

)
and the quantum Vandermonde identity, we get:

(u, u′) = (−1)m · c̄′m,0 · q−bm+m2−m ·
m∑
i=0

q(a+b+2−2m)i ·
(
b−m+ i

i

)
q

(
a− i

m− i

)
q

= q−bm+m2−m · c̄′m,0 ·
m∑
i=0

q(a+b+2−2m)i ·
(
m− b− 1

i

)
q

(
m− a− 1

m− i

)
q

= c̄′m,0

(
2m− a− b− 2

m

)
q

= c̄′m,0 · (−1)m ·
(
a+ b+ 1−m

m

)
q

= q−0.5ab+ma+mb−m2+m ·

(
a+b+1−m

m

)
q

(
b
m

)
q(

a
m

)
q

.

Dropping the powers of q and taking the signs of the binomial coefficients gives Theorem 1.3.

6 Conclusion and further work

In this paper, we studied tensor product decompositions of sl2 Verma modules and their connections to
other problems. We completely classified definite multiplicity spaces in arbitrary tensor products, used
multiplicity space signatures to prove a critical point bound for generic master functions, and explicitly
computed multiplicity space signatures for tensor products of q-deformed finite dimensional simple repre-
sentations.

There are many possible directions for future work. The existence of a Shapovalov form-respecting
decomposition holds for tensor products of Verma modules over any Kac-Moody algebras. Thus, we can
ask for a definite multiplicity space classification for any Kac-Moody algebra. We expect that the answers
to these questions will give classifications of unitary representation families for more quantized quiver
varieties.

In addition, it would be interesting to further explore our real critical point bound. Specifically, we are
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interested in how tight this bound is. Based on computer tests, we have found that the bound is relatively
good for many λ and z sequences, in the sense that the ratio Nm

| sgn(Em)| is usually close to 1. When m is small,
however, the bound breaks down at least in some special cases. For example, we have proven the following
results for m = 2 (the two-variable master function case).

Theorem 6.1. For any n > 3, there exists some λ-sequence of length n such that for any z-sequence, we have the
strict inequality

| sgn(E2)| < N2.

Theorem 6.2. For n an even square, there exists some λ-sequence of length n such that for any z-sequence, we have
| sgn(E2)| = 0 and N2 ≥ n−

√
n

2 .

It would be interesting to derive quantitative estimates, for general m, on how unusual it is for | sgn(Em)|
to be significantly less than Nm.

Finally, there are several interesting problems related to multiplicity space signatures for quantum
groups. The problem of determining multiplicity space signatures in decompositions of tensor powers
Ṽ ⊗n
a arises in physical settings. For the a = 1 case, the multiplicity space signatures have been computed.

However, for a = 2 and higher, these signatures have yet to be computed. It would also be interesting to
study the relationship between multiplicity space signatures in tensor products of Uq(sl2) representations
and real critical points of q-deformed master functions. We expect that these signatures will give rise to a
real critical point bound for the q-deformed master function, as in the standard case.
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A CLASSIFICATION LIST

A Classification List

Consider an arbitrary Verma module tensor product

π = Mλ1 ⊗Mλ2 ⊗ · · · ⊗Mλn .

Assume the λi’s are in decreasing order, with the first p of them positive (here 0 ≤ p ≤ n). Define λ =∑n
i=1 λi. Define the explicit type of the tensor product π to be the sequence ⟨⌊λ⌋, ⌊λ1⌋, ⌊λ2⌋, ..., ⌊λn⌋⟩. Define

a function g as in Subsection A.1. Then we have the following classification for definite multiplicity spaces
in the decomposition of π:

Classification List. In the decomposition of π, the level m multiplicity space has dimension
(
m+n−2
n−2

)
for each m.

We have the following classification for definite multiplicity spaces in the decomposition:

Case 1. p = 0

Every space is definite. The even-level spaces are positive definite and the odd-level spaces are negative definite.

Case 2. n = 2

Every space is definite. The level m space is positive definite if g(λ1, λ2,m) is positive and negative definite if
g(λ1, λ2,m) is negative.

Case 3. p = 1, n ≥ 3

There are max{1, ⌈λ+2
2 ⌉} definite spaces. They have levels 0 through max{0, ⌈λ

2 ⌉}. In this range, the even-level
spaces are positive definite and the odd-level spaces are negative definite.

Case 4. 2 ≤ p ≤ n− 2, n ≥ 4

There is one definite space. It is the level 0 space and it is positive definite.

Case 5. p = n− 1, n ≥ 3

a. If λ < 0, there are ⌈λp + 1⌉ definite spaces. They are positive definite and have levels 0 through ⌈λp⌉.

b. If λ > 0 and ⌈λ + 1⌉ ≤ ⌈λp⌉, then there are ⌈λp⌉ − ⌊λ⌋ other definite spaces. They are positive definite
and they have levels 0 and ⌈λ+ 1⌉ through ⌈λp⌉.

b. If λ > 0 and ⌈λ+ 1⌉ > ⌈λp⌉, then except for one exception only the level 0 space is definite (it is positive
definite). The exception is explicit type ⟨1, 0, 0,−1⟩, in which there is one other definite space: it is the
level 2 space and it is negative definite.

Case 6. p = n, n ≥ 3

The first ⌈λp +1⌉ spaces (levels 0 through ⌈λp⌉) are positive definite. Except for the following exceptions, there
are no other definite spaces.

– For explicit type ⟨3d, d, d, d⟩ where d ≥ 0, the level 2d+ 1 and 2d+ 2 spaces are positive definite.

– For explicit type ⟨3d+ 2, d, d, d⟩ where d ≥ 0, the level 2d+ 2 and 2d+ 3 spaces are negative definite.

– For explicit type ⟨3d− 1, d, d, d− 1⟩ where d ≥ 1, the level 2d+ 1 space is positive definite.

– For explicit type ⟨3d+ 1, d, d, d− 1⟩ where d ≥ 1, the level 2d+ 2 space is negative definite.

– For explicit type ⟨3d− 2, d, d− 1, d− 1⟩ where d ≥ 1, the level 2d space is positive definite.

– For explicit type ⟨3d, d, d− 1, d− 1⟩ where d ≥ 1, the level 2d+ 1 space is negative definite.
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B PROOF OF THEOREM 3.2 A.1 Definitions

– For explicit type ⟨3, 0, 0, 0, 0⟩, the level 3 space is negative definite.

– For explicit type ⟨4, 1, 1, 1, 1⟩, the level 4 space is positive definite.

– For explicit type ⟨0, 0, 0, ..., 0⟩ where p ≥ 4, the level 2 space is positive definite.

– For explicit type ⟨1, 1, 0, ..., 0⟩ where p ≥ 4, the level 2 space is positive definite.

A.1 Definitions

Define a function sign by sign(x) = x/|x|. Define a function g on a triple of two nonintegral reals x1 > x2

and a nonnegative integer k as follows:

If 0 > x1 > x2 then
g(x1, x2, k) = (−1)k

If x1 > 0, x2 < 0, x1 + x2 < 0, then

g(x1, x2, k) = sign
[(x1

k

)]
If x1 > 0, x2 < 0, x1 + x2 > 0 then

g(x1, x2, k) =



(−1)k : 0 ≤ k ≤ ⌊x1+x2

2 ⌋
(−1)⌈

x1+x2
2 ⌉ : ⌈x1+x2

2 ⌉ ≤ k ≤ ⌊x1+x2+1
2 ⌋

(−1)⌈
x1+x2

2 ⌉+⌈ x1+x2+1
2 ⌉+k : ⌈x1+x2+1

2 ⌉ ≤ k ≤ ⌈x1 + x2⌉
1 : ⌈x1 + x2⌉+ 1 ≤ k ≤ ⌈x1⌉

(−1)⌈x1⌉+k : ⌈x1⌉+ 1 ≤ k


If x1 > x2 > 0, then

g(x1, x2, k) =



1 : 0 ≤ k ≤ ⌊x2⌋
g(x1, x2 − 2⌈x2⌉, k − ⌈x2⌉) : ⌈x2⌉ ≤ k ≤ max(⌈x2⌉, ⌊x1⌋)
g(x1, x2 − 2⌈x2⌉, k − ⌈x2⌉)

+2⌊x1⌋+ 2⌊x2⌋ − 2⌊x1 + x2⌋ : max(⌈x2⌉, ⌊x1⌋) + 1 ≤ k ≤ ⌈x1⌉+ ⌈x2⌉
(−1)k−⌈x1⌉−⌈x2⌉ : ⌈x1⌉+ ⌈x2⌉+ 1 ≤ k


B Proof of Theorem 3.2

Since every multiplicity space has dimension 1, every multiplicity space is definite. We just need to deter-
mine which spaces are positive definite and which are negative definite, which we do using the following
result (Lemma B.1):

Definition. Let β−
µ be βµ evaluated at s = −1.

Definition. Let sign be a function on the nonzero reals defined by sign(x) = x/|x|.

Lemma B.1. We have
eµ = β−

µ − sign(µ)β−
µ−2 + (sign(1− µ)− 1)β−

µ−2⌈µ⌉.

Proof. Write out expression on the right hand side for each of the intervals µ > 1, 1 > µ > 0, and 0 > µ.

We divide into cases based on the number of positive highest weights.
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B PROOF OF THEOREM 3.2 B.1 Proof of Theorem 3.2 for p = 0

B.1 Proof of Theorem 3.2 for p = 0

This case is straightforward by the p = 0 classification already computed in Theorem 3.1.

B.2 Proof of Theorem 3.2 for p = 1

We only treat the case when ⌊λ1⌋ is even, as the ⌊λ1⌋ odd case is almost identical. The decomposition for
the λ1 + λ2 < 0 follows easily from the relation etβµ = βt+µ for µ < 0, t + µ < 0. The other case is that
λ1 + λ2 > 0. In this case, we have

β−
λ1
β−
λ2

= (eλ1 + eλ1−2 + · · ·+ eλ1−2⌊λ1⌋ + β−
λ1−2⌈λ1⌉)β

−
λ2

= (eλ1 + eλ1−2 + · · ·+ eλ1−2⌊λ1⌋)β−
λ2

+

∞∑
m≥⌈λ1⌉

β−
λ−2m · (−1)m+⌈λ1⌉,

where in the last line we have used the p = 0 classification. Expanding the product (eλ1 + eλ1−2 + · · · +
eλ1−2⌊λ1⌋)β−

λ2
, we obtain

β−
λ1
β−
λ2

= eλ + eλ−2 + · · ·+ eλ−2⌊λ1⌋ +
∞∑

m=⌈λ1+1⌉

β−
λ−2m · (−1)m+1.

Carefully rewriting the powers of e as signature characters using Lemma B.1 gives the decomposition in
Theorem 3.2.

B.3 Proof of Theorem 3.2 for p = 2

For any positive real t, write Lt = et + et−2 + · · ·+ et−2⌊t⌋. We have

β−
λ1
β−
λ2

= (Lλ1 + β−
λ1−2⌈λ1⌉)(Lλ2 + β−

λ2−2⌈λ2⌉)

= β−
λ1
β−
λ2−2⌈λ2⌉ + β−

λ2
β−
λ1−2⌈λ1⌉ − β−

λ1−2⌈λ1⌉β
−
λ2−2⌈λ2⌉ + Lλ1

Lλ2
,

and

Lλ1Lλ2 =

⌊λ2⌋∑
m=0

(m+ 1)eλ−2m

+

⌊λ1⌋∑
m=⌈λ2⌉

⌈λ2⌉eλ−2m

+

⌈λ1⌉+⌈λ2⌉∑
m=⌈λ1⌉

(⌊λ1⌋+ ⌊λ2⌋ −m+ 1)eλ−2m.

The classifications for p ≤ 1 and n = 2 give a closed form for each of β−
λ1
β−
λ2−2⌈λ2⌉, β−

λ2
β−
λ1−2⌈λ1⌉, and

β−
λ1−2⌈λ1⌉β

−
λ2−2⌈λ2⌉, as a sum of signature characters. Carefully rewriting the powers of e in Lλ1Lλ2 as

signature characters using Lemma B.1 gives the decomposition in Theorem 3.2.
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C Proof of Theorem 3.3

Our strategy is to identify a finite range of possible definite spaces and examine the spaces in the range
using characters. We start with a lemma.

Lemma C.1. No space with level more than ⌈λ
2 ⌉ is definite.

Proof (Lemma C.1). We address two cases, based on the sign of λ.

Case 1. λ < 0

We need to show that there are no definite spaces other than the level 0 positive definite space. Note
that βλ2 · βλ3 contains βλ2+λ3 + sβλ2+λ3−2. Then from the n = 2 classification, it is clear from the
product βλ1(βλ2+λ3 + sβλ2+λ3−2), which is contained in βλ1βλ2βλ3 , that no space other than the level
0 space is definite.

Case 2. λ > 0

From the n = 2 classification, the product βλ2βλ3 contains βλ2−2⌈λ
2 ⌉
βλ3 . Hence, βλ1βλ2βλ3 contains

βλ1βλ2−2⌈λ
2 ⌉
βλ3 . Since

λ1 + λ2 − 2⌈λ
2
⌉+ λ3 < 0,

the same argument as the previous subcase shows that no space with level more than ⌈λ
2 ⌉ is definite,

as desired.

From Lemma C.1, the only possible definite spaces are those with level between 0 and ⌈λ
2 ⌉ (inclusive).

Upon developing the product

βλ1βλ2βλ3 = βλ1(
∞∑

m=0

smβλ2+λ3−2m)

with repeated use of the n = 2 classification, we obtain that the even-level spaces in our range are positive
definite and the odd-level spaces in our range are negative definite.

D Proof of Theorem 3.4

Our strategy is to identify a finite range of possible definite spaces and examine spaces in the range using
characters. We divide into cases based on the sign of λ.

D.1 Proof of Theorem 3.4 for λ < 0

Lemma D.1. No space with level greater than ⌈λ2⌉ is definite.

Proof. Since λ2 + λ3 < 0, the closed form for two tensors gives that the product of βλ2
and βλ3

contains the
product of βλ2−2⌈λ2⌉ and βλ3 . Hence, βλ1 · βλ2 · βλ3 contains βλ1 · βλ2−2⌈λ2⌉ · βλ3 . By the partial closed form
for three tensors we get the claim.

Lemma D.2. Every space with level at most ⌈λ2⌉ is positive definite.
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D PROOF OF THEOREM 3.4 D.2 Proof of Theorem 3.4 for λ > 0

Proof. From the closed form for two tensors, we obtain that in the decomposition of Mλ1 ⊗Mλ2 , the spaces
with level at most ⌈λ2⌉ are all positive definite. Applying the closed form for two tensors again, we get that
if the following condition is satisfied for 0 ≤ k ≤ ⌈λ2 − 1⌉:

λ1 + λ2 − 2k − 2⌈λ1 + λ2 − 2k⌉ ≤ λ1 + λ2 − 2⌈λ2⌉

then the claim holds. This is equivalent to:

⌈λ1 + λ2⌉ ≥ 2⌈λ2⌉ − 1

which is true.

Proof of λ < 0 case of Theorem 3.4. Lemma D.1 shows that there are no definite spaces with level more than
⌈λ2⌉. Lemma D.2 shows that all spaces with level at most ⌈λ2⌉ are positive definite. Thus, the λ < 0 case of
Theorem 3.4 holds.

D.2 Proof of Theorem 3.4 for λ > 0

From the closed form for two tensors, the product βλ1 · βλ2 · βλ3 contains the product of βλ1−2⌈λ1⌉ · βλ2 · βλ3

if ⌈λ1 + λ3⌉ < ⌈λ1⌉, and it contains βλ1−2⌈λ1+1⌉ · βλ2 · βλ3 if ⌈λ1 + λ3⌉ = ⌈λ1⌉. From this we get that all
definite spaces have levels at most ⌈λ1 + 1⌉, so we only need to focus on this finite set of spaces. Our
strategy here is to write βλ1 · βλ2 · βλ3 as a sum of powers of e and use Lemma B.1 (see Appendix B.2) to
determine the definite spaces. We begin by writing out the e-decomposition for the first ⌈λ1 + 1⌉ powers of
e in (βλ1βλ2βλ3)

−:

Lemma D.3. If k ≤ ⌈λ2⌉, then the coefficient of eλ−2k in the (βλ1βλ2βλ3)
− is ⌈k+1

2 ⌉. If ⌈λ1⌉ ≥ k > ⌈λ2⌉, then the
coefficient of eλ−2k is ⌈k+1

2 ⌉ if 2|(k − ⌈λ2⌉) and ⌈k+1
2 ⌉ − (k − ⌊λ2⌋) otherwise.

Proof. Use the fact that each term of eλ−2k in the final product arises from a sum of products of eλ1−2i1 , eλ2−2i2 , eλ3−2i3

for i1 + i2 + i3 = k. There are
(
k+2
2

)
such products, and we can write them all out. If k ≤ ⌈λ2⌉, these terms

are easy to analyze. If k > ⌈λ2⌉, we must write out four cases based on the parities of k and ⌈λ2⌉. After
writing down the answer in each case, it is easy to see that the description provided covers all cases.

Corollary D.1. Define a function r by r(i) = 0 if i is even and r(i) = 1 if i is odd. Define a function t by t(i) = 1 if
i positive and t(i) = 0 if i nonpositive. Define a function f by

f(λ1, λ2, k) = ⌈k + 1

2
⌉ − (k − ⌊λ2⌋) · r(k − ⌈λ2⌉) · t(k − ⌈λ2⌉)

if 0 ≤ k ≤ ⌈λ1 + 1⌉ and f(λ1, λ2, k) = 0 if k is not in that range. Then an equivalent statement of Lemma D.3 is
that the coefficient of eλ−2k in the (βλ1

βλ2
βλ3

)− is f(λ1, λ2, k) for 0 ≤ k ≤ ⌈λ1⌉.

Corollary D.2. Using the same logic as in the proof of Lemma D.3, we get that the coefficient of eλ−2⌈λ1+1⌉ in the
(βλ1βλ2βλ3)

− is f(λ1, λ2, ⌈λ1 + 1⌉)− 2.

We now have an explicit description of the original signature character product written as a sum of
powers of e. We will now find the definite spaces (which have levels k between 0 and ⌈λ1+1⌉), tackling the
k ≤ ⌈λ1⌉ and k = ⌈λ1 + 1⌉ cases separately. We begin by solving the k ≤ ⌈λ1⌉ case. Using Lemma B.1, the
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D PROOF OF THEOREM 3.4 D.2 Proof of Theorem 3.4 for λ > 0

fact that the function x → x− 2⌈x⌉ is cyclic, and a division of the interval [0, ⌈λ1 + 1⌉] into several intervals
based on the signs of λ− 2k and 2k + 1− λ, we get the following result (Lemma D.4):

Lemma D.4. We have the following results on the regular signatures of the first ⌈λ1 + 1⌉ spaces. (Checking posi-
tive/negative definiteness of each level k space is the same as checking when the regular signature is k+1 or −k− 1.)

• If 0 ≤ k ≤ ⌈λ
2 ⌉, then the signature of the level k space is

f(λ1, λ2, k)− f(λ1, λ2, k − 1).

• If ⌈λ+2
2 ⌉ ≤ k ≤ min(⌈λ1⌉, ⌈λ⌉), then the signature of the level k space is

f(λ1, λ2, k) + f(λ1, λ2, k − 1)− 2f(λ1, λ2, ⌈λ⌉ − k).

• If ⌈λ+ 1⌉ ≤ k ≤ ⌈λ1⌉, then the signature of the level k space is

f(λ1, λ2, k) + f(λ1, λ2, k − 1)

Lemma D.5. If 1 ≤ k ≤ ⌈λ1⌉, then the level k space is positive definite iff ⌈λ + 1⌉ ≤ k ≤ ⌈λ2⌉. In particular if
⌈λ1 + 1⌉ > ⌈λ2⌉, then the only positive definite space in the first ⌈λ1 + 1⌉ spaces is the level 0 space.

Proof. If ⌈λ+ 1⌉ ≤ k ≤ ⌈λ2⌉, then Corollary D.1 and Lemma D.4 give that the level k space is definite. Now
we show that no other ⌈λ1⌉ ≥ k > 0 has level k space positive definite. If 1 ≤ k ≤ ⌈λ

2 ⌉, then using Lemma
D.4, the maximum possible value for the signature of the level k space is

1 + (k − 1)− ⌊λ2⌋ < k + 1.

If ⌈λ+2
2 ⌉ ≤ k ≤ min(λ1, λ), then we must address several cases. If k > ⌈λ2⌉, ⌈λ⌉−k ≤ ⌈λ2⌉, or 2|⌈λ⌉−k−⌈λ2⌉,

then some bounding shows that the signature of the level k space is less than k + 1. The other possibility
is that k > ⌈λ2⌉, ⌈λ⌉ − k > ⌈λ2⌉, and 2|⌈λ⌉ − k − ⌈λ2⌉ − 1. In this case the signature of the level k space is
equal to

k + 1− 2⌈λ− k + 1

2
⌉+ 2⌈λ− k⌉ − 2⌊λ2⌋.

This level k space is positive definite when

2⌈λ− k⌉ − 2⌈λ− k + 1

2
⌉ = 2⌊λ2⌋.

Viewing the LHS as a function of k, we see that as k increases by 2, the LHS decreases by 2. Evaluating the
LHS at k = 0 and k = 1 gives that the above equality holds only if k is equal to one of

⌈λ− 1⌉
2

− ⌊λ2⌋

or
⌈λ− 2⌉

2
− ⌊λ2⌋.

But k can’t equal either of these as k ≥ ⌈λ+2⌉
2 . So there are no positive definite spaces of level k when

⌈λ+2
2 ⌉ ≤ k ≤ min(λ1, λ).
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D PROOF OF THEOREM 3.4 D.2 Proof of Theorem 3.4 for λ > 0

If ⌈λ2 + 1⌉ ≤ k ≤ ⌈λ1⌉, then the maximum possible value of the signature of the level k space is

k + 1− (k − ⌊λ2⌋) < k + 1.

So, the only positive definite spaces are the ones in the given range.

Lemma D.6. There are no negative definite spaces with level at most ⌈λ1⌉.

Proof. Consider a level k space with 0 ≤ k ≤ ⌈λ1⌉. If k ≤ ⌈λ
2 ⌉, then the minimum possible signature of the

level k space is:
0− (k − ⌊λ2⌋) > −k − 1

If ⌈λ+2
2 ⌉ ≤ k ≤ min(⌈λ1⌉, ⌈λ⌉), then the minimum possible value of the signature of the level k space is

(k + 1)− 2⌈λ− k + 1

2
⌉ − k + ⌊λ2⌋ ≥ 1− ⌈λ− k + 2⌉

≥ k − 1− ⌈λ⌉

≥ −k.

If ⌈λ+ 1⌉ ≤ k ≤ ⌈λ1⌉, then the minimum possible value of the signature of the level k space is

k + 1− (k − ⌊λ2⌋) > −k − 1.

So there are no negative definite spaces.

Lemmas D.5 and D.6 classify definite spaces with level at most ⌈λ1⌉. All that remains is to determine
when the level ⌈λ1 + 1⌉ space is definite.

Lemma D.7. The only tensors with the level ⌈λ1 + 1⌉ space definite are tensors with explicit type ⟨1, 0, 0,−1⟩. In
this explicit type, the level 2 space is negative definite.

Proof. First we check when the ⌈λ1 + 1⌉ space is positive definite. As ⌈λ⌉ − ⌈λ1⌉ ≤ ⌈λ2⌉ the maximum
possible value of the signature of the level ⌈λ1⌉ space is:

f(λ1, λ2, ⌈λ1 + 1⌉)− 2 + f(λ1, λ2, ⌈λ⌉) ≤ ⌈λ1⌉ < ⌈λ1 + 2⌉.

So this space can never be positive definite. For negative definiteness, we have that the minimum possible
value of the signature is:

f(λ1, λ2, ⌈λ1 + 1⌉)− 2 + f(λ1, λ2, ⌈λ⌉)− 2f(λ1, λ2, ⌈λ⌉ − ⌈λ1⌉),

which is at least ⌈λ1⌉ − ⌈λ⌉ − 2 + ⌊λ2⌋. For this space to be negative definite, then, we must have

−⌈λ1⌉ ≥ ⌈λ1⌉ − ⌈λ⌉+ ⌊λ2⌋

Rearranging and using ⌈λ⌉ ≤ ⌈λ1⌉+⌈λ2⌉+1, we get that for this space to be negative definite, we must have
2 ≥ ⌈λ1⌉. Checking the (finitely many) explicit types with this condition yields the given exception.
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Proof of λ > 0 subcase of Theorem 3.4. From initial observations, only spaces with level at most ⌈λ1 + 1⌉ can
be definite. Lemmas D.5 and D.6 classify definite spaces with level at most ⌈λ1⌉, while Lemma D.7 shows
when the level ⌈λ1 + 1⌉ is definite. Pulling this claims together gives the λ > 0 subcase of Theorem 3.4.

Subsections D.1 and D.2 together prove the classification in Theorem 3.4.

E Proof of Theorem 3.5

An easy corollary of the n = 2 classification is that the first ⌈λ3 + 1⌉ multiplicity spaces are indeed positive
definite. Thus, we need only classify multiplicity spaces with level greater than ⌈λ3⌉, which we will call the
exceptional multiplicity spaces. To do this, we first determine all possible exceptional spaces in Subsections
E.1 and E.2. Then in Subsection E.3 we use character computations to determine which of those instances
actually produce exceptional spaces.
We begin with some notation. Write A = ⌊λ1⌋, a = λ1 − ⌊λ1⌋, and similarly define B, b and C, c for λ2 and
λ3 respectively. Define ϵ = a + b + c. We divide into subcases based on the floor of ϵ, which is between 0

and 2 (inclusive).

E.1 Possible exceptional multiplicity spaces when ϵ < 2

Lemma E.1. If the original tensor does not have explicit type ⟨3d−1, d, d, d−1⟩, ⟨3d−2, d, d−1, d−1⟩, ⟨3d, d, d, d⟩,
or ⟨3d + 1, d, d, d⟩, then it has no definite spaces with level more than ⌈λ3⌉. If the original tensor has one of those
types, then the possible exceptional definite spaces have levels 2d+ 1 (first type), 2d (second type), 2d+ 1 and 2d+ 2

(third type), and 2d+ 2 (fourth type).

Proof. By ”fudging” the fractional parts of λ1, λ2, λ3, we can ensure that b + c < 1 while maintaining the
original tensor’s explicit type. If this condition is satisfied, than by the closed form for two tensors, the
signature character product βλ1 ·βλ2 ·βλ3 contains βλ1 ·βλ2 ·βλ3−2⌈λ3⌉. From the closed form of two positive
and one negative Vermas, we obtain that the only spaces with level more than ⌈λ3⌉ that can be definite in
the original tensors are spaces with level k, where k satisfies

⌈λ1 + λ2 + λ3 − 2⌈λ3⌉+ 1⌉+ ⌈λ3⌉ ≤ k ≤ ⌈λ2⌉+ ⌈λ3⌉.

This inequality is equivalent to

⌈A+B − C + ϵ− 1⌉+ ⌈λ3⌉ ≤ k ≤ B + 1 + ⌈λ3⌉.

Using some case analysis and bounding, we obtain that the only possible exceptional definite spaces occur
in types:

• Explicit type ⟨3d− 1, d, d, d− 1⟩, in which the level 2d+ 1 space could be definite.

• Explicit type ⟨3d− 2, d, d− 1, d− 1⟩, in which the level 2d space could be definite.

• Explicit type ⟨3d, d, d, d⟩, in which the level 2d+ 1 and 2d+ 2 spaces could be definite.

• Explicit type ⟨3d+ 1, d, d, d⟩, in which the level 2d+ 2 space could be definite.

25



E PROOF OF THEOREM 3.5 E.2 Possible exceptional multiplicity spaces when 2 < ϵ < 3

E.2 Possible exceptional multiplicity spaces when 2 < ϵ < 3

Lemma E.2. If the original tensor does not have explicit type ⟨3d, d, d − 1, d − 1⟩, ⟨3d + 2, d, d, d⟩, or ⟨2d + d′ +

2, d, d, d′⟩ for d > d′, then it has no definite spaces with level more than ⌈λ3⌉. If the original tensor has one of those
types, then the possible exceptional definite spaces have levels 2d+ 1 (first type), 2d+ 2 and 2d+ 3 (third type), and
d+ d′ + 3 (fourth type).

Proof. We divide into cases based on whether ⌊λ3⌋ = ⌊λ2⌋ or not.
Suppose ⌊λ2⌋ = ⌊λ3⌋. Then from the closed form of two tensors, the signature character product βλ1 ·βλ2 ·βλ3

contains βλ1 ·βλ2−2⌈λ3⌉−2 ·βλ3 . By the definite space classification for negative/positive/positive products,
the only possible exceptional definite spaces are those with level k where k satisfies

⌈λ1 + λ2 + λ3 − 2⌈λ2⌉ − 2 + 1⌉+ ⌈λ3 + 1⌉ ≤ k ≤ ⌈λ3⌉+ ⌈λ3 + 1⌉.

This inequality is equivalent to

A+ ⌈λ3 + 1⌉ ≤ k ≤ C + 1 + ⌈λ3 + 1⌉.

Using some case analysis and bounding, we get that the only possible exceptional definite spaces occur in

• ⟨3d, d, d− 1, d− 1⟩, in which the level 2d+ 1 space could be definite.

• ⟨3d+ 2, d, d, d⟩, in which the level 2d+ 2 and 2d+ 3 spaces could be definite.

The other possibility is that ⌊λ3⌋ < ⌊λ2⌋. Using the closed form for two tensors, the signature character
product βλ1 · βλ2 · βλ3 contains βλ1 · βλ2−2⌈λ2⌉−1 · βλ3+1. Using the definite space classification for nega-
tive/positive/positive products, we get that the only possible exceptional definite spaces are spaces with
level k where k satisfies

⌈λ1 + λ2 + λ3 − 2⌈λ2⌉+ 1⌉+ ⌈λ2⌉ ≤ k ≤ ⌈λ3 + 1⌉+ ⌈λ2⌉

Using some case analysis and bounding, we get the only possible exceptional definite spaces occur in ⟨2d+
d′ + 2, d, d, d′⟩, in which the d+ d′ + 3 space could be definite. Here d > d′.

E.3 Classification of exceptions

Here we will address the exceptions found in the previous two subsections and show that six of the seven
potential families of exceptions are always exceptional, and the seventh family is never exceptional. We
begin with the seventh family.

Lemma E.3. In explicit type ⟨3d+ 1, d, d, d⟩, the level 2d+ 2 space is nondefinite.

Proof. Fudge around the fractional parts of λ1, λ2, and λ3, so that a + c > 1 and b + c < 1. (We can do this
and maintain the explicit type of the original tensor.) By multiplying βλ1 ·βλ3 and using the closed form for
two tensors, we get that the level 2d+2 space is not positive definite. By multiplying the βλ2 ·βλ3 and using
the closed form for two tensors, we get that the level 2d+2 space is not negative definite. We are done.

Now we will show that the other six exceptional families are always exceptional, and we will determine
the positivity/negativity of the exceptional definite spaces. Our strategy here is to write the signature
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character product as a sum of powers of e and use the following results along with Lemma B.1 to compute
the regular signatures of the multiplicity spaces:

Definition. Define a function f2 on an integer j and a real x by

f2(x, j) = 0

if j ≤ ⌈x⌉ and

f2(x, j) = (j − ⌈x⌉ − ⌊j − ⌈x+ 1⌉
2

⌋)(1 + ⌊j − ⌈x+ 1⌉
2

⌋)

if j ≥ ⌈x+ 1⌉.

Lemma E.4. For k ≤ ⌈λ2⌉+ ⌈λ3⌉+1, the coefficient of eλ−2k in the original signature character product (evaluated
at s = −1) is (

k + 2

2

)
− 2f2(λ1, k)− 2f2(λ2, k)− 2f2(λ3, k)

Proof. Each term of eλ−2k arises from a product of eλ1−2i1 , eλ2−2i2 , and eλ3−2i3 , where i1 + i2 + i3 = k. If
all of these terms were 1, then by a standard counting argument, the coefficient would be

(
k+2
2

)
. However,

some of the terms are −1. So if we can count the number of terms that are −1 and subtract twice that from(
k+2
2

)
, we will be done.

A −1 arises as a product of −1 · 1 · 1 or −1 · −1 · −1. But since k is bounded by ⌈λ3⌉ + ⌈λ2⌉ + 1, the three
−1’s cannot happen. So we need only count the number of −1, 1, 1 triples.
We claim that the number of valid triples with a −1 coming from βλ1 is f2(λ1, k). To see this, count the
number of solutions to:

2i′1 + i2 + i3 = k − ⌈λ1 + 1⌉

using standard methods. By symmetry, the total number of valid triples is f2(λ1, k) + f2(λ2, k) + f2(λ3, k).
Subtracting twice this from our original count gives the result.

Lemma E.5. We have the following exceptional definite spaces:

• For d ≥ 0 and explicit type ⟨3d, d, d, d⟩, the level 2d+ 1 and 2d+ 2 spaces are positive definite.

• For d ≥ 0 and explicit type ⟨3d+ 2, d, d, d⟩, the level 2d+ 2 and 2d+ 3 spaces are negative definite.

• For d ≥ 1 and explicit type ⟨3d− 1, d, d, d− 1⟩, the level 2d+ 1 space is positive definite.

• For d ≥ 1 and explicit type ⟨3d+ 1, d, d, d− 1⟩, the level 2d+ 2 space is negative definite.

• For d ≥ 1 and explicit type ⟨3d− 2, d, d− 1, d− 1⟩, the level 2d space is positive definite.

• For d ≥ 1 and explicit type ⟨3d, d, d− 1, d− 1⟩, the level 2d+ 1 space is negative definite.

Proof. We will outline the proof for ⟨3d, d, d, d⟩. The other cases are exactly the same.
For ⟨3d, d, d, d⟩, we know the only possible exceptional definite spaces are levels 2d+1 and 2d+2. We claim
that these are both positive definite. Based on whether d is odd or even, the claim that in ⟨3d, d, d, d⟩, levels
2d + 1 and 2d + 2 are positive definite is by Lemmas B.1,E.4 and the cyclicity of the map x → x − 2⌈x⌉,
equivalent to two quadratic polynomials being identically 0. That is, if d = 2a (respectively d = 2a − 1),
then the statement that the level 2d + 1 and 2d + 2 spaces are positive definite is equivalent to a quadratic
in a being identically 0. To check that these quadratics are 0 everywhere, we only need to check that they
are 0 at three different points. Testing d = 2, 4, 6 and d = 1, 3, 5 verifies the claim.
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Lemma E.6. In explicit type ⟨2d+ d′ +2, d, d, d′⟩ where d > d′, the only potential exceptionally definite space (level
d+ d′ + 2) is definite exactly when d′ = d− 1. If it is definite then it is negative definite.

Proof. Set a = ⌈n/2⌉ and b = ⌈m/2⌉. Using Lemmas B.1 and E.4 we get that the signature of the level
d + d′ + 2 space is negative, so we only need to check when it is equal to −d − d′ − 3. If d and d′ have
oppositive parities, than using Lemmas B.1 and E.4 gives that this happens exactly when d′ = d − 1. If d
and d′ have the same parity, this happens either when d = d′ (impossible) or never.

From the classification of exceptional multiplicity spaces proved in Subsection E.3, we obtain Theorem
3.5.

F Proof of Theorem 3.6

We start with some new definitions. Define a function Λ by Λ(k) =
∑k

i=1 λi. Let λ+ = Λ(p) and λ− = λ−λ+.

F.1 Proof of Theorem 3.6 for p = 1

The definite spaces in the decomposition of
⊗

i Mλi are exactly the same as the definite spaces in the de-
composition of Mλ1 ⊗Mλ−/2 ⊗Mλ−/2. Applying the p = 1 and n = 3 classification proves the p = 1 case of
Theorem 3.6.

F.2 Proof of Theorem 3.6 for p ≥ 2, n− p ≥ 2

Lemma F.1. If p ≥ 2, n− p ≥ 2, and |λ+| > |λp+1|, then there is exactly one definite space in the original tensor. It
is the level 0 space and it is positive definite.

Proof. When we multiply βλ1 , βλ2 , ..., βλp+1 , the product is:

eλp+1+λ+ + (p+ s)eλp+1+λ+−2 = βλp+1+λ+
+ (p− 1 + s)βλp+1+λ+−2

Since the level 1 space is nondefinite, when we multiply by βλp+2 , we get that all spaces with level at least 1
are nondefinite. Thus, in the original tensor product, all spaces with level at least 1 are nondefinite. In the
original tensor product, the level 0 space is positive definite. Our claim follows.

Lemma F.2. If p ≥ 1, n− p ≥ 2, and |λ−| > |λp|, then there is exactly one definite space in the original tensor. It is
the level 0 space and it is positive definite.

Proof. The product of the n − p − 1 signature characters βλp+2 , ..., βλn contains β−λp+1+λ− . So the product
of βλp , βλp+1 , ...βλn contains the product of βλp , βλp+1 , β−λp+1+λ− . From the classification for p = 1 and
n = 3 case, we deduce that there is exactly one definite space. That is the level 0 space which is positive
definite.

Lemma F.3. If p ≥ 2 and n − p ≥ 2, then there is exactly one definite space in the original tensor. It is the level 0
space and it is positive definite.

Proof. Assume the claim is false. Then by Lemma F.1, λp+1 + λ+ < 0. By Lemma F.2, 0 < λp + λ−. Adding
these yields

λ+ + λp+1 < λp + λ−
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or ∑
i<p

λi <
∑

i>p+1

λi

which is a contradiction as the LHS is positive and the RHS is negative. So our assumption was false and
the claim holds.

This proves the classification in Theorem 3.6 for the case p ≥ 2 and n− p ≥ 2.

F.3 Proof of Theorem 3.6 for p = n− 1

Lemma F.4. If |Λ(p− 1)| > |λn|, then there is exactly one definite space in the original tensor. It is the level 0 space
and it is positive definite.

Proof. We know p ≥ 3 since n ≥ 4. By the same logic as in the proof of Lemma F.1, in the tensor product of
Mλ1 ⊗ · · · ⊗Mλp−1 ⊗Mλn , the level 1 space is nondefinite. So when we tensor this with Mp, all the spaces
with level at least 1 are nondefinite. The level 0 space is positive definite. The lemma follows.

Lemma F.5. If |Λ(p− 1)| < |λn|, then no space after the level ⌈λp⌉ is definite in the original tensor.

Proof. The product of βλp and βλn contains the product of βλp−2⌈λp⌉ and βλn . Thus, the product of all our
n signature characters contains the product of βλ1 , ..., βλp−1 , βλp−2⌈λp⌉, βλn . Applying Lemma F.2 gives that
in the original tensor product, no space after the level ⌈λp⌉ space is definite.

Lemma F.6. If |Λ(p − 1)| < |λn| < |Λ(p)|, then there are exactly ⌈λp⌉ − ⌊λ⌋ definite spaces in the original tensor.
They are all positive definite; one of them is level 0 and the others are levels ⌈λ+ 1⌉ through ⌈λp⌉.

Proof. When we multiply βλ1 , ..., βλp , its easy to see that the first ⌈λp⌉ signature characters in the sum de-
composition are positive definite. (Use the fact that ss dont appear in the series for each βx until ⌈x + 1⌉
when x is positive.) Using the fact that the product of βλ1 , ..., βλp contains βλ+ and pβ−2+λ+ , along with
the classification for n = 2 and Lemma F.5, gives that the definite spaces in the original tensor product are
positive and have levels 0 and ⌈λ+ 1⌉ through ⌈λp⌉.

Lemma F.7. If |λn| > Λ(p), then there are exactly ⌈λp+1⌉ definite spaces in the original tensor. They are all positive
definite and they have levels 0 through ⌈λp⌉.

Proof. From Lemma F.5, its enough to show that spaces with level 0 to ⌈λp⌉ are positive definite. When we
multiply βλ1 , ..., βλp , its easy to see that the first ⌈λp⌉ signature characters in the sum decomposition are
positive definite. (Use the fact that ss dont appear in the series for each βx until ⌈x+1⌉ when x is positive.)
Using this, along with the closed form for two tensors, gives that the first ⌈λp +1⌉ spaces are definite in the
original tensor product.

Combining the results of this subsection gives the p = n − 1 case of Theorem 3.6. The form of the
p = n− 1 classification stated in Theorem 3.6 is slightly different than the form of the classification we have
proved here, but it can be shown to be equivalent.
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F.4 Proof of Theorem 3.6 for p = n

Lemma F.8. Suppose the original tensor does not satisfy either the following special conditions:

• p > 4, and the original tensor has implicit type either ⟨1, 0, ..., 0⟩ or ⟨0, 0, ..., 0⟩.

• p = 4, and the original tensor has ⌊λ1⌋ ∈ {0, 1}.

Then the original tensor has exactly ⌈λp + 1⌉ definite spaces. They are all positive definite and they have levels 0
through ⌈λp⌉.

Proof. Since the original tensor contains Mλ1 ⊗Mλ2 ⊗Mλn as a sub-tensor product, the n = 3 classification
gives that the only possible implicit types with exceptional definite spaces are ⟨0, 0, ..., 0⟩, ⟨1, 1, ..., 1⟩, and
⟨1, 0, ..., 0⟩. None of the (finitely many) explicit types for n = 5 that have implicit type ⟨1, 1, ..., 1⟩ has
exceptional definite spaces, so the claim is proven.

Lemma F.9. Suppose p ≥ 4 and the original tensor has explicit type ⟨0, 0, ..., 0⟩. Then it has exactly three definite
spaces.

Proof. Check that in a tensor of three Vermas of the original set of Vermas, the level 3 space has multiplicity
signature 1 + 3s. Thus no space after level 2 is definite in the original tensor. Check that levels 0,1,2 are
definite.

Lemma F.10. Suppose p > 4 and the original tensor has implicit type ⟨0, 0, ..., 0⟩. Then if λ+ < 1, the original
tensor has exactly 3 definite spaces: They are levels 0,1,2 and they are positive definite. If λ+ > 1, then the original
tensor has exactly 2 definite spaces: They are levels 0,1 and they are positive definite.

Proof. If λ+ < 1, then the claim follows from Lemma F.9. Otherwise suppose λ+ > 1. Let i be minimal such
that Λ(i) > 1. From assumptions, 2 ≤ i ≤ p. If 2 < i < p, then in the tensor of ∆λ1 , ...∆λi , we can check that
the level 2 space is nondefinite, so our claim holds for the original tensor. Otherwise we have i = p or i = 2.
If i = p, tensor the first p− 1 Vermas and apply Lemma F.9 and the classification for n = 2 to get the claim.
If i = 2, check that all the (finitely many) explicit types of tensors for n = 5 which have λ+ > 1 and implicit
type ⟨0, 0, 0, 0, 0⟩ have two definite spaces. So in all cases the claim holds.

Lemma F.11. Suppose p > 4 and the original tensor has implicit type ⟨1, 0, ..., 0⟩. Then if λ+ < 2, the original
tensor has exactly 3 definite spaces: They are levels 0,1,2 and they are positive definite. If λ+ > 2, then the original
tensor has exactly 2 definite spaces: They are levels 0,1 and they are positive definite.

Proof. Check that the claim holds for all (finitely many) explicit types of tensors which have p = 5 and
implicit type ⟨1, 0, .., 0⟩. For p > 5, tensoring the 5 Vermas with largest highest weights and using the result
in the last sentence gives that no space after level 3 can be definite. Check that if λ+ < 2 there are three
definite spaces and if λ+ > 2 there are two definite spaces as claimed.

Lemma F.12. Suppose p = 4. Then there are ⌈λp +1⌉ definite spaces in the original tensor as described before except
for the following exceptions:

• Explicit type ⟨0, 0, 0, 0, 0⟩, in which level 0,1,2 spaces are positive definite.

• Explicit type ⟨3, 0, 0, 0, 0⟩, in which level 0,1 spaces are positive definite and level 3 space is negative definite.

• Explicit type ⟨1, 1, 0, 0, 0⟩, in which level 0,1,2 spaces are positive definite.
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• Explicit type ⟨4, 1, 1, 1, 1⟩, in which the level 0,1,2,4 spaces are positive definite.

Proof. From Lemma F.8, we only need to check the (finitely many) explicit types for which λ1 < 2.

Combining the results in this subsection gives the p = n case of Theorem 3.6.

G Proofs of preliminary results in Section 4

G.1 Proof of Lemma 4.1

We need to show that [hi, hj ] = 0, where the bracket denotes the commutator map. We have

[hi, hj ] =
∑

k1 ̸=i,k2 ̸=j

Ωik1Ωjk2 − Ωjk2Ωik1

(zi − zk1)(zj − zk2)

Next, Ωik1Ωjk2 − Ωjk2Ωik1 equals 0 unless k1 = i, k2 = j, or k1 = k2. It is easy to check that these three are
mutually exclusive. Thus, we have

[hi, hj ] =
∑
k ̸=i,j

(zi − zk)([Ωik,Ωjk]) + (zj − zk)([ΩikΩij ]) + (zi − zj)([Ωik,Ωjk])

(zi − zj)(zi − zk)(zj − zk)

Using the relation [Ωxz,Ωyz] =
∑

σ sgn(σ)Eσ(1) ⊗ Fσ(2) ⊗Hσ(3) (where σ runs over all six permutations of
(x, y, z)), we obtain [hi, hj ] = 0.

G.2 Proof of Lemma 4.2

By a combinatorial argument, we have

bQ =
∑

a1+a2+...+an=m

⊗
i

F aivi ·

(∑
σ

1∏m
j=1(sj − zσ(j))

)
,

where σ runs over all permuations of the list consisting of ak k’s. Then applying E = E1 +E2 + ...En to bQ

and using the identity EF k = HF k−1 + FHF k−2 + ...F k−1H gives

EbQ =
∑

a1+a2+...+an=m−1

⊗
i

F aivi ·
n∑

i=1

∑
σ

(ai + 1)(λi − ai)∏m
j=1(sj − zσ(j))

, (2)

where for each i, the sum over σ runs over all distinguishable permutations of the list consisting of ak k’s
for k ̸= i, and ai + 1 i’s. Fix an arbitrary n-tuple of nonnegative integers (a1, a2, ..., an) with sum m − 1.
Using the construction of a tensor product basis, we see that showing that the expression in equation (2)
equals 0 is equivalent to showing the inner sum

n∑
i=1

∑
σ

(ai + 1)(λi − ai)∏m
j=1(sj − zσ(j))

(3)
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in (2) equals 0. Multiplying by a1!a2!...an! gives that (3) being equal to 0 is equivalent to

n∑
i=1

∑
σ∈Sm

λi∏
j(sj − zσ(j))

=
n∑

i=1

∑
σ∈Sm

ai∏
j(sj − zσ(j))

, (4)

where for each i, the permutation σ acts on the list {i, 1, 1, .., 1, 2, 2, .., 2, ..., n, n, ...n}. We will separately
develop the LHS and RHS of (4) and show that they are equal, and then the theorem will be proven.
Start with the LHS. It is equal to

n∑
i=1

∑
σ∈Sm

λi∏
j(sj − zσ(j))

=
∑

σ∈Sm

1∏
j ̸=σ−1(1)(sj − zσ(j))

·
n∑

i=1

λi

sσ−1(1)−zi

.

Since (s1, s2, ..., sm) is a critical point, we know that

n∑
i=1

λi

sσ−1(1)−zi

=
∑

i ̸=σ−1(1)

2

sσ−1(1) − si
,

whence

n∑
i=1

∑
σ∈Sm

λi∏
j(sj − zσ(j))

=
∑

σ∈Sm

1∏
j ̸=σ−1(1)(sj − zσ(j))

·
∑

i ̸=σ−1(1)

2

sσ−1(1) − si
. (5)

Rewriting the RHS of (5) based on the value of k := σ−1(1), we get

n∑
i=1

∑
σ∈Sm

λi∏
j(sj − zσ(j))

=
m∑

k=1

∑
σ∈Sm−1

1∏
j(sj − zσ(j))

·

∑
i ̸=k

2

sk − si

 , (6)

where σ permutes all the z’s except one. Note that the term
(∑

i ̸=k
2

sk−si

)
in the sum in the RHS of (6) is

independent of everything else, so we can sum over expressions of the form 2
sx−sy

. Thus, (6) becomes

n∑
i=1

∑
σ∈Sm

λi∏
j(sj − zσ(j))

(7)

=
∑

k1<k2

2

sk1 − sk2

·

 ∑
σ∈Sm−1

1∏
j ̸=k1

(sj − zσ(j))

−

 ∑
σ∈Sm−1

1∏
j ̸=k2

(sj − zσ(j))

 . (8)
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The permutations in the two sums
(∑

σ∈Sm−1

1∏
j ̸=k1

(sj−zσ(j))

)
and

(∑
σ∈Sm−1

1∏
j ̸=k2

(sj−zσ(j))

)
can be summed

in a way that allows for factorization and cancellation:

∑
k1<k2

2

sk1 − sk2

·

 ∑
σ∈Sm−1

1∏
j ̸=k1

(sj − zσ(j))

−

 ∑
σ∈Sm−1

1∏
j ̸=k2

(sj − zσ(j))


=
∑

k1<k2

2

sk1 − sk2

·
n∑

j=1

(
1

sk2 − zj
− 1

sk1 − zj

)
·
∑

σ∈Sm−2

1∏
j ̸=k1,k2

(sj − zσ(j))

=
∑

k1<k2

2

sk1 − sk2

·
n∑

j=1

(
sk1 − sk2

(sk2 − zj)(sk1 − zj)

)
·
∑

σ∈Sm−2

1∏
j ̸=k1,k2

(sj − zσ(j))

=
∑

k1<k2

2 ·
n∑

j=1

(
1

(sk2 − zj)(sk1 − zj)

)
·
∑

σ∈Sm−2

1∏
j ̸=k1,k2

(sj − zσ(j))

=
∑

k1<k2

2 ·
n∑

j=1

(
1

(sk1 − zj)

)
·
∑

σ∈Sm−1

1∏
j ̸=k1

(sj − zσ(j))

=
∑
k1,k2

n∑
j=1

(
1

(sk1 − zj)

)
·

∑
σ∈Sm−1,σ(k2)=j

1∏
j ̸=k1

(sj − zσ(j))

=
∑
k1

n∑
j=1

(
1

(sk1 − zj)

)∑
k2

∑
σ∈Sm−1,σ(k2)=j

1∏
j ̸=k1

(sj − zσ(j))
.

Since for every permutation σ ∈ Sm−1, there are exactly aj values of k2 for which σ(k2) = j, we get that the
LHS of (4) equals

∑
k1

n∑
j=1

(
1

(sk1 − zj)

)∑
k2

∑
σ∈Sm−1,σ(k2)=j

1∏
j ̸=k1

(sj − zσ(j))

=
∑
k1

n∑
j=1

(
aj

(sk1 − zj)

) ∑
σ∈Sm−1

1∏
j ̸=k1

(sj − zσ(j))
.

Next, we tackle the RHS of (4). Since the σ in the RHS of (4) acts on {i, 1, 1, ...1, 2, 2, ..., 2, ..., n, n, ..., n}, we
can write

n∑
i=1

∑
σ∈Sm

ai∏
j(sj − zσ(j))

=
∑

σ∈Sm

1∏
j ̸=σ−1(1)(sj − zσ(j))

·

(
n∑

i=1

ai
sσ−1(1) − zi

)
(9)

Breaking the RHS of (9) into cases based on k := σ−1(1), we get

n∑
i=1

∑
σ∈Sm

ai∏
j(sj − zσ(j))

=
m∑

k=1

 ∑
σ∈Sm−1

1∏
j ̸=k(sj − zσ(j))

 ·

(
n∑

i=1

ai
sk − zi

)
.

This is the same as the LHS of (4), so we are done.
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G.3 Proof of Lemma 4.4

Fix i = 1 (we can do this since the Y ’s commute with each other), and write

[h1, Y1Y2...Ym] = (h1Y1Y2...Ym)− (Y1Y2...Ymh1)

= (h1Y1Y2...Ym)− (Y1h1Y2...Ym) + (Y1h1Y2...Ym)− (Y1Y2...Ymh1)

= [h1, Y1](Y2...Ym) + Y1[h1, Y2Y3...Ym]

= Y1Y2...YmH1 −
F1

s1 − z1

(
2

m∑
j=2

( 1

sj − z1
Y1...Ŷj ...Ym

)
+ Ŷ1Y2...YmZ1 + [Z1, Y2...Ym]

)
+ Y1[h1, Y2...Ym].

Next, we manipulate the expression [Z1, Y2...Ym]

[Z1, Y2...Ym] =
2

s1 − s2
(Y1 − Y2)(Y3...Ym)

+ Y2(
2

s1 − s3
)(Y1 − Y3)(Y4...Ym)

...

+ (Y2...Ym−1)(
2

s1 − sm
)(Y1 − Ym)

=
( m∑
j=2

−2

s1 − sj

)
(Y2...Ym)

+
m∑
j=2

2

s1 − sj
Y1...Ŷj ...Ym

= 2
m∑
j=2

1

s1 − sj

(
Y1...Ŷj ...Ym − Ŷ1Y2...Ym

)
.

We plug this back in to the relation for [h1, Y1...Ym] and obtain

[h1, Y1Y2...Ym]

= Y1Y2...YmH1 −
F1

s1 − z1

(
2

m∑
j=2

( 1

sj − z1
Y1...Ŷj ...Ym

)
+ Ŷ1Y2...YmZ1

+ 2
m∑
j=2

1

s1 − sj

(
Y1...Ŷj ...Ym − Ŷ1Y2...Ym

))
+ Y1[h1, Y2...Ym]
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Iterating this type of expression with Y1[h1, Y2...Ym] until there are no commutators, we obtain in the end:

[h1, Y1...Ym] =
m∑

k=1

( 1

sk − z1
Y1...YmH1

− F1

sk − z1

[
2

m∑
j=k+1

( 1

sj − z1
Y1...Ŷj ...Ym

)
+ (Y1...Ŷk...Ym)

n∑
i=1

( Hi

sk − z1

)
+ 2

m∑
j=k+1

1

sk − sj

(
Y1...Ŷj ...Ym − Y1...Ŷk...Ym

)])
=

m∑
k=1

( 1

sk − z1
Y1...YmH1

− F1

sk − z1

[
2

m∑
j=k+1

( 1

sj − z1
Y1...Ŷj ...Ym

)
+ (Y1...Ŷk...YmZk) + 2

m∑
j=k+1

1

sk − sj

(
Y1...Ŷj ...Ym − Y1...Ŷk...Ym

)])
.

The coefficient of each operator Y1...Ŷk...Ym in the above sum is

∑
j>k

( 2

(sj − sk)(sk − z1)

)
+
∑
j<k

( 2

(sj − sk)(sj − z1)
+

2

(sj − z1)(sk − z1)

)
=

2

sk − z1

∑
j ̸=k

( 1

sj − sk

)
.

Thus

[h1, Y1...Ym] =

m∑
k=1

1

sk − z1
Y1...Ym

− F1

m∑
k=1

2

sk − z1

∑
j ̸=k

1

sj − sk

Y1...Ŷk...Ym

− F1

m∑
k=1

1

sj − z1
Y1...Ŷk...YmZk.

We are now ready to compute [h1, Y1...Ym]v. We have

[h1, Y1...Ym]v =

(
m∑

k=1

1

sk − z1
Y1...Ym

)
v

−

F1

m∑
k=1

2

sk − z1

∑
j ̸=k

1

sj − sk

Y1...Ŷk...Ym

 v

−

(
F1

m∑
k=1

1

sj − z1
Y1...Ŷk...YmZk

)
v.
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Finally, note that (
m∑

k=1

1

sk − z1
Y1...Ym

)
v =

(
m∑

k=1

λ1

sk − z1

)
v

= −λ1 ·
Q′(z1)

Q(z1)
bQ,

while  m∑
k=1

2

sk − z1

∑
j ̸=k

1

sj − sk

Y1...Ŷk...Ym

 v

+

(
m∑

k=1

1

sj − z1
Y1...Ŷk...YmZk

)
v

=

∑
j ̸=k

( 2

sj − sk

)
+
( n∑
j=1

λj

sk − zj

) v

= 0

where in the last step we have used the fact that (s1, ...sm) is a critical point. We conclude that

[hi, Y1Y2...Ym]v =
−λiQ

′(zi)

Q(zi)
bQ,

as desired.

G.4 Proof of Lemma 4.6

First, by combinatorial argument similar to the one used in the beginning of Lemma 4.2, we have

bQ =
∑

a1+a2...+an=m

(⊗
i

F aivi
)
·
∏
σ

1∏m
k=1(tk − zσ(j))

.

where σ runs over all distinguishable permuations consisting of ai i’s. By assumption, the coefficient of
each

⊗
i F

aivi is real. We show by induction on k that the kth derivative Qk(zi) (here 0 ≤ k ≤ m) is real for
each i, whence we will be done.

Step 1. Base cases
First we show Q(zi) and Q′(zi) are real. Consider the ordered partition p0 = (m, 0, ..., 0) of m. From
the coefficient of the term in bQ indexed by p0, we obtain that Q(z1) is real, so by symmetry all Q(zi)’s
are real. Next, consider the ordered partition p1 = (m − 1, 1, ..., 0) of m. From coefficient of the term
in bQ indexed by p1, we obtain that

1

Q(z1)
·

m∑
k=1

tk − z1
tk − z2
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is real, whence
∑m

k=1
tk−z1
tk−z2

is real. Subtracting 1 from each fraction gives that

m∑
k=1

z2 − z1
tk − z2

is real, whence Q′(z2) (and by symmetry, all Q′(zi)’s) is real.

Step 2. Induction
Assume that Q(zi), Q

′(zi), ..., Q
k(zi) are all real for each i. We show that Qk(zi) is real for each i.

Consider the ordered partition pk = (m − k, k, 0, ..., 0) of m. From the coefficient of the term of bQ
indexed by pk, we obtain that

1

Q(z1)
·

∑
k-sets S of {1,2,...,m}

∏
i∈S(ti − z1)∏
i∈S(ti − z2)

Define a polynomial associated to each k-set S by RS(z) =
∏

i∈S(ti − z). We know that

∑
k-sets S

RS(z1)

RS(z2)

is real. Using the relation

RS(z1)−RS(z2)

z1 − z2
= R′

S(z2) +
(z1 − z2

2!

)
R′′

S(z2) + ...,

we get that

∑
k-sets S

R′
S(z2) +

(
z1−z2

2!

)
R′′

S(z2) + ...

RS(z2)
=

∑
k-sets S

∑
i∈S

1

ti − z2
+
(z1 − z2

2!

) ∑
i ̸=j∈S

1

(ti − z2)(tj − z2)
+ ...

is real. When we sum over all k-sets S, by symmetry we get that for some positive integers a0, a2, ..., ak,
the quantity

k∑
i=1

ai ·
∑

i-sets S of {1,2,...,m}

1∏
i∈S(ti − z2)

is an integer. The first k− 1 summands in the sum are integer multiples of Q(z2), Q
′(z2), ..., Q

k−1(z2),
while the last summand is an integer multiple of Qk(z2). By the inductive hypothesis, we get that
Qk(z2) (and by symmetry, all Qk(zi)’s) is real. The inductive step is complete.

Since the first m derivatives of Q evaluated at a real point (say, z1) are all real, we get that Q has real
coefficients as desired.
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