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0.1 Introduction

We say a permutation π contains a permutation π′ if there exists a subse-

quence of π order-isomorphic to π′. The study of permutation avoidance

(and, resultingly, permutation containment) can be traced back to Donald

Knuth’s work on stack-sortable permutations in the late 1960s. The ”dual”

to the notion permutation avoidance is that of pattern-packing, or the study

of permutations which contain the largest number of smaller permutations.

Of particular interest is the problem of the smallest ”superpattern”, or the

smallest permutation which contains all permutations of a given length, orig-

inally suggested by Arratia. The trivial lower bound for super-pattern length

is k2

e2
for a k-permutation, and a construction of Miller gave an upper bound

of k(k+1)
2

. Researchers disagree on the asymptotic limit of the minimal length

of a superpattern - some estimate the lower bound is tight, whereas others

conjecture a lower bound of k2

4
or k2

2
. A paper published by a Eriksson et.

al in 2001 introduced a new form of representing a permutation, referred to

as the compact dot representation, with the goal of constructing a smaller

superpattern. We study this representation and give bounds on its size. We

also consider a variant of the problem, where limitations on the alphabet

size are imposed, and obtain lower bounds. Lastly, we consider the Mobius

function of the poset of permutations ordered by containment.

0.2 Compact Dot Representations

In [1], a new method of representing a permutation was introduced relating

to its position in a ”tilted checkerboard”. This representation was used to

improve the standing upper bound on the minimal length super-pattern, in

addition to being an object of interest in its own right.
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0.2.1 Definitions

Definition An n-permutation is an ordering of the indices 1, 2, 3, ..., n.

Definition An ascent in a permutation π occurs between two consecutive

indices i and i+ 1 if π(i) < π(i+ 1).

Definition A descent in π occurs between two consecutive indices i and i+1

if π(i) > π(i+ 1).

Definition An inverse descent in π occurs wherever there is a descent in

the inverse permutation of π.

Definition The n-tilted square is the n2 permutation obtained by ordering

the indices 1, 2, ..., n2 into n sequences of length n each decreasing by n and

putting the sequences in ascending order [Eriksson et. al]

Example The ”4-tilted square” corresponds to the permutation 13 9 5 1 14

10 6 2 15 11 7 3 16 12 8 4.

Definition The compact dot representation of a permutation is the set of

points representing the permutation in the grid of the tilted square farthest

to the west and south.

Definition Let A(π), D(π), a(π), d(π) denote the number of ascents, num-

ber of descents, number of inverse ascents, and number of inverse descents,

respectively in a permutation π.

Lemma 0.2.1. The compact dot representation of a permutation is achieved

by taking each symbol πi in π and placing a dot in the site with as many

columns to the left of it as there are ascents before it and as many rows below

it as there are inverse descents under it.
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The statement above was shown in [Eri13]. Note that we may thus bound

representations under lines of the form A(π)+d(π) = c, where A(π) and d(π)

denote the number of ascents and inverse descents of π, respectively. This

will be the goal of the following theorem.

Theorem 0.2.2. Let Ti denote the i-th triangular number. If Ti−1 < n ≤ Ti,

then A(π) + d(π) ≤ 2n− 2i+ 2. Furthermore, this bound is tight.

Proof. Note that A(π) + D(π) = n and a(π) + d(π) = n trivially for any

n-permutation σ. Adding, we have

A(π) + d(π) + a(π) +D(π) = 2n

Furthermore,

a(π) +D(π) = A(πC) + d(πC)

, where πC denotes the n-permutation obtained by replacing each symbol πi

with n+1−πi, as (inverse) ascents become (inverse) descents (and vice-versa)

when taking the complement. Thus, to maximize A(π) + d(π) we determine

the minimum of A(πC) + d(πC). As πC ranges over all n-permutations,

we must to assign each of the n points to a unique square in the grid of

the tilted square. This is equivalent to selecting n distinct lattice points

with non-negative integer coordinates while trying to minimize the largest

taxicab distance between the origin and any of the n points. This problem

is solved by progressively selecting points along the line x + y = c, with

steadily growing c. As there are n points to fill, we must have c ≥ i where

Ti−1 < n ≤ Ti. Note that c = i precisely when the arrangement of points

includes n points inside and on the boundary of the triangle with vertices

(0, 0), (0, i− 1), and (i− 1, 0), which, reverting to the original problem, gives

us A(π) + d(π) ≥ 2i − 2 =⇒ A(π) + d(π) ≤ 2n − 2i + 2. This bound is

tight, as demonstrated by the permutation (for n = 6) πC = 6 4 1 5 2 3 and

π = 1 3 6 2 5 4.
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0.3 Superpatterns with restrictions on alpha-

bet size

A natural extension to the superpattern problem, first considered by [2],

asks the minimum length of a superpattern on a restricted alphabet. In this

instance, repetition in the superpattern is allowed to occur.

Definition n(l,m) denotes the length of the smallest pattern which contains

every permutation of length m on at most l letters.

Example n(4, 3) = 6, as shown by the pattern 134213

Theorem 0.3.1. n(m+ c,m) ≥ n(m,m)
c+1

for c < m

Proof. Let π be an arbitrary superpattern of length l on the alphabet of size

m + c, represented by π1π2...πl. For each number i ∈ [1,m + c], we let Bi

be the sequence with symbols in [1,m] defined by i− ci− c+ 1...i (removing

all symbols outside the interval [1, n] in the process, so for example B1 and

Bm+c−2 would be the sequences 1 and m− 2m− 1m. We claim the sequence

Bπ1Bπ2 ...Bπl of length less than or equal to l(c+ 1 is a superpattern (which

we denote ρ). Suppose an m-permutation ω is contained in π but not in ρ.

Let x1, x2, ..., xm be the symbols in π corresponding to an occurrence of ω.

Then, for some i, Bxi must not contain ωi.

Case 1: ωi is in (xi,m]

It follows that there are ωi− 1 symbols of ω (namely, 1, 2, ..., ωi− 1) that

must correspond by some of the symbols 1, 2, ..., xi − 1 in π. However, as

ωi > xi, we have ωi − 1 > xi − 1. By the pigeonhole principle, at least

one of the symbols 1, 2, ..., xi − 1 must correspond to multiple symbols in

1, 2, ..., ωi − 1, which is a contradiction.

Case 2: ωi is in [1, xi − c)
It follows that there are m−ωi symbols of ω (namely, ωi+1, ωi+2, ...,m)

that must correspond to some of the symbols xi + 1, xi + 2, ...,m + c. As
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ωi < xi − c, we have m − ωi > m + c − xi. By the pigeonhole principle, at

least one of the symbols xi + 1, xi + 2, ...,m+ c must correspond to multiple

symbols in ωi + 1, ωi + 2, ...,m, which is a contradiction.

Thus, ρ is a superpattern, from which the theorem follows immediately.

Using the lower bound of dn7/4+ε for n(m,m) given in [3], where ε > 0

and d is a constant dependent on ε, we arrive at the following.

Corollary 0.3.2. n(m+ c,m) ≥ n2−dn7/4+ε

c+1
, where ε > 0 and d is a constant

dependent on ε.

It is interesting to note that for c = 1, the bound is asymptotically tight,

as in [4] it was shown that there exists a superpattern of length n(n+1)
2

on the

alphabet of size m+1 containing all permutations of length m. An interesting

(and more approachable when compared to the general case) direction of

study would be to tighten bounds n(l,m) for other small c. Miller conjectures

that for all l, n(l,m) ≥ n2

2
, giving a wide gap between the bounds beginning

at c = 2.

0.4 The Möbius function of the permutation

pattern poset

Let P be the graded poset of permutations ordered by containment. That

is, for arbitrary permutations π and σ, π ≤ σ if and only if σ contains

π. This poset has been extensively studied by researchers, with increasing

recent focus on its the Möbius function and topology. Here, after fixing a

permutation π, we give an infinite non-trivial family of permutations pi′ such

that ∀ω ∈ π′, µ(π, ω) = 0. After concluding the proof, we found that this

result follows from a result in [5].
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Definition The Mobius function of an interval [σ,π], denoted by µ(σ, π), is

defined piece-wise as follows.

µ(σ, π) =


1 : σ = π

0 : σ � π

−
∑

z∈[σ,π)
µ(σ, z) : σ < π

Note that ∑
z∈[σ,π]

µ(σ, z) = 0

This is of fundamental importance in computing the Möbius function of

arbitrary intervals.

Definition The family π′ of permutations a with respect to a permutation π

and a specified k-permutation τ contained exactly once in π may by defined

in the following manner. First fix an integer c ≥ 2. Let the indices corre-

sponding to the occurence of τ in π be a1, a2, ..., ak. We select an arbitrary

ai, and add c to all letters π(n) of π such that π(n) > π(ai). Then we replace

the symbol π(ai) in the resulting sequence with the sequence π(ai), π(ai) +

1, ..., π(ai) + c if π(ai) > π(ai+1) and π(ai) + c, π(ai) + c − 1, ..., π(ai) if

π(ai) < π(ai+1) (we refer to these sections as A in the following proof). The

resulting permutations (dependent on our choice of c and ai) together make

up π′.

Theorem 0.4.1. Let τ be an arbitrary k-permutation, and let π be a permu-

tation which contains exactly one occurence of τ . Then, for all permutations

θ ∈ π′, µ(τ, θ) = 0.

Proof. We induct on the length n of π. The base case occurs when n =

k (when π = τ). Let ρ be an arbitrary permutation in π′. Then, every

permutation z with τ ≤ z < ρ must delete at least one symbol in A, as

any permutation obtained by deleting a symbol outside of A would then not
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contain τ . Consider the permutation ρ′ obtained from ρ by solely deleting one

letter from A - this permutation contains all z and is also strictly contained

in ρ. Thus, we have

µ(τ, ρ) = −
∑
z∈[τ,ρ)

µ(τ, z) =
∑
z∈[τ,ρ′]

µ(τ, z) = 0

Assume the result holds for all n < l. Then, z ∈ [τ, ρ) may be separated

into two categories; those that are obtained by deleting symbols in A (with

potentially some deletions outside A as well) and those that are obtained by

solely deleting symbols outside of A. Permutations γ in the latter category

have µ(τ, γ) = 0 by the inductive hypothesis; thus we need not consider

these permutations in the summation when computing µ(τ, ρ) . Here again,

consider the permutation ρ′ obtained from ρ by solely deleting one letter

from A – this permutation contains all permutations in the former category

while also being strictly contained in ρ. Similarly, we have

µ(τ, ρ) = −
∑
z∈[τ,ρ)

µ(τ, z) =
∑
z∈[τ,ρ′]

µ(τ, z) = 0

An interesting line of inquiry would be to classify the intervals for which

the Möbius function is 0 – both [5] and [6] answer these questions to some

extent
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