
The PRIMES-USA 2013 problem set

Dear PRIMES-USA applicant,

This is the PRIMES-USA 2013 problem set. Please send us your
solutions as part of your PRIMES-USA application by November 15,
2012. For complete rules, see check link: http://web.mit.edu/primesusa/apply.shtml
Please solve as many problems as you can.
You can type the solutions or write them up by hand and then scan

them. Please attach your solutions to the application as a PDF (pre-
ferred), DOC, or JPG file. The name of the attached file must start
with your last name, for example, “smith-solutions.” Include your full
name in the heading of the file.
Please write not only answers, but also proofs (and partial solu-

tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES-
USA.
You are allowed to use any resources to solve these problems, except

other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.
Note that some of these problems are tricky. We recommend that

you do not leave them for the last day, and think about them, on and
off, over some time (several days). We encourage you to apply if you
can solve at least 50% of the problems. 1

Enjoy!

1We note, however, that there will be many factors in the admission decision

besides your solutions of these problems.
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Problem 1. You toss a coin n times. What is the probability
that the number of heads you’ll get is divisible by 3? (Find an exact
formula, not involving sums of unbounded length; it may depend on
the remainder of n modulo 6).
Solution. We have p = 2−n(1+

(

n
3

)

+
(

n
6

)

+ ...). This can be written
as

p =
(1 + z)n + (1 + z−1)n + 2n

3 · 2n ,

where z is a cubic root of 1. This implies that

p =
wn + w−n + 2n

3 · 2n ,

where w is a 6th root of 1. So we get that

p =
1

3
+

bn
3 · 2n ,

where bn = 2, 1,−1,−2,−1, 1 if n = 0, 1, 2, 3, 4, 5 modulo 6, respec-
tively.
Problem 2. (a) Let c < 2π be a positive real number. Show that

there are infinitely many integers n such that the equation

x2 + y2 + z2 = n

has at least c
√
n integer solutions.

(b) Find a constant C > 0 such that there are infinitely many n for
which the equation

x5 + y3 + z2 = n

has ≥ Cn1/30 nonnegative solutions.
Solution. (a) Let Bn be the number of solutions of x2+y2+z2 ≤ n.

It is easy to see that Bn ∼ 4
3
πn3/2 as n → ∞ (volume of the ball). This

means thatBn− 2
3
cn3/2 → +∞. So there are infinitely many n for which

Bn − Bn−1 ≥ 2
3
c(n3/2 − (n − 1)3/2). But 2

3
c(n3/2 − (n − 1)3/2) ∼ cn1/2

as n → ∞. This implies the statement.
(b) The solution is similar. Indeed, the number of nonnegative inte-

ger solutions of x5 + y3 + z2 ≤ n behaves as the volume of the region
defined by this inequality in the first octant. This volume is easy to
compute: after making dilations x 7→ n1/5x, y 7→ n1/3y, z 7→ n1/2z, this
region maps to x5 + y3 + z2 ≤ 1. Let V be the volume of the latter.
Then the volume of the former is V n

1

5
+ 1

3
+ 1

2 = V n
31

30 . So we can take
C < (31/30)V .
Problem 3. A finite string of 0s and 1s is called admissible if it

occurs in one of the rows of the Pascal triangle modulo 2. I.e., a string
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is admissible if it has the form
(

n

m

)

,

(

n

m+ 1

)

, ...,

(

n

m+ k

)

,

where the binomial coefficients are taken modulo 2.
(a) Which strings of length ≤ 4 are not admissible? Why?
(b) Give an explicit description of all admissible strings of length n.
(c) What is the number a(n) of admissible strings of length n? (Write

a recursion, guess the answer and prove it by induction; the recursive
formula may be different for n = 2r and n = 2r + 1).
Solution. (a) It is easy to see that all strings but 1011 and 1101 are

admissible. To show that these strings are not admissible, note that
such a string cannot occur in an even row (since those have 0 at every
other place). But

(

2r+1
k+1

)

=
(

2r+1
k

)

2r+1−k
k+1

, so if k is odd, these numbers
have the same parity. So every other element in a string occuring in
an odd row is followed by the same element. But this is not satisfied
for the two strings in question.
(b),(c) Assume for simplicity that n is even: n = 2r. Then there are

the following kinds of admissible strings of length n.
1) (even rows) 0b1....0br, where b1...br is an admissible string of length

r. The number of such is a(r).
2) (even rows) similarly, b10...br0. The number of such is also a(r).
3) (odd rows) b1b1...brbr. The string above of length 2r + 1 would

then be 0c10c2...0cr0, where c1...cr is admissible of length r. There are
a(r) of such strings.
4) (odd rows) b0b1b1....br−1br−1br. The string above is c10c20...0cr+1,

where c1...cr+1 is admissible. The number of such strings is a(r + 1).
So at first sight we get the equation
a(2r) = 3a(r) + a(r + 1).
But it is not quite right because the classes (1)-(4) have intersections.

Namely, the string of zeros belongs to all 4, and the string of ones to
the last two, and 0...01 and 10...0 belong to 1) and 4) and 2) and 4)
respectively. So we overcount by 6, and the correct equation is
a(2r) = 3a(r) + a(r + 1)− 6.
In a similar way we get a(2r + 1) = 2a(r) + 2a(r + 1)− 6.
Then using that a(0) = 1, a(1) = 2, a(2) = 4, it is easy to show by

induction that a(n) = n2 − n + 2.
Problem 4. Positive solutions of the equation x sin(x) = 1 form an

increasing sequence xn, n ≥ 1.
(a) Find the limit

c1 = lim
n→∞

n(x2n+1 − 2πn).
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(b) Find the limit

c2 = lim
n→∞

n3(x2n+1 − 2πn− c1
n
).

Solution. (a) Let x2n+1 = 2πn + bn. Clearly, bn → 0, and sin bn =
1

2πn+bn
. This shows that bn ∼ 1/2πn, so the required limit is c1 = 1/2π.

(b) We have sin x = x − x3/6 + .... Thus, we get that up to quartic
terms in 1/n,

bn =
1

bn + 2πn
+

b3n
6

=
1

(2πn)−1 + 2πn
+

1

6(2πn)3
=

1

2πn
− 5

6(2πn)3
.

So c2 = −5/48π3.
Problem 5. Let us say that a polynomial f with complex coef-

ficients is degenerate if there exists a square matrix B such that
B 6= f(A) for any square matrix A. What are all the degenerate poly-
nomials of degree 2? degree 3? degree 4? any degree?
Solution. We claim that f is degenerate if and only if there exists

b ∈ C such that f(z) = b implies f ′(z) = 0. Such polynomials have the
form f(z) = b + (z − a1)

n1...(z − ak)
nk , where ni > 1 for all i. So for

degree 2, all polynomials are degenerate; for degree 3, the degenerate
polynomials are those with a degenerate critical point, and for degree
4, the degenerate polynomials are those of the form b+ g(z)2, where g
is a quadratic polynomial.

Indeed, if f is of this form then the matrix

(

b 1
0 b

)

is not of the

form f(A). Indeed, A could not be diagonalizable, so it is conjugate
to a Jordan block with some eigenvalue z. But then f(A) = b · Id,
as f ′(z) = 0. On the other hand, suppose that f is not of the above
form. Let Jb,n be the Jordan block of size n with eigenvalue b. Pick
z such that f(z) = b and f ′(z) 6= 0. Then f is invertible near z.
Let A = f−1(Jb,n). This makes sense, as f−1 has a Taylor expansion
f−1(w) = z+ c1(w− b)+ c2(w− b)2.... And we have f(A) = Jb,n. Then
by the Jordan normal form theorem, for any B there is A such that
f(A) = B.
Problem 6. The sequence b(n) is defined by the recursion

b(2n + 1) = 2b(n) + 2, b(2n) = b(n) + b(n− 1) + 2,

for n ≥ 1, with b(0) = 0, b(1) = 1.
(a) Find a generating function for b(n) and deduce a formula for

b(n), as explicit as you can.
(b) Let x be a positive real number, and [a] denote the floor (integer

part) of a. Find the limit as m → ∞ of b([2mx])/[2mx] as a function
of x.
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Solution. Let
∑

b(j)zj = f(z). Then the recursion implies that

f(z) = (1 + z)2f(z2) + z
1 + z

1 − z
.

Let g(z) = f(z)(1 − z)2. Then

g(z) = g(z2) + z − z3,

so
g(z) =

∑

i≥0

(z2
i − z3·2

i

).

So

f(z) =
1

(1− z)2

∑

i≥0

(z2
i − z3·2

i

).

Thus,

b(n) =
∑

0≤i≤log2(n+1)

(n− 2i + 1)−
∑

0≤i≤log2(n+1)−log2(3)

(n− 3 · 2i + 1).

(b) Denote by L(x) the limiting function (we will see that it exists).
Clearly, L(2x) = L(x), so we may assume that 1 < x ≤ 2. Let z = 1/x.
Then 1/2 ≤ z < 1.
We have

b(n− 1)

n− 1
∼

∑

0≤i≤log2(n)

(1− 2i

n
)−

∑

0≤i≤log2(n)−log2(3)

(1− 3 · 2
i

n
).

We may replace n with 2m/z. Then we have

b(n− 1)

n− 1
∼

∑

0≤i≤m−log2(z)

(1− 2i−mz)−
∑

0≤i≤m−log2(3z)

(1− 3 · 2i−mz).

So for z ≤ 2/3, i = m − 1 participates in the second sum, while if
z > 2/3, it does not. So for z ≤ 2/3, we get

b(n− 1)

n− 1
∼ 4z + (1− 3z) = 1 + z,

while for z > 2/3 we get

b(n− 1)

n− 1
∼ 1 + z + (1− 3z/2) = 2− z/2.

So L(x) = 1 + 1/x if 3/2 ≤ x ≤ 2, L(x) = 2 − 1/2x if 1 ≤ x ≤ 3/2,
and it it extended to all positive numbers by L(2x) = L(x) (so we get
a continuous function).
Problem 7. Let f be a continuous real function on [0,∞]. Show

that if limn→∞(f(na)) = 0 for all a > 0 then limx→+∞ f(x) = 0.
5



Solution. If f does not go to zero then there exists δ > 0 and a
sequence of closed intervals Jk = [ak, bk], bk < ak+1, bk → ∞, such that
|f | ≥ δ on Jk.
Also note that if I is any closed interval of positive numbers then

the union of nI for n ≥ 1 covers the semiaxis [c,+∞) for large enough
c.
Now let us inductively construct a nested sequence of closed intervals

IN , N ≥ 1. Let I1 = J1. Given IN , take cN such that union of nIN , n ≥
1 covers [cN ,+∞), and take Jk with some k = kN > N contained in
this semiaxis. So Jk has positive length intersection with nNIN for
some nN . Take IN+1 = IN ∩ (Jk/nN). Then if x is contained in the
intersection of all IN , we have |f(nNx)| ≥ δ for all N (and clearly nN

goes to infinity). This gives a contradiction.
Note. The final three problems are more difficult than the previous

seven. They have more of the flavor of research problems, and are more
open-ended. Even when the original problem can not be solved, partial
progress is encouraged, and can take many forms: finding (useful!)
ways to model the problem, coming up with reasonable conjectures,
identifying the crucial missing steps, and more.
Problem 8. Two countries A and B share a national border which

is a straight line. Along this border are 2n wells. An architect from
each country is chosen to dig n canals within that country. The canals
within each country cannot intersect, and each well is the endpoint of
exactly one canal in each country.
(a) The architects go home and draw up all the possible plans for

canals. How many plans does each architect have?
Once the canals are dug, if one ignores the national borders, the re-

sult is a collection of “lakes” (i.e., circular canals). Both countries want
lots of lakes, but for political reasons, A wants an even number of lakes,
and B wants an odd number. They pay their architects accordingly. If
there are k lakes and k is even then architect A earns pk dollars and B
earns nothing. If k is odd then B earns pk dollars and A earns nothing.
For now, assume p = 2.
You are architect A. Unfortunately for you, architect B has spies

everywhere, and if you settle on a plan in advance, B will counter it.
Instead, you decide upon a mixed strategy, i.e. you assign a probability
to each plan, and will choose randomly when the time comes. We call
a mixed strategy Nash if the expected value of the difference in salary
(between the two architects) does not depend on B’s choice of plan. We
call a Nash strategy a tied strategy if the expected value of the salary
difference is zero.
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(b) A spy from country A infiltrates the house of architect B with a
mission: find exactly one plan, and destroy it. B will no longer be able
to use that plan. It turns out that you now have a unique tied strategy!
You may assume this fact, for any plan. You should also consider the
assumption granted in part (c).
The spy returns to you and tells you he destroyed a plan where

exactly one pair of adjacent wells was attached by a canal. Can you
find your unique tied strategy?
(Hint: An exact answer will be difficult, but a recursive formula

depending on n is enough. A recursive formula will only be valid if
it implies that, for each n, the result is a valid strategy, i.e. that all
probabilities are nonnegative and add up to 1)
(c) Unfortunately, architect B was too clever, and had an extra copy

of the plan. Just to spite you, B builds precisely the strategy the spy
had destroyed. Which architect is expected to benefit most? You may
assume that the answer to this question is the same for any plan.
(d) Continue the setup of part (b). Suppose that p = 1. Find an n for

which multiple tied strategies exist, and demonstrate them. Suppose
that p =

√
2. Find an n such that there are multiple tied strategies.

(e) (continued). For each n find a finite list of values of p for which,
outside of that list, tied strategies in the setup for (b) are guaranteed
to be unique.
(Hint: Try to solve part (b) again for small n, with p = 2.5, p =

3.3333, p = 4.25. None of these are in your list, however.)
(f) Let p = 2. Spies inform you that architect B has recovered his

missing plan, and has every plan available. Is there a Nash strategy?
Which architect does it benefit?
(Hint: First, answer this question - is there a weighting of A’s plans,

by “probabilities” which need not lie between 0 and 1, such that the
weighted average for each of B’s plans is equal? Now, what would you
need to do to show that each weight can be chosen between 0 and 1?
How can you use your answer to part (b)?)
Solution.

(a) This is just the n-th Catalan number.
Let {ai} denote the set of A’s possible canal plans. Let e = a0 be the

plan corresponding to the longest element of the symmetric group: the
first and the last wells are attached, the second and the penultimate
are attached, and so forth until the central pair. This is the only plan
which the spy could destroy in part (b).
Consider the vector space V = Vn spanned by {ai}. The problem

posits a bilinear form on V , where 〈ai, aj〉 is computed by flipping aj
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across the border, concatenating it with ai, and replacing circles by a
multiplicative scalar −p.
It is trivial to demonstrate that Vn is isomorphic as a vector space

to the Temperley-Lieb algebra TLn with parameter −p, and the bi-
linear pairing corresponding to the trace pairing on TLn. The plan
e corresponds to the identity element of TLn. Many of the questions
are trivial when the theory of the Temperley-Lieb algebra is applied,
and the questions are really just questions about that theory. We try
to provide answers which do not rely upon Temperley-Lieb theory or
terminology.
Part (b) asks for a vector v0 =

∑

i ciai with ci ≥ 0 and
∑

ci = 1,
such that 〈v0, aj〉 = 0 for all j 6= 0. It does not claim that 〈v0, a0〉 6= 0.
However, we will construct such a vector v0 where 〈v0, a0〉 6= 0, having
sign (−1)n. This benefits architect A when n is even, and architect B
when n is odd. This answers question (c).
The assumptions of parts (b) and (c) imply that, for each i, there is

a vector vi (with probabilistic coefficients) with 〈vi, aj〉 = ziδij for some
zi 6= 0. In particular, the bilinear form is non-degenerate. Moreover,
the sign of zi is equal to (−1)n for each i. Rescaling each vi by z−1

i and
letting it be the column of a matrix A, we obtain the inverse matrix
of the bilinear form. Note that A has either all positive or all negative
signs, depending on the parity of n. For any vector E of expected
values that have the same sign as A, one can find a vector w ∈ V with
positive coefficients, for which the expected payoffs of w are equal to E.
A Nash strategy is a particular example of a vector E. This answers
question (f).
Attaching two adjacent wells on B’s side will give a map Vn → Vn−1.

Clearly v0, if it exists, will be in the kernel of this map for any pair
of wells except the central pair. In fact, v0 is already specified up to
scalar by this condition. This takes a small argument to demonstrate,
which we omit here. In Temperley-Lieb language, v0 is the Jones-Wenzl
projector. It is easy to construct by hand for small n (say, n = 1, 2, 3).
There is a simple recursive formula for a scalar multiple JW of v0,

for which the coefficient of e is 1. We write JWn for this vector when
there are 2n wells. The national border in this picture goes from left to
right on top, then from right to left on bottom, so that the central pair
of wells are the top right and bottom right endpoints. This formula is
originally due to Frenkel and Khovanov(??).
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=

...

...

...

...
+JWn+1

JWnJWn

n
∑

a=1

[a]
[n+1]

a

In this formula, [2] = p = 2 and [k] = k. One important feature of
this formula is that all coefficients are positive.
Moreover, calculating 〈JWn+1, e〉 := dn+1 is not difficult. The first

term yields (−p)dn, every term in the sum except a = n contributes
nothing because JW lies in the kernel of adjacent connections, and
the a = n term contributes n

n+1
dn. Combined with the base case d1 =

−p = −2 we see that dn = (−1)n(n+ 1).
To check (d) and (e), plug in [2] = p = q+ q−1 and show that [n](q−

q−1) = qn − q−n. In particular, one calculates that dn = (−1)n[n + 1].
Now [n] = 0 exactly when q 6= 1 and q2n = 1. So long as [1], [2], . . . , [n+
1] are all invertible, JWn can be defined and dn 6= 0, and the form is
non-degenerate. This implies that tied strategies are unique. Only
when q is a nontrivial 2k-th root of unity for k ≤ n + 1 is there a
possibility for multiple tied strategies. (In fact, they do exist in these
cases, as the form is extremely degenerate. Temperley-Lieb theory will
imply this fairly quickly.)
Problem 9. Elsie and Fred are playing SHUFFLE DUEL. In this

game, two standard 52-card decks are shuffled: the “playing” deck and
the “target” deck. Both decks are visible. After being shuffled, the
target deck is then laminated and mounted on the wall, and is not
touched again.
The players alternate turns (Elsie goes first because she is older,

Fred goes last). On your turn, you must take two adjacent cards in
the playing deck, and switch them. Once a certain configuration of
the playing deck has been reached, it can never be repeated! You win
if the playing deck and the target deck are the same after you have
made your move. If your opponent makes a move and you can prove
that it is impossible to reach the target deck without passing through
a repeated configuration, you may challenge your opponent, and your
opponent loses. If the playing deck and target deck are equal to begin
with, the last player wins.
a) Elsie and Fred are both very experienced, perfect players. How

can you tell who will win?
b) What is the probability that Elsie will win, and why?
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Elsie and Fred are “interest gamblers.” That is, before the game they
put $ 1 in a bank account. Every time they take a turn, the bank pays
interest, multiplying the value of the account by q. When someone
wins, they get to cash out from the bank. (Examples: If the game
takes 0 turns, Fred wins $ 1. If the game takes 1 turn, Elsie wins $ q.
If the game takes 2 turns, Fred wins $ q2)
Of course, the bank knows that games of SHUFFLE DUEL can take

a very long time, so it refuses to pay out unless the game reaches a
successful conclusion (the playing deck equals the target deck), and
unless the game was AS SHORT AS POSSIBLE for a successful game,
given the initial shuffling. Let us call this new game QUICK SHUFFLE
DUEL: players may only make moves that are on a shortest path to
the target deck.
c) (Easier) What is the expected length of the game? (Harder) What

is the expected value of the bank account, at the time of payoff? (Write
an explicit product formula).
(Hint: You needn’t solve for the 52-card deck. Solve for smaller decks

then come up with a formula. Make sure that the expected value is $
1 when q = 1.)
d) Suppose that Ginger and Harold and Ivana and John and Kelly

want to play QUICK SHUFFLE DUEL as well. The play rotates be-
tween the 7 players. Which player is most likely to win? What about
10 players? At what number of players will the behavior change?
(Hint: Look more closely at your formula from part (c).)
Solution.

This game is about a walk through the Bruhat graph of S52 = Sn,
starting at the identity, and ending at a randomly-selected permuta-
tion w. A successful game is an expression for w in terms of simple
reflections, that has no connected subexpressions for the identity.
(a) The parity of the length of an expression for w is determined

by the length of the permutation. Therefore any successful game will
yield a win for Elsie if l(w) is odd, and Fred if l(w) is even. Only the
loser ever has an incentive to play a challengeable move, and they lose
anyway if they do.
(b) The probability of winning is 1

2
, so long as the size of the deck is

at least 2. Choose any simple reflection s. Cosets of s give a bijection
between even and odd permutations.
In quick shuffle duel, a successful game is a reduced expression for

w, and has length l(w).
(c) The expected length of the game is half the length of the longest

element, so n(n−1)
4

. This is because each permutation x can be paired
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with w0x. The expected value of the game (times n!) is the unnormal-
ized Poincare polynomial of Sn,

∑

x∈W ql(x). This is known to be equal
to (n)q!, where (n)q = 1 + q + . . . + qn and (n)q! = (1)q(2)q . . . (n)q.

Therefore, the expected value is (n)q !
n!

.
(d) Because (7)q divides (n)!q for n ≥ 7, the lengths will be equidis-

tributed modulo 7. When 53 players show up at the table, the behavior
changes.
(Without using this argument, one can still do something. Sk ⊂ Sn

for k < n, and thus one can show that Sn is equidistributed over
k players if Sk is. One can then attempt to analyze the lengths of
elements in cosets of a k-cycle in Sk. Will this work??)
Problem 10. Fix a positive number n. Consider a planar graph

where each edge is labelled with a number in {1, 2, . . . , n}. This graph
need not be connected, and may have connected components which
are circles with no vertices. There are only two kinds of vertices in
this graph: stars and crosses. A star has 6 incoming edges whose
labels alternate k, k+1, k, k+1, k, k+1 for some k ∈ {1, 2, . . . , n− 1}.
A cross has 4 incoming edges whose labels alternate i, j, i, j for some
i, j ∈ {1, 2, . . . , n} with |i− j| > 1.
We place an equivalence relation on the set of such graphs, where two

graphs are equivalent if they are related by a sequence of the following
moves (which can be performed in reverse as well).

(1) (Circle Removal) Circles with empty interior may be removed.

=

(2) (Bridging) Adjacent edges of the same label can be altered.

=

(3) (Double Vertex Removal) If two crosses are connected by two
edges, both crosses can be removed.

=

Similarly, if two stars are connected by three edges, both stars
can be removed.

=

(4) (Cross Crossing) A sequence of crosses can be slid to the other
side of a cross or star (for any consistent labels).
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=
=

(5) (Dream Catchers) The following transformation is allowed. In
this picture, blue represents the label k, red the label k+1, and
green the label k + 2.

=

Prove that every graph is equivalent to the empty graph.
(Hints: Use induction on n. Given k ∈ {1, 2, . . . , n} you might

consider the k-subgraph, consisting only of the edges labelled k. If k is
never involved in a star, what does the k-subgraph look like? If k is
involved in stars, what does the k-subgraph look like? How might you
make the k-subgraph disappear?)
Solution.

The k-subgraph can always be reduced (by ignoring bivalent vertices)
to a trivalent graph. This graph is a planar 1-manifold when k is not
involved in any stars.
We will show that the graph is equivalent to a graph without the

label n. This argument will be general enough that it applies to graphs

with boundary, which may have edges running to∞ in the plane, so long
as the color n does not run to ∞. Thus we can apply it to subgraphs
in simply-connected planar regions which do not have the label n on
their boundary.
Suppose that the n-subgraph is a manifold. Consider the subgraph

with boundary inside a simply-connected region delineated by this
manifold. This is a graph whose labels are contained in {1, 2, . . . , n−1}
such that n− 1 does not appear on the boundary (it can not cross n).
Therefore, the label n − 1 can be removed from the interior. The re-
mainder of the interior can then be slid outside of the n-labelled circle,
using Cross Crossing and Double Cross Removal. Now the interior
of the n-labelled circle is empty, and it can be removed using Circle
Removal. In this way, the label n can be removed from the diagram.
Suppose that the n-subgraph is trivalent. We induct on the number

of trivalent vertices. Every trivalent vertex in the n-subgraph comes
from a star in the original graph, labelled with n and n − 1. If the
trivalent vertex has a bigon, we claim this bigon can be removed. It is
clear that the bigon comes from a part of the original graph whose
{n, n − 1}-subgraph looks like the Double Star. If we can remove
all other labels from this neighborhood, we can apply Double Star
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Removal. Using Cross Crossing and Double Cross Removal for n, we
can assume that the only other labels which interfere are labels ≤ n−3
which cross straight through from right to left, and these can also be
removed using Cross Crossing.
Now we need only prove that the n-subgraph can be reduced to one

with fewer trivalent vertices. Consider two trivalent vertices which are
connected in the n-subgraph, and consider the n − 1-labelled edges
which come from each star in the original graph. If these can be con-
nected, one star to the other, using Bridging, then we can use Double
Star Removal to remove both trivalent vertices. Bridging will only
fail if there are crosses with labels ≤ n − 2 going through the n-edge
between the trivalent vertices. We call these intervening edges.
These intervening edges need to be Cross Crossed out of the way.

Any edge of label ≤ n − 3 on the side can be Cross Crossed through
the original (n, n−1)-labelled stars. A combinatorial argument can now
be made that one can reduce to a graph where there is at most one
intervening edge, and it is colored n− 2. This combinatorial argument
is akin to the one that a permutation in Sn−2 has an expression which
uses the simple reflection sn−2 at most once, and therefore there are
only two double cosets of Sn−3, the identity coset and the coset of sn−2.
If there are no intervening edges, we are done by the above paragraph,
so suppose there is one.
Using Double Star Addition for colors (n−1, n−2), we may assume

that our graph looks locally like a Dream Catcher. Applying the Dream
Catcher equivalence, we get a new diagram where the trivalent vertices
in the n-graph have been switched.The switching operation does not
increase the number of trivalent vertices in the n-graph. Using switch-
ing, we can turn any closed cycle in the n-graph into a bigon, which
can then be removed as above. Now induction finishes the proof.
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