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An AD-Young diagram Y = (Y, A, D) with Y a Young
diagram with n columns is called z-alternating if it satisfies
the property that if : <n — x, then ¢+ € A if and only if

1 +1eD.

If M and M’ are permutation matrices such that for all
x-alternating AD-Young diagrams )/, we have

Sy (M)| = |Sy(M")|, then we say that M and M’ are
shape-equivalent for x-alternating AD-Young diagrams.
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m  Similarly, alternating permutations of odd length, can be
treated as valid transversals of 1-alternating AD-Young
diagrams.
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m Bijection from permutations to Young tableaux

[0 Definition of tableau

N O I A

D

10

Entries increase left to right; top to bottom
[ : Number of adjacent edges between adjacent rows
k : Number of cells per row (except top row)

n : Total number of cells/values in the permutation
Ex. (2,4,10);l=2,k=4,n=10
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112410

Reading word: 124(10)357968

Pattern avoidance is exactly as in permutations.

Define Uy (1) to be the set of permutations p that fill
tableau of the form (I, k,n) and such that p avoids r.
Alternating permutation pattern avoidance is a special case:

Ap(r) = Ug’l(r).
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Theorem. Fort > 1, we have

kt
Ui e = > |ote).
i=k(t—1)+2
Example when k£ = 3:
|l@§il(321)|::|52§11(321 |+—| 321”
Some data:
n_ |[1]2]3]4|5[6]7|8] 9 |10

VJSJ(321)“1_‘1 ‘1 ‘3 ‘9‘ 19‘ 28‘ 90‘ 207‘ 207
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Outline of Proof Regarding 321 Avoidance

[ = 1: one edge shared between adjacent rows

At—t+1

Apt—t+2

Art4+1

ak+4+1

ai

az

ak4+2

Ak

azk

ALt
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Claim: ar; = kt + 1.

Assume for sake of contradiction that ay; < kt + 1.
Since aprr1 < apt, we have agr1 # kt + 1.
So, for some 7 < kt, we have a; = kt + 1.

Then, a;axtaxi1 is order-isomorphic to 321, contradiction.
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Apt—t+1
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ai

a2

95

Akt—s

Art+1

The other direction of inserting a consecutive block is clear.

Thus, the bijection holds.
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ai

a2

k,1
U7

kt+1

Apt—t+1|Qkt—t+2 « e Akt—s

Art+1

95

kt

(321)| -y ‘Uf’l(321)| |

i=k(t—1)42

The other direction of inserting a consecutive block is clear.
Thus, the bijection holds.
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Further Application of (321)-avoidance

m This gives us a nice enumeration of Uf,]f’l(321) forn =kt + 1.

What about n = kt + m?

A similar removal of a consecutive block likely holds, but the
procedure of “collapsing” the highest row into the row under
it may result in a row with more than k elements:

6719
5 1011 1156|719
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Further Application of (321)-avoidance

This gives us a nice enumeration of Uf,]f’l(321) forn =kt + 1.

A similar removal of a consecutive block likely holds, but the
procedure of “collapsing” the highest row into the row under

it may result in a row with more than k elements:

|
What about n = kt +m?
61719
10111
213148
|

2

3

4

8

Thus, we will likely need to define new classes (different from

U,,I»f’l) to describe such tableaux, and so, the recursion for this

case is likely more complicated, but not intractable.
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For k = 3:
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Data for [ =0

Now we turn to the [ = 0 case.
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Investigating [ = 0

m  Only avoidance patterns of a particular structure show
nontrivial repetitions for n = m and n = m + 1 for large n.

m Let g be a permutation of length t that is structurally
dictated as a single down-step followed by ¢t — 2 up-steps, i.e.
q=>0b123---(b—1)(b+1)---(t — 1)t with b #£ 1.

m  We shall call such patterns repetitive patterns.
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Enumerations of Repetitive Patterns

Pattern Avoidance Theorem. For k >t — 1 and q a repetitive pattern, we have
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of Young Diagrams Ukm+(t_2) (Q) ‘ - ‘ Ukm+(t_1) (q) ‘ o ‘ Ukm—|—t (q ‘ ‘ km—i—k ‘
Beyond Alternating

Permutations

Further Work

Motivati . . .- .
Reading Words m The approach to this is a bijective proof.
321 Avoidance m Based on the pattern ¢, we perform an insertion of the
Proof . : :
s Aol proper value into a corresponding location.
:Datatf”tl_ =l0 ; m This serves as a surprising result for no other patterns contain
nvestigating =
o k O
repeats; for all other patterns g, ‘Un’ | ‘ ,n+1 |

(except for patterns of the form 123 - - -t of course).
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Possible Further Directions to Our Work

The result in the previous slide is quite nice, but it is very
limited. However, checking numerical data indicates that a

similar theorem holds for [ > 0.
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