
CLASSICAL SPACES AND COMMUTATIVE ALGEBRA

I In classical physics, systems are described in terms of
observables:

e.g. velocity v, position p, energy e, momentum m, . . .
I These observables evolve through time by “Hamilton’s

equations”.
I Measurements cannot occur simultaneously, but. . .

The order of observation does not matter!

pm = mp.
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I In quantum physics, systems are also studied in terms of
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PERSPECTIVE ON QUANTUM SPACES

In order to model mathematically Heisenberg’s principle, . . .

I We should study algebras A (of observables).
I They should come in families Aq (trad. q = e~).
I There should be a special value (~ = 0⇔ q = 1) such that

A1 is commutative.
I We should study Aq (quantum) by exporting knowledge of

Aq=1 (classical), and vice versa.
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DETERMINANTS

The determinant for n×n matrix is

det(A) =
∑
σ∈Sn

sgn(σ)a1
σ(1) · · · a

N
σ(N)

Here, ”sgn” is the unique homomorphism Sn → {−1,+1}
sending each transposition to −1

Det
(

a b
c d

)
is ad− bc

Det

 a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

is a1
1a2

2a3
3 + a1

2a2
3a3

1 + a1
3a2

1a3
2 − a1

aa2
3a3

2 − a1
2a2

1a3
3 − a1

3a2
2a3

1

Invertible matrices are characterized by non-zero determinant.
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ALGEBRA

Definition: An algebra over C is

I A vector space over C
I With a multiplication map m:A×A→ A

with the properties:
a · (bc) = (ab) · c
a · (b + c) = a · b + a · c (a + b) · c = a · b + a · c
a · (λb)=λ · (ab)

I With a unit 1 ∈ A such that
1 · a = a · 1 = a ∀a

I e.g.)
C itself
Mat2(C) (= 2× 2 matrices)
C[x, y] ( = polynomials in two variables)
= C〈x, y〉/(xy = yx)
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Aq(MatN)
Aq(MatN) = C〈 a i

j | i = 1, 2 · · ·N, j = 1, 2 · · ·N 〉/Relations

The R-Matrix: Rij
kl = qδijδikδjl + (q− q−1)θ(i− j)δilδjk

which

θ(s) =
(

1 if s > 0
0 otherwise

)
δmn =

(
1 if m = n
0 if m 6= n

)

R22
22 = q1 ·1·1 + (q− q−1)·0·1·1 = q


q 0 0 0
0 1 q− q−1 0
0 0 1 0
0 0 0 q


Relations: for all i, j = 1 · · ·N∑

k,l,m,o

Rij
kla

l
mRmk

no ao
p =

∑
s,u,t,v

ai
sR

sj
tuau

vRvt
np

e.g.) a2
1a1

2 = a1
2a2

1 + (1− q−2)a1
1a2

2 + (q−2 − 1)a2
2a2

2
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THE QUANTUM DETERMINANT
For q = 1, Aq(MatN) = C[ai

j | i, j = 1, . . .N] is a polynomial
algebra. (e.g. a2

1a1
2 = a1

2a2
1 + (1− q−2)a1

1a2
2 + (q−2 − 1)a2

2a2
2)

For q 6= 1, Aq(MatN) is a non-commutative algebra.

However it has a central element (i.e. an element which
commutes with all other elements)called the quantum
determinant detq.

Kolb-Stokman ’08: ”It would be interesting to write the
quantum determinant explicitly in terms of the generators {ai

j}
. . . This seems to be a non-trivial combinatorial task.”

Kulish-Sasaki ’92: found an explicit formula for N = 2 only.

We sought a formula for the central element in the form:

z = detq =
∑
σ∈Sn

sgn(σ)q f (σ)a1
σ(1) · · · a

N
σ(N).
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quantum determinant explicitly in terms of the generators {ai

j}
. . . This seems to be a non-trivial combinatorial task.”

Kulish-Sasaki ’92: found an explicit formula for N = 2 only.

We sought a formula for the central element in the form:

z = detq =
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σ∈Sn

sgn(σ)q f (σ)a1
σ(1) · · · a
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SOLVING FOR f

for N = 2

detq = a1
1a2

2 − t(12)a1
2a2

1

Since detq · ai
j − ai

j · detq = 0, detq · a1
2 − a1

2 · detq = 0

⇔ (a1
1a2

2 − t(12)a1
2a2

1) · a1
2 − a1

2 · (a1
1a2

2 − t(12)a1
2a2

1) = 0
↖ ←− ←− ↙

a1
2 · (a1

1a2
2 − t(12)a1

2a2
1)− a1

2 · (a1
1a2

2 − t(12)a1
2a2

1) + α = 0

In this case,

α = (1− q2 + t(12) − t(12)q−2)(a1
2a1

1a2
2 − a1

2a2
2a2

2) = 0

So, t(12) = q2, f ((12)) = 2
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SOLVING FOR f

In order to generalize this computation for all n, we need to
know all the formulas for commuting two elements ai

ja
m
n .

Using the information, we made a program which will change
arbitrary order of elements in the right order.

(Right order means (m> i) or( i=m and n> j)).

We made this program organize
detq · a1

2 − a1
2 · detq for N = 3, 4, 5, 6.

We also set a program to solve the equations that we got from
this.
(such as 1− q2 + t(12) − t(12)q−2 = 0 in N = 2)

Thus, we got the exponents for each of the pemutations.
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LIST

A part of data for N = 4
Cycle notation Permutation notation Coefficient

(1, 2) [2, 1, 3, 4] q2

(2, 3) [1, 3, 2, 4] q2

(3, 4) [1, 2, 4, 3] q2

(1, 3, 2) [3, 1, 2, 4] q3

(1, 3) [3, 2, 1, 4] q4

(1, 2, 3) [2, 3, 1, 4] q4

(1, 4, 3, 2) [4, 1, 2, 3] q4

(1, 4, 3) [4, 2, 1, 3] q5

(1, 3, 4, 2) [3, 1, 4, 2] q5

(1, 2, 3, 4) [2, 3, 4, 1] q6

(1, 2, 4) [2, 4, 3, 1] q6

(1, 3, 4) [3, 2, 4, 1] q6

(1, 3)(2, 4) [3, 4, 1, 2] q6

(1, 4, 2, 3) [4, 3, 1, 2] q7



CONJECTURE FORMULA

By making more observations and looking at the connections
between the exponents and the permutation, we predict that
the formula is,

detq =
∑
s∈Sn

(−q)l(s) · qe(s) · a1
s(1)...a

N
s(N)

l(s)=”Length of the permutation”
which is the number of pairs out of order after s.
( i > j, s(i)<s(j) )

e(s)=excedance, the number of i such that s(i) > i.
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FUTURE PLANS

We confirmed our conjecture formula through N = 11.

We are presently working on the general proof.
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