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» In classical physics, systems are described in terms of
observables:
e.g. velocity v, position p, energy e, momentum s, ...

» These observables evolve through time by “Hamilton’s
equations”.

» Measurements cannot occur simultaneously, but. ..
The order of observation does not matter!

pm = mp.
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» In quantum physics, systems are also studied in terms of
observable quantities:
e.g. velocity V, position P, energy E, momentum M, ...

» These observables evolve through time by “Schrédinger’s
equations”.

» Measurements cannot occur simultaneously, and. ..
Heisenberg: the order of observation does matter!

PM = MP + h.

» Study of such systems is called “non-commutative
algebra.”

» Setting i = 0, we recover classical physics.



PERSPECTIVE ON QUANTUM SPACES

In order to model mathematically Heisenberg’s principle, ...



PERSPECTIVE ON QUANTUM SPACES

In order to model mathematically Heisenberg’s principle, ...

» We should study algebras A (of observables).



PERSPECTIVE ON QUANTUM SPACES

In order to model mathematically Heisenberg’s principle, ...

» We should study algebras A (of observables).
» They should come in families A,



PERSPECTIVE ON QUANTUM SPACES

In order to model mathematically Heisenberg’s principle, ...

» We should study algebras A (of observables).
» They should come in families A; (trad. g = eM).



PERSPECTIVE ON QUANTUM SPACES

In order to model mathematically Heisenberg’s principle, ...
» We should study algebras A (of observables).
» They should come in families A, (trad. g = e").

» There should be a special value (A = 0 < g = 1) such that
Aq is commutative.
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In order to model mathematically Heisenberg’s principle, ...

v

We should study algebras A (of observables).

v

They should come in families A, (trad. g = e").

v

There should be a special value (h = 0 < g = 1) such that
A1 is commutative.

v

We should study A, (quantum) by exporting knowledge of
Ay=1 (classical), and vice versa.
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DETERMINANTS

The determinant for nxn matrix is

det(A) = ) sgn(o)aLyy -y

oESy

Here, “sgn” is the unique homomorphism S, — {—1,+1}
sending each transposition to —1

Det <a b)is ad — bc
c d

ay a4y a;

2 2 22 ie ala243 4 alg2a3 1 ala2a® — ala2a® — ala2a3 — gl g243
Det a% a% ag 1S ayayas + aasay + azaia; — a,a3a; — a,aia; — azasay

ay 4y a3

Invertible matrices are characterized by non-zero determinant.
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ALGEBRA

Definition: An algebra over C is

» A vector space over C

» With a multiplication map m:AxA — A
with the properties:
a-(bc)=(ab)-c
a-(b+c)=a-b+a-c (a+b)-c=a-b+a-c
a- (\b)=\- (ab)

» With a unit 1 € A such that
l-a=a-1=a Va

> eg.)
C itself
Matr(C) (=2 x 2 matrices)
Clx, ] ( = polynomials in two variables)

= C{x,y)/(xy = yx)
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which
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Aq(MatN)
Ag(Maty) = <c<a;2 |i=1,2---N, j=1,2---N)/Relations

The R-Matrix: R = ¢%638; + (9 — q1)0(i — )i

which ' '
0(s) = ( 0 Z;h:r;is(t)z) O = <(1) zc[ o )
g 0 0
RB=¢"11+(q-q"011=¢ 8 (1) q;q‘l
o 0 0

Relations: foralli,j=1---N
i 1 pmk o _ ipSi upot
Z RklamRno (2 Z athuuanp
k,l,m,0 s,u,t, v

eg) aal=ala?+ (1—q 2)ala3 + (7% — 1)a3a3

= oo o
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algebra. (e.g. a%a) =ala? + (1 —q2)alal + (g2 — 1)ada3)
For q # 1, A;(Maty) is a non-commutative algebra.

However it has a central element (i.e. an element which
commutes with all other elements)called the quantum
determinant det,.

Kolb-Stokman "08: It would be interesting to write the
quantum determinant explicitly in terms of the generators {ajl.}
... This seems to be a non-trivial combinatorial task.”

Kulish-Sasaki "92: found an explicit formula for N = 2 only.

We sought a formula for the central element in the form:

z=dety =Y sgn(o)g/Pal - ady.

oESy
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SOLVING FOR f

for N =2

det, = aja3 — tp)a307

Since det,; - a; — a; -dety =0,  det,- a}z — u% ~det; =0
& (a1a3 — tanyazas) - ay — ay - (aja3 — tapazai) =0

N — — 7

ay - (a1a3 — taoyapar) — ay - (aja3 — tayaas) + o =0

In this case,

a = (1—q* + ta) — tan)q 2)(agaias — ajaza3) =0

So, taz) = 4%, f((12)) =2
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SOLVING FOR f

In order to generalize this computation for all n, we need to

know all the formulas for commuting two elements a]ia:'f.

Using the information, we made a program which will change
arbitrary order of elements in the right order.

(Right order means (m > i) or( i=m and n>j)).

We made this program organize
det, ~a% — a% -det, for N =3,4,5,6.

We also set a program to solve the equations that we got from
this.
(suchas1—¢* + t2) — t(lz)q*Z =0inN = 2)

Thus, we got the exponents for each of the pemutations.



LIST

A part of data for N = 4

Cycle notation
(1,2)

Permutation notation
2,1,3,4]
[1,3,2,4]
[1,2,4,3]
[3,1,2,4]
3,2,1,4]
[2,3,1,4]
[4,1,2,3]
[4,2,1,3]
[3,1,4,2]
2,3,4,1]
[2,4,3,1]
3,2,4,1]
3,4,1,2]
[4,3,1,2]

Coefficient
q2

=, =,

=
W

L

-
Q@&C\QO\QU., PSS

=
N



CONJECTURE FORMULA

By making more observations and looking at the connections
between the exponents and the permutation, we predict that
the formula is,



CONJECTURE FORMULA

By making more observations and looking at the connections
between the exponents and the permutation, we predict that
the formula is,

dety; = Z (—q)l(s) ‘qe(s) '”g(l)-"“%\l)

SESy



CONJECTURE FORMULA

By making more observations and looking at the connections
between the exponents and the permutation, we predict that
the formula is,

dety; = Z (—q)l(s) ‘qe(s) -ag(l)...aé\gN)

SESy

I(s)="Length of the permutation”
which is the number of pairs out of order after s.

(i>j,s(i)<s(j))

e(s)=excedance, the number of i such that s(i) > i.



FUTURE PLANS

We confirmed our conjecture formula through N = 11.

We are presently working on the general proof.
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