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Complex Reflection Groups and the Cherednik Algebra

Let h be an n-dimensional complex vector space. A reflection is a
finite-order operator s on b such that rank(s — /,) = 1. A finite
subgroup of GL(h) is a complex reflection group if it is generated
by reflections.

Definition
Pick a function ¢: G — C that is invariant across the conjugacy

classes of G, and let & be a complex number. The Cherednik
Algebra Hy (G, b) is T(h @ b*) x C[G], modulo the relations

[x,x]1=0, [y,y]=0,
ly, x] = h{y,x) = > c(s){y, as)(ay, x)s,Vx,x' € b*,y,y’ € b.

S

We work with G = S,,, and we can carry over these definitions to
an algebraically closed field of characteristic p.



Representations of Cherednik Algebras

“Lowest weight” representations of the Cherednik Algebras
H.c(G,b) are constructed from Verma modules, whose
definition is motivated by the representation theory of Lie
algebras.

Let 7 be a representation of G. We let Sym(h) act as 0 on 7
and construct the Verma Module

Mc(G,b,7) = Hp,c(G, b) ®ci6)xsym(n) T-

M. has a unique maximal proper submodule J., and we can
then construct L. = M./ J..

We can study J. as the kernel of a particular bilinear form
Be: Mc(G,h,7) x M(G,b*, 7*) — C that has recursive
properties.



Hilbert series

The Cherednik Algebra is Z-graded, i.e.
Hie=-®H1OHOHL D+,

where when x € A,y € Ap, we have xy € A

The modules M and L. inherit the grading from the Hj ..

The Hilbert series of L. is Z(dim(Lc);)ti.

i=0
The main goal of the project is to be able to compute Hilbert
series for all Lo(7).



Why Positive Characteristic?

e The positive characteristic case has not been well-studied, one
of the reasons being the absence of general tools in dealing
with it.

e As with Lie Algebras, over positive characteristic the center of
a Cherednik Algebra becomes much larger. As a result, the
algebra, which is very large, ends up with finite dimensional
representations: L.(7) is finite dimensional and its Hilbert
series is thus finite.

e The representation theory of S,, becomes more complicated in
characteristic p < n, making relating the Cherednik Algebras
to the combinatorial structure of their associated
representations a more interesting problem.



Previous Results

Latour studied the Cherednik algebra for Z /I when p does not
divide /

Katrina Evtimova studied the case when p does divide / under
the direction of Emanuel Stoica.

Martina Balagovic and Harrison Chen studied the Cherednik
algebra for other groups such as GL,(F4) and SL,(FF)
They determined the Hilbert series for GL,(Fg) for 7 trivial
and all g, n > 2, also for GL»(FFy) and all 7

Unlike these, we work with groups that are examples in char.
0 reduced mod p and higher rank



More Previous Results

Bezrukavnikov-Finkelberg-Ginzburg studied representations in the
context of algebraic geometry in characteristic p > n and used the
fact that there is a large center

Theorem (Gordon)
The Hilbert series for L(Sx) when h =0 and p does not divide n!:

1 1 — th(s)
g7
s ranges over boxes in the diagram of A and h(s) is the hook length

However, this does not work in the modular case: Gordon relied on
a certain algebraic variety being nonsingular, which fails for small p



Some of our Results

Theorem

For p>n, h=1, c generic, G = (Z/m)" x S,, A an m-tuple of
partitions, the Hilbert series for L(S)) is

Theorem

P
For T trivial, p divides n, h = 0, Hilbert series is 11—t and
generators of J are X| — Xo, X1 — X3, ..., X1 — Xp, Xh.

For T trivial, h =1, p = 2, and n even, Hilbert series is

(t+1)"(t> + 1)

n=5and p=3gives 1 + 4t + 9t2 + 15¢3 + 16t* + 11t + 4¢°
(disproves conjecture that the quotients are always Gorenstein)



Some data

The data suggests the following formulas, which we are in the
process of proving:

e For nodd, p =2, h =1, ¢ generic, the Hilbert series is
(t+1)"(t5 + (n—Dt* + (n—1)t2 +1)

For h =0,
B+(n-—1)+(n—1t+1

e Whenn=2 (mod 3), p=3,and Ai=0s
-2
A+t (1 +t+t)(1+(n—3)t+ <n2 >t2+(n—1)t3)

e Whenn=1 (mod3), p=3,and h=0s
(P +t+1)(t2+(n—2)t+1)

e These last three come from conjecture on subspace
arrangements on next slide



Subspace arrangements

Let X; be the set of all (x1,...,x,) such that some n— i of
the coordinates are equal.

For n=1i (mod p) with 0 </ < p—1and h =0, the data
suggests that J. is generated by symmetric functions and the
ideal of X;. L. seems to be a complete intersection in X;.

We conjecture that X; is a Cohen—Macaulay variety when

i < p and can prove this when / = 1. (Cohen—Macaulayness
fails in some cases when p < /)

We also see different subspace arrangements for the groups
G(m, r,n). This is interesting because it means that the ideal
Jc has alternative meaning which should be helpful.

For the groups G(2,2, n), we see coordinate subspaces, and
Cohen—Macaulayness follows from Stanley—Reisner theory



Further Research

e We are also working with special values of c € F, for h =1,
in general we work with generic ¢

e We are beginning work on general G(m, r, n) (specifically
G(2,1,n) and G(2,2,n)). Eventually we will work on
exceptional groups.

e We also plan to work with nontrivial 7
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