The Post Correspondence Problem

Seo Yeon (Gloria) Chun and Alicia Li

June 1, 2021

Contents

Page
1 Introduction 1
2 Languages 2
3 PCP 2
4 Turing Machines 3
5 Proving Aty is Undecidable 6
6 Mapping Reducibility 7
7 PCP is Undecidable 8
8 Context-Free Languages 12
9 AMBIGcrg and OVERLAP kg are Undecidable 14
10 Acknowledgements 15

1 Introduction

First introduced by Emil Post in 1946, the Post Correspondence Problem (PCP) is a
well-known example of an undecidable decision problem. The goal of the problem
is to determine whether or not a given set of dominos

a5 [5])

has a match, which means that dominos from the set can be arranged in a way (with
repetition) such that the top and the bottom strings are identical. In this paper, we
show that there is no algorithm that decides whether a given instance of PCP has a

match, following the approach from [1]. To prove this result, we first introduce a
method of computation: the Turing machine.

A decade before Post introduced PCP, mathematician Alan Turing defined a
computational model called the Turing machine. In Section 4, we examine how
Turing machines simulate algorithms.

To simplify the task of proving that PCP is undecidable, we construct a reduction
from the undecidable problem Az, (Section 5), which considers whether or not a
certain Turing machine accepts a given input string.

After proving the undecidability of PCP (Section 7), we also apply this result to
other problems such as determining whether or not a context-free language (Section
8) is ambiguous and if two context-free languages contain an overlapping string
(Section 9).

2 Languages

In this section, we give formal definitions of a language and its properties.

Definition 2.1. First of all, an alphabet is any nonempty finite set and its members
are called symbols. A finite sequence of symbols is called a string.

Typically, we use the variables X and I" to denote alphabets.

Definition 2.2. A language is a set of strings. If A is a set of strings that some
machine M accepts, we say that A is the language of machine M and express it as
L(M) = A. We can also say that M accepts or recognizes A.

For a language A, we also define the star % operation as

A* = {x1x5--- x| k > 0 and each x; € A}

3 PCP

In this section, we introduce the Post Correspondence Problem (PCP). The problem
can be easily defined as a puzzle:

We are given a collection of dominos, each of which contains a string on each
side (top and bottom), as shown below:

hi | be
sl o]
Our task is to determine whether a match exists.

Definition 3.1. A match is a sequence of dominos i, iy, ..., iy such that the string
generated by reading off all the symbols on the top side is identical to the string of
symbols on the bottom:

ti t "ti =bi1b bl

it Tt i’ ¢

Definition 3.2. We define PCP to be the language of collections of dominos with
such a match:

PCP = {({P) | the set P of dominos has a match}.
Here, we use the notation (-) to denote a string encoding of the input.

Example 3.3. For the puzzle { [i] s [ﬁ] , [%] R [aTbC] }, the following is a match:

1L L]
abl’lecal’lal’lapl’l ¢ 1

Both the top and bottom strings read “abcaaabc,” so the above sequence of dominos
is a match.

For some combination of dominos, however, finding a match may not be possible.

Example 3.4. The collection { a—bc] s [%] , [ﬂ] . [a—bc] s [2] , [ﬂ]} cannot con-
. . (L ab a bal L ab c L ba .
tain a match since every top string is longer than its corresponding bottom string.

Now, it would be convenient to be able to find a method to determine which
collections are in PCP and which ones aren’t. However, PCP is undecidable, meaning
that there is no programmable algorithm that can determine if a match exists. To
prove this, we must first explain our method of computation: Turing machines.

4 Turing Machines

In this section, we define Turing machines, the model of computation that we use

for the rest of the paper. A Turing machine is a machine that recognizes a language.

It has a finite set of states, transitions, and an infinite tape (unlimited memory).
More precisely, we will define a Turing machine as the following tuple:

Definition 4.1. A Turing machine is a tuple (Q, Z,T, 8, 4o, Gaccept» Greject)» Where
1. Q is the finite set of states;
2. X is the input alphabet not containing the blank symbol LI;
3. T'is the tape alphabet, where LI € T'and X C T;;
4. § : QXTI - QXTI x{L,R}is the transition function;
5. qo € Q is the start state;
6. Qaccept € Q is the accept state; and

7. Qreject € Q is the reject state and Greject # Gaccept-

The Turing machine uses a tape head to navigate right or left and to read or
edit the elements on the tape. Initially, the tape contains only the input, but as the
Turing machine computes, the head may edit the elements on the tape.

For instance, when the machine is in state g and the tape head is located over
the symbol a, if §(q, a) = (r, b, X), then the machine replaces a with b, enters state
r, and moves in direction X (either left L or right R) along the tape.

Definition 4.2. If the Turing machine reaches either the accept or reject state,
computation is completed, and we say that the Turing machine halts on this input.
If computation is never completed, however, we say that the Turing machine loops.

Definition 4.3. A language is recognizable if there exists a Turing machine which
will only halt and accept for the strings in its language and either reject or not halt
at all for strings not in the language.

Definition 4.4. A language is decidable if there is a Turing machine which halts
on every input string. These types of Turing machines are also called deciders.

Here, we give an example of a Turing machine and its state diagram that recog-
nizes the language B = {0"|ne Z,}. The language B would accept inputs such as
the following:

[olofofofofofoleo]

Example 4.5. The Decider M for the above Turing machine would work as follows.
When given the input above, for instance, it would

1. Move left to right across the tape, crossing out every second 0.

[ofefofefofe]o]e]

2. Accept the tape if it held a single 0 in step 1.
Initially, the machine would skip this step since it held or crossed out four
Zeros, not one.

3. Reject if the tape held more than one 0 in step 1 and the number of Os was
odd.
Initially, the machine would skip this step as well since it held or crossed out
four zeros, which is an even number.

4. Return the tape head all the way to the tape’s left end.

ol Tl Jef Jef |

5. Return back to step 1, then repeat until the machine halts.

In this case, the machine would come to a stop when it crosses out a single 0
and moves on to step 2, where it would accept the input string.

Below are the next two repetitions of the four steps above.

The second repetition:

2.1 Move left to right across the tape crossing out every second 0.

o le] Je] [ef |

2.2 Skip. The machine holds two 0s.
2.3 Skip. The machine holds two 0s.
2.4 Return the tape head to the tape’s left end.

el [fel [1 |

The third (and last) repetition:
3.1 Move left to right across the tape, crossing out every second 0.

v

(el [[Jel [[|

3.2 Accept; machine halts.

Below is a state diagram that also represents the process above:

State diagram for the language B = 0" |n e Zso} [p. 6 of [2]]

In the state diagram, the arrow pointing to state q; indicates that it is the start
state, and the arrows connecting state to state give the transition function. The label
a — b, X of a transition arrow indicates that the tape head reads the symbol a and
replaces it by b. The tape head then moves in direction X, either left (L) or right (R).
Some labels only say a — X, meaning that the tape head does not edit the symbol
before moving to its new location.

Definition 4.6. A configuration of a Turing machine is a setting of three elements:
the current state, the current tape contents, and the current head location. Changes
occur in these elements during Turing machine’s computation process.

We represent a configuration in the order uqu where uv is the current tape
contents, q is the current state, and the first symbol of v is the current location of
the tape head.

Definition 4.7. We define the computation history of a Turing machine on a given
input to be the sequence of such configurations.

Example 4.8. For instance, the computation history for the Turing Machine that
accepts B = {0%"|n € Z5,} (Example 4.5) when given the input string of 00 is

q100, Uqg,0, LixqgsLl, LgsxLl, gs U xLl, Lg,xLl, Lxg,Ll, Lx L Qaccept-

We are also able to use the brief descriptions of algorithms in lieu of formal
Turing machine definitions by the Church-Turing Thesis.

Church-Turing Thesis. The Church-Turing Thesis states that the intuitive notion
of algorithms (Church’s definition of algorithms) is equivalent to Turing machine
algorithms (Turing’s definition of algorithms).

5 Proving Ary is Undecidable

In this section, we will define the language Ary,, give its Turing machine, and prove
that it is not decidable.

Definition 5.1. We define the language A, to be
Ay = {{M,w) | M is a Turing machine that accepts string w}.
Theorem 5.2. The language A, is recognizable.
Proof. We construct a Turing machine K that recognizes Ary,: on input (M, w),
1. K simulates M on input w.
2. If M accepts, K accepts. O
Theorem 5.3. The language Ay, is undecidable.

Proof. Assume, for the sake of contradiction, that A7, is decidable. Then by the
definition of decidable languages (Definition 4.4), there must exist some decider H
with L(H) = Ay, i.e., for an input string (M, w),

1. H accepts if M accepts w, and
2. H rejects if M rejects w.

Now, consider a new Turing machine D, which takes Turing machines (M) as
inputs. The machine D also simulates the decider H on input (M, (M)): in particular,
the machine D

1. accepts when H rejects (M, (M)), and
2. rejects when H accepts (M, (M)).

In other words, D rejects when H accepts and D accepts when H rejects.
Consider a case when D takes in itself, (D), as an input. Then by construction,
D will

1. reject (D) when H accepts (D, (D)), and
2. accept (D) when H rejects (D, (D)).

However, because H accepts (D, (D)) if and only if D accepts (D), we see that there
exists a contradiction either way:

1. D rejects (D) if and only if D accepts (D), or
2. D accepts (D) if and only if D rejects (D).

Therefore, such a decider H cannot exist, so Ay, is undecidable. O

6 Mapping Reducibility
In this section, we introduce the concept of mapping reducibility, a method to prove
that problems are computationally undecidable.

Definition 6.1. A function f: X* — X* is computable if there exists a Turing
machine that halts with f(w) on its tape for every input w € =*.

Definition 6.2. A language A is mapping reducible to a language B if there exists a
computable function f : 7 — X such that for every w € 7, w € A if and only if
flw) € B.

This is written as A <,,, B, and the function f is called the reduction from A to B.

Below is an illustration of mapping reducibility.

g
\/ o \/

Mapping reducibility illustration, [p. 235 of [1]].

In computability theory, reducibility helps us classify problems by their decid-
abilities. When proving that a certain language is undecidable, for instance, we can
simply reduce the language from another language that is already known or proven
to be undecidable. Below is a theorem that captures this idea.

Theorem 6.3. Let A and B be languages. If A <, B and B is decidable, then A is
decidable.

Proof. Let M be the decider for B and f be the reduction from A to B. We construct
a decider N for the language A, which works as follows: on any input w, it

1. Computes f(w), and
2. Runs the decider M on input f(w) and yields the same output as that of M.

Since A <,,, B and M is a decider, the machine M accepts f(w) if w € A and rejects
otherwise, which means that the machine N is a decider as well and executes as
expected. O

Corollary 6.4. If A <,,, B and A is undecidable, then B is undecidable.

7 PCP is Undecidable

Our strategy for the proof is to reduce Arj, to another language called Modified
PCP (MPCP) and then reduce MPCP to PCP. Since we already know that A, is
undecidable, it would follow that MPCP, and thus PCP, are both undecidable as
well (Corollary 6.4). Now all we need to do is construct computable functions from
Aty to MPCP and MPCP to PCP to prove their reducibilities.

First, we define Modified PCP (MPCP):

Definition 7.1. We define MPCP to be the language
MPCP = {(P’) | P’ is a collection of dominos with a match

t
starting with the first domino [b—l] }
1

Lemma 7.2. We have Aty <,, MPCP.

Proof. Given a Turing machine M and an input string w = wyw, ... w,, we construct
an instance P’ of MPCP such that M accepts w if and only if P’ € MPCP. The
reduction essentially simulates an accepting computation through an MPCP match.

Step 1: First, we insert the following domino into P’ as the first in the match ([;—1]):
1

#
HgowWs...W, ’

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

where gyw;w; ... wy, is the first configuration in the computation history of M
on input w.

So far, we only have a # on the top string of the match. In steps 2,3, and 4 we
will add more dominos to simulate parts of the computation: transitions to
the right, transitions to the left, and symbols that stay the same, respectively.

Here, we deal with tape head movements to the right.

For every a,b € I'and q,7 € Q (q # Greject), We insert the domino

]

into P’ if §(q,0) = (r, b, R).

Here, we deal with tape head movements to the left.

For every a,b,c € 'and q,7 € Q (q # Greject), We insert the domino

]
into P’ if 6(q,a) = (r, b, L).
Here, we add the tape alphabet.
For every a € T, insert [g] into P’.

These symbol dominos allow us to construct the part of the configuration not
included in the transition function.

. # #7]. .
Now we insert [;] and [E] into P’ to separate configurations.

The second domino with the #s allows us to simulate the infinite number of LI
symbols that are not considered in the method of representing configurations.
Note that if there is an empty string €, we replace it with a LI.

For every a € T, insert [qa“ep‘] nd [qmepta] into P’.

Gaccept Gaccept
This accounts for the steps after the Turing Machine has halted, when it “eats,”
or cancels out, the remaining symbols on the tape until there is nothing left.

The final step is to add the the domino

[Qaccept ##]

in order to even out the top and bottom sides and finish constructing P’. Note
that this will also complete the match.

We now verify that this is a valid reduction. If M accepts w, we have an accepting
computation history. Using this computation history, we can construct an MPCP
match for P/, where the top and bottom strings will start with the configuration
history separated by #s and end by “eating” the symbols remaining on the tape. Our
match starts with the first domino. To choose subsequent dominos, we slice each
configuration into substrings, inserting transition dominos for the sections of the

tape that change in successive configurations and [3] dominos for symbols that stay
a

the same in successive configurations. After reaching an accepting configuration,
we continue to slice the configuration into substrings, this time adding “eating”

dominos to delete symbols next to the head and [%] dominos for the rest of the

symbols. We repeat the deletion process until only gccep; remains and finish the
match by adding the last domino (from Step 7).

Conversely, if there is a MPCP match for P/, then we show that A, accepts
(M, w). We design our match to start with the Step 1 domino, and it must end with
the Step 7 domino, as this is the only way for the #s to align. Since we start with
the Step 1 domino, which contains the first configuration in the bottom string, the
top string of the match must start with the first configuration as well. This part
of the top string is comprised of the same dominos as the next part of the bottom
string, and the match links the unchanging part of each configuration to the next by
using symbol dominos, while linking altering components with transition dominos
or “eating” dominos. Hence, each configuration must either (i) be the result of
applying the transition function to the previous configuration, or (ii) be the result
of “eating” a symbol next to g,ccept in the previous configuration. However, since
“eating” dominos cannot be used until an accept state is reached, they do not affect
computation. Therefore, our match must yield an accepting configuration. O

The following is an example of the reduction, giving the MPCP match corre-
sponding to the accepting computation history in Example 4.8.

Example 7.3. We use our Turing machine for the language B = {0*" |n € Zsp}on
the input 00.

#1q, 0[0|#|U|qy O|#|U |x g3 U|#H|U g5 x|U|#|gs U|x|U|#
#q 00 #|U q0#|U|xqgs|U #|U|gs x U|#|gs U x|U|[#|U g2|x|U|#

Ujgx x|u #U|x q U #U|x|U qaccepl #U|x qaccept #|U qaccepl # qaccept # #

U|x ga| U |#|Ujx|U Qaccept #|U|x Qaccept #|U Qaccept # Qaccept #|#

10

The first domino in the match is from Step 1; the second is a transition from Step
2; the next domino is a symbol domino from Step 4; then we have a configuration
separator from Step 5. The match simulates computation since each configuration
goes to the next through the domino. Note the configuration separator with LI in
the transition from the second to third configurations. We end with several “eater”
dominos from Step 6, and ultimately, the domino from Step 7.

Now we must reduce MPCP to PCP to complete the proof. MPCP is a necessary
intermediary step because if we did not require for the match to start with the

specified domino [] the tape alphabet domino [] could also be a match, which

would not simulate an accepting computation history.
Lemma 7.4. We have MPCP <,, PCP.

Proof. We can force the match to begin with the specified domino [] through the

following construction:
We first define the % operation as follows:

*U =k Uy k Uy % Uz -+ % Uy,
Uk = Uy * Uy * Uz -+ % Uy *,

*UKk =k Uy k Uy *k Uz -+ % Uy *

=55][5

of MPCP, we can construct our instance of PCP to be
[*t,] [*tz] *t3] *tk] EX$
*xbyx |7 byx bk 1T O)

where [%] accounts for the extra * needed to complete the match.

Given an instance

If P’ has a match i; = 1,1, ..., i, then the match in the above construction P is
i1,1,...,ip, k + 1, where the (k + 1)th domino is [%] .

Conversely, if P has a match ji, j, ..., j, it must start with j; = 1 because

[Ztl] is the only one where the bottom string starts with . Moreover, the last
1%

domino must be [g] because an extra * is needed at the end of the top string.

Therefore, ji, ..., j,—1 is @ match for P’ starting with the specified first domino. O
Theorem 7.5. The language PCP is undecidable.

Proof. By Lemmas 7.2 and 7.4, we have reductions from A7, to MPCP and MPCP to
PCP. Since Ay, is undecidable by 5.3, Corollary 6.4 shows that PCP is undecidable
as well. O

11

Next, we will reduce PCP to other languages in order to show that they are
undecidable as well. To define these languages, we will introduce context-free
languages and grammars.

8 Context-Free Languages

In this section, we describe context-free grammars and context-free languages. Each
context-free grammar has a collection of substitution rules in the format A — « in
which the symbol A on the left is a variable, which we represent by capital letters,
and the string ot on the right is comprised of variables as well as other symbols called
terminals, which we represent by lowercase letters.

Definition 8.1. A context-free grammar is a tuple (V, %, R, S) where

1. Visthe finite set of variables, which we typically represent using capital letters;

2. X is the finite set of terminals (separate from V'), which we typically represent
by lowercase letters;

3. R is the finite set of substitution rules of the form A — «, where A € V and «
is a string of variables and terminals; and

4. S € V is the start variable.

To generate a string through a grammar, we go through the following steps:

1. Write the start variable, which we typically write as the left symbol of the
top-most rule.

2. Replace a variable with the right hand side of a corresponding rule.
3. Repeat the second step until there are no more variables.

Example 8.2. Consider the following context-free grammar:

[SENTENCE] — [SUBJECT][PREDICATE]

[SUBJECT] — BOB | GRU
[PREDICATE] — [VERB] | [SPEECH-PHRASE]

[VERB] — VISITED | FLEW | [VERB][ADVERB]
[SPEECH-PHRASE] — [SPEECH-VERB][SENTENCE]
| [SPEECH-VERB][SENTENCE][ADVERB]
[SPEECH-VERB] — SAID | SHOUTED
[ADVERB] — YESTERDAY | QUICKLY | FREQUENTLY

We denote separate substitution possibilities that come from the same variable
with bars (1).

12

From this grammar, we can form the ambiguous sentence “Bob said Gru visited
yesterday.” There are two ways to interpret this:

1. Gru visited yesterday, said Bob.
2. Bob said yesterday that Gru visited.

Hence, depending on whether the word “yesterday” is interpreted as an adverb
modifying “visited” or “said,” two different messages can be delivered to the readers.

We can also represent this sequence of steps with a diagram called a parse tree.
Below are the two parse trees that represent these possibilities:

1. Parse Tree 1: “Gru visited yesterday, said Bob.”

SENTENCE
SUBmIGATE
B{l:ab SPEECH-lF'H RASE
SPEECmENCE
Selid SUBﬂEEICATE
Glru VElFtB
—

VERB ADVERB
I I
visited yesterday

2. Parse Tree 2: “Bob said yesterday that Gru visited.”

SENTENCE
_———________-_‘_‘_-_'_'_'_‘—-—-—._
SUBJECT PREDICATE
[|
Bob SPEECH-PHRASE
_-———_______[_-___-_____'_‘—-———-__
SPEECH-VERB SENTENCE ADVERB
said SUBJECT PREDICATE vyesterday
[|
Gru VERB
|
visited

13

Definition 8.3. A context-free grammar that can generate the same string in more
than one way is said to be ambiguous.

Going back to Example 8.2, the sentence “Bob said Gru visited yesterday” would
have an ambiguous context-free grammar since both trees generate the same sen-
tence, but in different ways.

Definition 8.4. A context-free language is the set of strings generated by a context-
free grammar.

9 AMBIGcpg and OVERLAP r; are Undecidable

The language AMBIGcrg = {(C) : C is an ambiguous CFG} is undecidable. To
show this, we create a reduction from PCP to AMBIG¢r¢ by letting the top string of
the match be one of the derivations and the bottom string be the second derivation
of the ambiguous string.

Theorem 9.1. The language AMBIG g is undecidable.

Proof. We show that PCP <,, AMBIG.rg- The reduction is the computable func-
tionf: =% ., - Z* that sends the instance

PCP AMBIGcpg
ty t) [tk]}
p=|2[[2]. ... [=
s 5] [

of PCP to the context-free grammar C with the following set of rules:

S—>T|B
T—tTay| - |t Tag|tiag | - | trag
B — biBay | - | bBay | bray | -+ | bay.

If P has a match iy, iy, ..., iy, then C is ambiguous because there are two possible

derivations for the string ; t; -+~ t; a; a;, | ==~ a;; = by by, --- by a; a;, - aqy:

1. By following the rule S — T and substituting T for ¢; T'q; in the (n+ 1)th sub-

stitution, we can construct the first derivation ¢; t; ---t; . t; a; a;, | -~ a;,q;, .

2. Similarly, by following the rule S — B, we can construct the second derivation

bi by, -+ by, by @iy Gy, -+ @3, 0y -

Conversely, suppose that C is ambiguous. Given a word and the first substitution
S — T or S — B in its derivation, we can determine the rest of its derivation by
examining the substring a;, a;, --- @;, at the end. If we have an ambiguous word, the
two derivations would look like

titiy -+ by, 13, @3, Qg -+ @y, Q5) = by by, - by by ay a; - a0

Since a; a;, - a;,q; = a; a; -+ a;,q;, then t; t b

and this string is our match.

itiy o by By = bibiy o by by,

14

Similarly, we can prove that the context-free language
OVERLAP:rg = {{(G, ()| G and H are CFGs where L(G) U L(¥() # ¢}

is undecidable.

Theorem 9.2. The language OVERLAP g is undecidable.
Proof. We show that PCP <,, OVERLAPFg. The reduction is the computable func-

. . . t t t
tionf: 5., = ZSVERLAPCFG where given the instance P = { [ﬁ] , [b—Z] s [i]}

of PCP, we construct the following CFGs G and ¥ :

G:G-nGa| - |6Gag | thay | - | trak
H :H - bHay| - |bgHay|bya; | --- | brag.

If P has a match iy, i,, ..., iy, we can construct a common string in both the
languages of G and J¢ by substituting G for ¢; Ga; , and H for b; Ha; in the nth
substitution. The string we obtain is

tiytiy - b Ly @y Qi oo Qi @yy = by by, - by by agay - aiay
which satisfies the requirements of OVERLAP gg.

Conversely, if G and J are overlapping languages, we can then create a match
since the overlapping word can be expressed as bqth tl-.1 ti, "'_tik_ltik @y Ay ** Gy Gy
and b; by, -+ b;,_ b; a; a;,_, --- a;,a; for some indices iy, ..., i because the substring

a;, a;,_, -+~ a;,a; is the same in both derivations. Then iy, ..., i is our match. O

10 Acknowledgements

We would like to thank MIT PRIMES Circle and its sponsors for providing us with
this amazing opportunity and Alicia’s younger brother, Aiden, for his moral support
and for gracing us with occasional brain breaks.

Above all, a huge thank you to our mentor, Alexandra Hoey, for the weekly meet-
ings, presentation tips, and patient explanations of the numerous computational
terms, theorems, proofs, and more.

References

[1] Sipser, M. (2013). Introduction to the theory of computation (3rd ed.). Cengage
Learning.

[2] Carnegie Mellon University. (n.d.). State diagram [Illustration].
https://www.cs.cmu.edu/ arielpro/15251/Lectures/lecture22.pdf

[3] Shang, M. (2011). Syntax tree generator [Computer software].
http://mshang.ca/syntree

15

https://www.cs.cmu.edu/~arielpro/15251/Lectures/lecture22.pdf
http://mshang.ca/syntree

	Introduction
	Languages
	PCP
	Turing Machines
	Proving ATM is Undecidable
	Mapping Reducibility
	PCP is Undecidable
	Context-Free Languages
	AMBIGCFG and OVERLAPCFG are Undecidable
	Acknowledgements

