
Nodal sets of random spherical harmonics

Mikhail Sodin (Tel Aviv University)

j/w Fedor Nazarov (Kent State University)

Representation Theory, Probability, and Symmetric Functions

MIT, August 2019



Random spherical harmonics:

Hn real Hilbert space of 2D spherical harmonics equipped with the
L2(S2)-norm, dimHn = 2n + 1, (Yk) orthonormal basis in Hn

(ξk) Gaussian IIDs, E|ξk |2 = 1
2n+1

fn =
∑n

k=−n ξkYk random spherical harmonic of degree n

The distribution of fn

is independent of the choice of the ONB in Hn

is invariant w.r.t. rotations of the sphere S2

Z (fn) = f −1{0} the zero set of fn

N(fn) the number of connected components of Z (fn) (large n)



Major difficulties to study the number of connected
components:

Slow off-diagonal decay (and sign changes) of the covariance of
the ensemble: E[fn(x)fn(y)] = Pn(cos Θ(x , y))

Pn Legendre polynomial of degree n (Pn(1) = 1)

Θ(x , y) angle between x , y ∈ S2.

Scaled covariance: Pn

(
cos zn

)
∼ J0(z), the zeroth Bessel function,

J0(z) ∼
√

2
πz cos

(
z − π

4

)
It is natural to think of fn as defined on the sphere nS2 of radius n
and of area ' n2. In this scale the covariance decays as dist−1/2.

Another difficulty: ”non-locality” (contrary to the length or the
Euler characteristics).



Bogomolny and Schmit percolation model

In 2001, Bogomolny and Schmit proposed a remarkable random
loop model for description of the topology of the zero set Z (fn).

Their model completely ignores slow decaying correlations and is
very far from being rigorous.

Attempts to digest their work stimulated much of the progress
recently achieved in this area.



LLN + Exponential concentration:

THEOREM 1 (F.Nazarov, M.S., Amer. J. Math., 2009) There exists
ν > 0 s.t.

P
[∣∣N(fn)− νn2

∣∣ > εn2
]
< Ce−c(ε)n

with c(ε) & ε15.

The proof gives

ν = lim
n→∞

E
[ 1

area(Gn)

]
,

where Gn is a nodal domain of fn on n S2 that contains a marked point x .

Later, we have shown that the Law of Large Numbers with a positive

limit (but without the exponential concentration) holds for rather general

classes of smooth Gaussian fields on Rd and of smooth Gaussian

ensembles on manifolds (J. Math. Phys., Analysis, Geometry, 2016).



Related results and extensions:

I “derandomization” on the torus: Bourgain, Buckley –
Wigman, Ingremeau;

I other topological observables: Gayet – Welschinger, Lerario –
Lundberg (upper and lower bounds for mean values), Sarnak –
Wigman, Canzani – Sarnak (the Law of Large Numbers);

I fields and ensembles with positive correlations: Malevich
(1972, sic!), Beffara – Gayet, Beliaev – Muirhead – Wigman,
Rivera – Vanneuville;

I excursion sets: Swerling (1963, sic!), Beliaev – McAuley –
Muirhead.

By no means is this list complete.



Size of fluctuations of N(fn):

N(fn) the number of connected components of the zero set Z (fn).

Trivial bounds: 1 . Var[N(fn)] . n4.

The Bogomolny and Schmit prediction says that Var[N(fn)] grows
as n2, that is, as E[N(fn)].

The exponential concentration from Theorem 1

P
[∣∣N(fn)− νn2

∣∣ > εn2
]
< Ce−cε

15n

yields the upper bound: Var[N(fn)] . n4−
2
15 .



Recent advance:

THEOREM 2 (work in progress with Fedya Nazarov)

Var[N(fn)] & nσ

with some σ > 0

REMARK This lower bound holds for any non-degenerated
isotropic smooth Gaussian fields on n S2 with decay of correlations
& dist−c with some c > 0.

We will discuss main ideas from the proof of the lower bound.
They can be viewed as the first (though, modest) step towards
justification of the Bogomolny-Schmit heuristcs.



Saddle points with small critical values:

Heuristically, the fluctuations in the topology of Z (fn) are caused
by saddle points of fn with small critical values that yield so called
“avoided crossings” of the zero set Z (fn).

I.e., switches in the topology of the zero set of fn are caused by a
point process that has a low intensity but strong long range
dependence, as illustrated on the following simulation produced by
Dima Belyaev.

Instead of random spherical harmonics Belyaev simulated so called
random plane waves (RPWs) but one may safely ignore the
difference (the RPW is a scaling limit of the our random spherical
harmonics on n S2 as n→∞).
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Blue lines are zero lines of a RPW F0, blue and red points are maxima

and minima of F0, and black points are saddle points of F0. Black lines

are zero lines of the sum F0 + 1
10F1, where F1 is another RPW,

equidistributed with F0 and independent of F0, green domains are

connected components of the set where this sum is positive.



Step 1: Low level critical points

f = fn random spherical harmonic of degree n on n S2, E|f |2 = 1

Cr(α) =
{
z ∈ n S2 : ∇f (z) = 0, |f (z)| 6 α

}
, 0 < α� 1

“With high probability” (w.h.p.) means except of an event of
probability O(n−c) with some c > 0.

LEMMA 1 Let n−2+ε 6 α 6 n−2+2ε. Then, w.h.p., the set Cr(α)
is relatively large: |Cr(α)| & ncε, and the points in this set are
n1−Cε-separated.



Step 2: Introducing a small perturbation

fα =
√

1− α2f + αg , g is an independent copy of f . The random
function fα has the same distribution as f .

We condition on f .

LEMMA 2 Let α = n−2+ε and α′ = αnε = n−2+2ε. Then, w.h.p.,
topology of Z (fα) is determined by the collection of signs of fα(z)
at z ∈ Cr(α′).

This lemma allows us “to localize” the problem. Its proof needs a
caricature of a quantitative Morse theory.



Step 3: Reduction to independent percolation

Recall: α = n−2+ε, α′ = n−2+2ε, fα =
√

1− α2f + αg , g is an
independent copy of f

We replace g by its independent copy gz (some linear algebra with
estimates).

This step needs a good separation between the points of Cr(α′) provided
Lemma 1.

Define a collection of independent random functions
f̃α =

√
1− α2f + αgz , z ∈ Cr(α′).

LEMMA 3 W.h.p., sgn(fα(z)) = sgn(f̃α(z)), z ∈ Cr(α′).

This reduces the problem to the independent random loop model on a
graph with the degree of each vertex either 4 (saddle points of f ) or 0
(maxima and minima of f ).

Discard the latter case and assume that the degree of each vertex is 4.



Step 4: Independent percolation on some graphs

G = G (V ,E ) a graph embedded in n S2

The degree of each vertex v ∈ V is 4.

In each vertex v , we independently replace the edges crossing by
one of two possible avoided crossing configuration, p(v), 1− p(v)
are the corresponding probabilities.

Γ random configuration of loops,

N(Γ) the number of loops in Γ.

LEMMA 4 : For any p0 > 0,

Var[N(Γ)] > c(p0) |{v ∈ V : p0 6 p(v) 6 1− p0}|

This completes the proof of the lower bound for fluctuations of
N(fn) but not this talk.



Happy Birthday To Grisha!


