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Weyl group multiple Dirichlet series (WMDS)

Dirichlet series L (s) = ∑n≥1 ann
−s ; important in number theory

Satisfy functional equation; Multiplicativity =⇒ Euler product

Example: ζ (s) = ∑n≥1 n
−s = ∏p (1− p−s )

−1
, ζ̂ (s) = ζ̂ (1− s)

WMDS are Dirichlet series in several variables.

Satisfy system of functional equations ∼ Weyl group W
Historical: Siegel, Kazhdan-Patterson, Goldfeld-Hoffstein.

Recent: Brubaker, Bump, Chinta, Friedberg, Gunnells.

Related to Eisenstein series for “metaplectic” covers of adelic groups.
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Our results

WMDS are “twisted”multiplicative; determined by their “p-parts”.

Rational functions in p−s and nth order Gauss sums g1, . . . gn−1.
Chinta-Gunnells gave a formula involving a “mysterious”W -action.

Not clear from the definition that it is a group action!

C-G did a computer check and asked for a conceptual proof.

We resolve this by a two-part process called “Baxterization”.

We construct a representation of the (double) affi ne Hecke algebra
and show the C-G action arises by a suitable localization.

This construction also yields a new family of “metaplectic”
polynomials, which generalize Macdonald polynomials.
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Roots, weights and Weyl group

Φ = {α} root system, {αi} simple roots, {si} generators of W

Coxeter presentation: s2i = 1 + braid relations si sj si · · · = sj sj si · · ·
with 2, 3, 4, 6 terms, if # of (i , j)-edges in Coxeter graph is 0, 1, 2, 3.

Affi ne Weyl group = W n P, where P = {λ} is the weight lattice.
W also acts on Cx [P ] =

〈
xλ
〉
group algebra, Cx (P) fraction field.
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Chinta-Gunnells action

Fix a bilinear form: B on P, W -invariant, Q (λ) = 1
2B (λ,λ) ∈ Z

Fix a natural number n ∈ N (metaplectic degree) and set

Pn := {λ ∈ P : B (λ, αi ) ≡ 0 mod n}

m (α) := n/ gcd (n,Q (α)) ; 0 ≤ rm (j) < m remainder of j mod m

Fix parameters: v = k2 and {gj : j ∈ Z/nZ} satisfying

g0 = −1, gjg−j = v−1 for j 6≡ 0

For f ∈ Cx (Pn) and λ ∈ P define
σi
(
fxλ
)

:= si
(
fxλ
)
×
(
1− vxm(αi )αi

)−1
×[

x
−rm(αi )

[
−B(λ,αi )

Q(αi )

]
αi
[1− v ]− vgQ(αi )−B(λ,αi )x [1−m(αi )]αi

[
1− xm(αi )αi

]]
Theorem (C-G). This defines an action of W on Cx (P).
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Finite Hecke algebra

H generated by {Ti}, (Ti − k)
(
Ti + k−1

)
= 0 + braid relations

Reflection representation: Vector space U, basis
{
uµ : µ ∈ P

}
Tiuµ =


usiµ if (µ, α∨i ) > 0
kuµ if (µ, α∨i ) = 0

(k − k−1)uµ + usiµ if (µ, α∨i ) < 0

Let C := {λ ∈ P | (λ, α∨) ≤ m(α) ∀ α ∈ Φ}; C is W -stable
UC :=

⊕
λ∈C Cuλ is an H-submodule of V
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Affi ne Hecke algebra

Recall m (α) := n/ gcd (n,Q (α)), define αn := m(α)α

Then Φn := {αn : α ∈ Φ} is a root system, with weight lattice
Pn := {µ ∈ P : B (µ, αi ) ≡ 0 mod n}
Pn group algebra: CY := CY [Pn ] = 〈Y µ : µ ∈ Pn〉
Affi ne Hecke algebra H = Hn = 〈H,CY 〉 with relations

TiY µ − Y siµTi = (k − k−1)
(
Y siµ − Y µ

Y αni − 1

)
Induced representation: π = IndHH (UC ) realized on NC = UC ⊗CY
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Then Φn := {αn : α ∈ Φ} is a root system, with weight lattice
Pn := {µ ∈ P : B (µ, αi ) ≡ 0 mod n}
Pn group algebra: CY := CY [Pn ] = 〈Y µ : µ ∈ Pn〉
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Metaplectic representation

Recall v = k2 and {gj : j ∈ Z/nZ}: g0 = −1, gjg−j = v−1 for j 6≡ 0

For j ∈ Z define γj =


1 if j ∈ Z≥0
k−1 if j ∈ nZ<0

−kgj otherwise

For λ ∈ C define γ(λ) := ∏α∈Φ+ γQ(α)(λ,α∨)

Define a surjective map NC = UC ⊗CY [Pn ]
ψ−→ Cx [P ] by

ψ (uλ ⊗ Y µ) =
1

γ(λ)
xλ+µ

Theorem (S.-Stokman-Venkateswaran)

The kernel of ψ is stable under (π,H)

Metaplectic rep. v: Quotient action of H on Cx [P ]
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Baxterization

Recall H = 〈H,CY [Pn ]〉, localization Hloc := 〈H,CY (Pn)〉

Localization of affi ne group algebra Aloc := 〈C [W ] ,CY (Pn)〉

Theorem (Localization)

The identity on CY (Pn) extends to an algebra isomorphism Aloc ≈ Hloc ,
with si 7→ ci (Y ) (Ti − k) + 1 where ci (Y ) =

(
1− Y αni

)
/
(
k−1 − kY αni

)
.

Theorem (S.-Stokman-Venkateswaran)

The metaplectic representation v of H on Cx [P ] extends (uniquely) to a
representation vloc of Hloc on Cx (P). The action of W induced by the
isomorphism Aloc ≈ Hloc coincides with the CG action.
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Double affi ne Hecke algebras

Theorem (S.-Stokman-Venkateswaran)
v can be extended to the double affi ne Hecke algebra.

This leads to Cherednik operators and “metaplectic”polynomials
depending on additional parameters g1, . . . , gn−1.
For n = 1, these are the “usual”nonsymmetric Macdonald
polynomials

The p-parts of WMDS are Whittaker functions for p-adic groups

For n = 1, by the Casselman-Shalika formula they are specializations
of Macdonald polynomials

For general n the metaplectic polynomials bear an analogous
relationship with p-parts of WMDS.

One can similarly obtain symmetric metaplectic polynomials, which
generalize symmetric Macdonald polynomials
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Some Metaplectic polynomials for GL(3)

Formulas for E (n)λ (x), 1 ≤ n ≤ 5 and λ ∈ Z3 of weight at most 2.

E (1)
(0,0,0)(x) = 1

E (2)
(0,0,0)(x) = 1

E (3)
(0,0,0)(x) = 1

E (4)
(0,0,0)(x) = 1

E (5)
(0,0,0)(x) = 1

E (1)
(1,0,0)(x) = x1

E (2)
(1,0,0)(x) = x1

E (3)
(1,0,0)(x) = x1

E (4)
(1,0,0)(x) = x1

E (5)
(1,0,0)(x) = x1
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Some Metaplectic polynomials for GL(3)

E (1)
(0,1,0)(x) =

(k−1)(k+1)
k 4q−1 x1 + x2

E (2)
(0,1,0)(x) =

(k−1)(k+1)
k (kq2+ε)

x1 + x2

E (3)
(0,1,0)(x) =

(k−1)(k+1)g1
k 4g 31 q

3+1 x1 + x2

E (4)
(0,1,0)(x) =

(k−1)(k+1)g1
k 4g 31 q

4+1 x1 + x2

E (5)
(0,1,0)(x) =

(k−1)(k+1)g1
k 4g 31 q

5+1 x1 + x2

E (1)
(0,0,1)(x) =

(k−1)(k+1)
qk 2−1 x1 +

(k−1)(k+1)
qk 2−1 x2 + x3

E (2)
(0,0,1)(x) = −

(k−1)(k+1)
k (k+εq2) x1 +

(k−1)(k+1)
q2+εk x2 + x3

E (3)
(0,0,1)(x) = −

(k−1)(k+1)g 21
k 2g 31 q

3+1 x1 +
(k−1)(k+1)g1
k 2g 31 q

3+1 x2 + x3

E (4)
(0,0,1)(x) = −

(k−1)(k+1)g 21
k 2g 31 q

4+1 x1 +
(k−1)(k+1)g1
k 2g 31 q

4+1 x2 + x3

E (5)
(0,0,1)(x) = −

(k−1)(k+1)g 21
k 2g 31 q

5+1 x1 +
(k−1)(k+1)g1
k 2g 31 q

5+1 x2 + x3
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Some Metaplectic polynomials for GL(3)

E (1)
(0,1,1)(x) =

(k−1)(k+1)
qk 2−1 x1x2 +

(k−1)(k+1)
qk 2−1 x3x1 + x3x2

E (2)
(0,1,1)(x) = −

(k−1)(k+1)
k (k+εq2) x1x2 +

(k−1)(k+1)
q2+εk x3x1 + x3x2

E (3)
(0,1,1)(x) = −

(k−1)(k+1)g 21
k 2g 31 q

3+1 x1x2 +
(k−1)(k+1)g1
k 2g 31 q

3+1 x3x1 + x3x2

E (4)
(0,1,1)(x) = −

(k−1)(k+1)g 21
k 2g 31 q

4+1 x1x2 +
(k−1)(k+1)g1
k 2g 31 q

4+1 x3x1 + x3x2

E (5)
(0,1,1)(x) = −

(k−1)(k+1)g 21
k 2g 31 q

5+1 x1x2 +
(k−1)(k+1)g1
k 2g 31 q

5+1 x3x1 + x3x2

E (1)
(1,0,1)(x) =

(k−1)(k+1)
k 4q−1 x1x2 + x3x1

E (2)
(1,0,1)(x) =

(k−1)(k+1)
k (kq2+ε)

x1x2 + x3x1

E (3)
(1,0,1)(x) =

(k−1)(k+1)g1
k 4g 31 q

3+1 x1x2 + x3x1

E (4)
(1,0,1)(x) =

(k−1)(k+1)g1
k 4g 31 q

4+1 x1x2 + x3x1

E (5)
(1,0,1)(x) =

(k−1)(k+1)g1
k 4g 31 q

5+1 x1x2 + x3x1
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Some Metaplectic polynomials for GL(3)

E (1)
(1,1,0)(x) = x1x2

E (2)
(1,1,0)(x) = x1x2

E (3)
(1,1,0)(x) = x1x2

E (4)
(1,1,0)(x) = x1x2

E (5)
(1,1,0)(x) = x1x2

E (1)
(2,0,0)(x) = x

2
1 +

q(k−1)(k+1)
qk 2−1 x1x2 +

q(k−1)(k+1)
qk 2−1 x3x1

E (2)
(2,0,0)(x) = x

2
1

E (3)
(2,0,0)(x) = x

2
1

E (4)
(2,0,0)(x) = x

2
1

E (5)
(2,0,0)(x) = x

2
1
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Some Metaplectic polynomials for GL(3)

E (1)
(0,2,0)(x) =

(k−1)(k+1)
(qk 2−1)(qk 2+1)x

2
1 + x

2
2 +

(k−1)(k+1)(k 4q2+qk 2−q−1)
(qk 2+1)(qk 2−1)2 x1x2 +

(k−1)2(k+1)2q
(qk 2+1)(qk 2−1)2 x3x1 +

q(k−1)(k+1)
qk 2−1 x3x2

E (2)
(0,2,0)(x) =

(k−1)(k+1)
(q2k 2−1)(q2k 2+1)x

2
1 + x

2
2

E (3)
(0,2,0)(x) =

(k−1)(k+1)g 21
k 2g 31+q

6 x21 + x
2
2

E (4)
(0,2,0)(x) =

(k−1)(k+1)
k (q8k+ε)

x21 + x
2
2

E (5)
(0,2,0)(x) =

(k−1)(k+1)g2
k 4g 32 q

10+1 x21 + x
2
2
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Some Metaplectic polynomials for GL(3)

E (1)
(0,0,2)(x) =

(k−1)(k+1)
(kq−1)(kq+1)x

2
1 +

(k−1)(k+1)
(kq−1)(kq+1)x

2
2 + x

2
3 +

(q+1)(k−1)2(k+1)2
(kq−1)(kq+1)(qk 2−1)x1x2 +

(q+1)(k−1)(k+1)
(kq−1)(kq+1) x3x1 +

(q+1)(k−1)(k+1)
(kq−1)(kq+1) x3x2

E (2)
(0,0,2)(x) =

(k−1)(k+1)
(kq2−1)(kq2+1)x

2
1 +

(k−1)(k+1)
(kq2−1)(kq2+1)x

2
2 + x

2
3

E (3)
(0,0,2)(x) = −

(k−1)(k+1)g1
k 4g 31+q

6 x21 +
(k−1)(k+1)k 2g 21

k 4g 31+q
6 x22 + x

2
3

E (4)
(0,0,2)(x) = −

(k−1)(k+1)
k (εq8+k ) x

2
1 +

(k−1)(k+1)
q8+εk x22 + x

2
3

E (5)
(0,0,2)(x) = −

(k−1)(k+1)g 22
k 2g 32 q

10+1 x21 +
(k−1)(k+1)g2
k 2g 32 q

10+1 x22 + x
2
3
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