Metaplectic representations of Hecke algebras, Weyl group actions and associated polynomials Joint work with Jasper Stokman and Vidya Venkateswaran

Siddhartha Sahi Rutgers University, New Brunswick NJ

Probability and Symmetric Functions, MIT, August 22, 2019

• Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory

- Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory
- $\bullet\,$ Satisfy functional equation; Multiplicativity $\implies\,$ Euler product

- Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory
- Satisfy functional equation; Multiplicativity \implies Euler product
- Example: $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p} (1 p^{-s})^{-1}$, $\hat{\zeta}(s) = \hat{\zeta}(1 s)$

- Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory
- Satisfy functional equation; Multiplicativity \implies Euler product
- Example: $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p} (1 p^{-s})^{-1}$, $\hat{\zeta}(s) = \hat{\zeta}(1 s)$
- WMDS are Dirichlet series in several variables.

- Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory
- Satisfy functional equation; Multiplicativity \implies Euler product
- Example: $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p} (1 p^{-s})^{-1}$, $\hat{\zeta}(s) = \hat{\zeta}(1 s)$
- WMDS are Dirichlet series in several variables.
- ullet Satisfy system of functional equations \sim Weyl group W

- Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory
- Satisfy functional equation; Multiplicativity \implies Euler product
- Example: $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p} (1 p^{-s})^{-1}$, $\hat{\zeta}(s) = \hat{\zeta}(1 s)$
- WMDS are Dirichlet series in several variables.
- ullet Satisfy system of functional equations \sim Weyl group W
- Historical: Siegel, Kazhdan-Patterson, Goldfeld-Hoffstein.

- Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory
- Satisfy functional equation; Multiplicativity \implies Euler product
- Example: $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p} (1 p^{-s})^{-1}$, $\hat{\zeta}(s) = \hat{\zeta}(1 s)$
- WMDS are Dirichlet series in several variables.
- ullet Satisfy system of functional equations \sim Weyl group W
- Historical: Siegel, Kazhdan-Patterson, Goldfeld-Hoffstein.
- Recent: Brubaker, Bump, Chinta, Friedberg, Gunnells.

- Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$; important in number theory
- Satisfy functional equation; Multiplicativity \implies Euler product
- Example: $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p} (1 p^{-s})^{-1}$, $\hat{\zeta}(s) = \hat{\zeta}(1 s)$
- WMDS are Dirichlet series in several variables.
- ullet Satisfy system of functional equations \sim Weyl group W
- Historical: Siegel, Kazhdan-Patterson, Goldfeld-Hoffstein.
- Recent: Brubaker, Bump, Chinta, Friedberg, Gunnells.
- Related to Eisenstein series for "metaplectic" covers of adelic groups.

• WMDS are "twisted" multiplicative; determined by their "p-parts".

Image: A matrix of the second seco

э

- WMDS are "twisted" multiplicative; determined by their "p-parts".
- Rational functions in p^{-s} and *n*th order Gauss sums $g_1, \ldots g_{n-1}$.

- WMDS are "twisted" multiplicative; determined by their "p-parts".
- Rational functions in p^{-s} and *n*th order Gauss sums g_1, \ldots, g_{n-1} .
- Chinta-Gunnells gave a formula involving a "mysterious" W-action.

- WMDS are "twisted" multiplicative; determined by their "p-parts".
- Rational functions in p^{-s} and *n*th order Gauss sums g_1, \ldots, g_{n-1} .
- Chinta-Gunnells gave a formula involving a "mysterious" *W*-action.
- Not clear from the definition that it is a group action!

- WMDS are "twisted" multiplicative; determined by their "p-parts".
- Rational functions in p^{-s} and *n*th order Gauss sums g_1, \ldots, g_{n-1} .
- Chinta-Gunnells gave a formula involving a "mysterious" *W*-action.
- Not clear from the definition that it is a group action!
- C-G did a computer check and asked for a conceptual proof.

- WMDS are "twisted" multiplicative; determined by their "p-parts".
- Rational functions in p^{-s} and *n*th order Gauss sums g_1, \ldots, g_{n-1} .
- Chinta-Gunnells gave a formula involving a "mysterious" *W*-action.
- Not clear from the definition that it is a group action!
- C-G did a computer check and asked for a conceptual proof.
- We resolve this by a two-part process called "Baxterization".

- WMDS are "twisted" multiplicative; determined by their "p-parts".
- Rational functions in p^{-s} and *n*th order Gauss sums g_1, \ldots, g_{n-1} .
- Chinta-Gunnells gave a formula involving a "mysterious" *W*-action.
- Not clear from the definition that it is a group action!
- C-G did a computer check and asked for a conceptual proof.
- We resolve this by a two-part process called "Baxterization".
- We construct a representation of the (double) affine Hecke algebra and show the C-G action arises by a suitable localization.

- WMDS are "twisted" multiplicative; determined by their "p-parts".
- Rational functions in p^{-s} and *n*th order Gauss sums g_1, \ldots, g_{n-1} .
- Chinta-Gunnells gave a formula involving a "mysterious" *W*-action.
- Not clear from the definition that it is a group action!
- C-G did a computer check and asked for a conceptual proof.
- We resolve this by a two-part process called "Baxterization".
- We construct a representation of the (double) affine Hecke algebra and show the C-G action arises by a suitable localization.
- This construction also yields a new family of "metaplectic" polynomials, which generalize Macdonald polynomials.

• $\Phi = \{ \alpha \}$ root system, $\{ lpha_i \}$ simple roots, $\{ s_i \}$ generators of W

- $\Phi = \{lpha\}$ root system, $\{lpha_i\}$ simple roots, $\{s_i\}$ generators of W
- Coxeter presentation: $s_i^2 = 1 + \text{braid relations } s_i s_j s_i \cdots = s_j s_j s_i \cdots$

- $\Phi = \{ \alpha \}$ root system, $\{ lpha_i \}$ simple roots, $\{ s_i \}$ generators of W
- Coxeter presentation: $s_i^2 = 1 + \text{braid relations } s_i s_j s_i \cdots = s_j s_j s_j \cdots$
- with 2, 3, 4, 6 terms, if # of (i, j)-edges in Coxeter graph is 0, 1, 2, 3.

- $\Phi = \{ \alpha \}$ root system, $\{ lpha_i \}$ simple roots, $\{ s_i \}$ generators of W
- Coxeter presentation: $s_i^2 = 1 + \text{braid relations } s_i s_j s_i \cdots = s_j s_j s_j \cdots$
- with 2, 3, 4, 6 terms, if # of (i, j)-edges in Coxeter graph is 0, 1, 2, 3.
- Affine Weyl group = $W \ltimes P$, where $P = \{\lambda\}$ is the weight lattice.

- $\Phi = \{ \alpha \}$ root system, $\{ lpha_i \}$ simple roots, $\{ s_i \}$ generators of W
- Coxeter presentation: $s_i^2 = 1 + \text{braid relations } s_i s_j s_i \cdots = s_j s_j s_i \cdots$
- with 2, 3, 4, 6 terms, if # of (i, j)-edges in Coxeter graph is 0, 1, 2, 3.
- Affine Weyl group = $W \ltimes P$, where $P = \{\lambda\}$ is the weight lattice.
- W also acts on $\mathbb{C}_x[P] = \langle x^\lambda
 angle$ group algebra, $\mathbb{C}_x(P)$ fraction field.

• Fix a bilinear form: **B** on P, W-invariant, $\mathbf{Q}(\lambda) = \frac{1}{2}\mathbf{B}(\lambda, \lambda) \in \mathbb{Z}$

Image: Image:

- Fix a bilinear form: **B** on P, W-invariant, $\mathbf{Q}(\lambda) = \frac{1}{2}\mathbf{B}(\lambda, \lambda) \in \mathbb{Z}$
- Fix a natural number $n \in \mathbb{N}$ (metaplectic degree) and set

$$P^{n} := \{\lambda \in P : \mathbf{B}(\lambda, \alpha_{i}) \equiv 0 \mod n\}$$

- Fix a bilinear form: **B** on P, W-invariant, $\mathbf{Q}(\lambda) = \frac{1}{2}\mathbf{B}(\lambda, \lambda) \in \mathbb{Z}$
- Fix a natural number $n \in \mathbb{N}$ (metaplectic degree) and set

 $P^{n} := \{\lambda \in P : \mathbf{B}(\lambda, \alpha_{i}) \equiv 0 \mod n\}$

• $m(\alpha) := n/ \operatorname{gcd}(n, \mathbf{Q}(\alpha)); 0 \leq \mathbf{r}_{m}(j) < m$ remainder of $j \mod m$

- Fix a bilinear form: **B** on P, W-invariant, $\mathbf{Q}(\lambda) = \frac{1}{2}\mathbf{B}(\lambda, \lambda) \in \mathbb{Z}$
- Fix a natural number $n \in \mathbb{N}$ (metaplectic degree) and set

 $P^{n} := \{\lambda \in P : \mathbf{B}(\lambda, \alpha_{i}) \equiv 0 \mod n\}$

m(α) := n/gcd (n, Q(α)); 0 ≤ r_m(j) < m remainder of j mod m
Fix parameters: v = k² and {g_j : j ∈ Z/nZ} satisfying

$$g_0=-1, \ g_jg_{-j}=v^{-1}$$
 for $j
ot\equiv 0$

- Fix a bilinear form: **B** on P, W-invariant, $\mathbf{Q}(\lambda) = \frac{1}{2}\mathbf{B}(\lambda, \lambda) \in \mathbb{Z}$
- Fix a natural number $n \in \mathbb{N}$ (metaplectic degree) and set

$$P^{n} := \{\lambda \in P : \mathbf{B}(\lambda, \alpha_{i}) \equiv 0 \mod n\}$$

m(α) := n/gcd (n, Q(α)); 0 ≤ r_m(j) < m remainder of j mod m
Fix parameters: v = k² and {g_i : j ∈ Z/nZ} satisfying

$$g_0=-1, \; g_jg_{-j}=v^{-1}$$
 for $j
ot\equiv 0$

• For $f \in \mathbb{C}_{x}(P^{n})$ and $\lambda \in P$ define $\sigma_{i}(fx^{\lambda}) := s_{i}(fx^{\lambda}) \times (1 - vx^{m(\alpha_{i})\alpha_{i}})^{-1} \times \left[x^{-\mathbf{r}_{m(\alpha_{i})}\left[-\frac{\mathbf{B}(\lambda,\alpha_{i})}{\mathbf{Q}(\alpha_{i})}\right]^{\alpha_{i}}\left[1 - v\right] - vg_{\mathbf{Q}(\alpha_{i})-\mathbf{B}(\lambda,\alpha_{i})}x^{[1-m(\alpha_{i})]\alpha_{i}}\left[1 - x^{m(\alpha_{i})\alpha_{i}}\right]\right]$

- Fix a bilinear form: **B** on P, W-invariant, $\mathbf{Q}(\lambda) = \frac{1}{2}\mathbf{B}(\lambda, \lambda) \in \mathbb{Z}$
- Fix a natural number $n \in \mathbb{N}$ (metaplectic degree) and set

$$P^{n} := \{\lambda \in P : \mathbf{B}(\lambda, \alpha_{i}) \equiv 0 \mod n\}$$

m(α) := n/gcd (n, Q(α)); 0 ≤ r_m(j) < m remainder of j mod m
Fix parameters: v = k² and {g_i : j ∈ Z/nZ} satisfying

$$g_0=-1, \; g_jg_{-j}=v^{-1} \; ext{for} \; j
ot\equiv 0$$

• For
$$f \in \mathbb{C}_{x}(P^{n})$$
 and $\lambda \in P$ define
 $\sigma_{i}(fx^{\lambda}) := s_{i}(fx^{\lambda}) \times (1 - vx^{m(\alpha_{i})\alpha_{i}})^{-1} \times \left[x^{-\mathbf{r}_{m(\alpha_{i})}\left[-\frac{\mathbf{B}(\lambda,\alpha_{i})}{\mathbf{Q}(\alpha_{i})}\right]^{\alpha_{i}}\left[1 - v\right] - vg_{\mathbf{Q}(\alpha_{i})-\mathbf{B}(\lambda,\alpha_{i})}x^{[1-m(\alpha_{i})]\alpha_{i}}\left[1 - x^{m(\alpha_{i})\alpha_{i}}\right]\right]$

• Theorem (C-G). This defines an action of W on $C_x(P)$.

• H generated by $\{T_i\}$, $(T_i - k)(T_i + k^{-1}) = 0 + braid relations$

- H generated by $\{T_i\}$, $(T_i k)(T_i + k^{-1}) = 0 + braid relations$
- Reflection representation: Vector space U, basis $\{u_{\mu} : \mu \in P\}$

$$T_{i}u_{\mu} = \begin{cases} u_{s_{i}\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) > 0\\ ku_{\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) = 0\\ (k - k^{-1})u_{\mu} + u_{s_{i}\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) < 0 \end{cases}$$

- H generated by $\{T_i\}$, $(T_i k)(T_i + k^{-1}) = 0 + braid relations$
- Reflection representation: Vector space U, basis $\{u_{\mu} : \mu \in P\}$

$$T_{i}u_{\mu} = \begin{cases} u_{s_{i}\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) > 0\\ ku_{\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) = 0\\ (k - k^{-1})u_{\mu} + u_{s_{i}\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) < 0 \end{cases}$$

• Let $C := \{\lambda \in P \mid (\lambda, \alpha^{\vee}) \le m(\alpha) \quad \forall \ \alpha \in \Phi\}$; C is W-stable

- H generated by $\{T_i\}$, $(T_i k)(T_i + k^{-1}) = 0 + braid relations$
- Reflection representation: Vector space U, basis $\{u_{\mu} : \mu \in P\}$

$$T_{i}u_{\mu} = \begin{cases} u_{s_{i}\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) > 0\\ ku_{\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) = 0\\ (k - k^{-1})u_{\mu} + u_{s_{i}\mu} & \text{if } (\mu, \alpha_{i}^{\vee}) < 0 \end{cases}$$

• Let $C := \{\lambda \in P \mid (\lambda, \alpha^{\vee}) \le m(\alpha) \quad \forall \ \alpha \in \Phi\}$; C is W-stable • $U_C := \bigoplus_{\lambda \in C} \mathbb{C}u_{\lambda}$ is an H-submodule of V • Recall $m(\alpha) := n/ \operatorname{gcd}(n, \mathbf{Q}(\alpha))$, define $\alpha^n := m(\alpha)\alpha$

Image: A matrix and a matrix

э

- Recall $m(\alpha) := n/ \operatorname{gcd} (n, \mathbf{Q}(\alpha))$, define $\alpha^n := m(\alpha)\alpha$
- Then $\Phi^n := \{\alpha^n : \alpha \in \Phi\}$ is a root system, with weight lattice $P^n := \{\mu \in P : \mathbf{B} (\mu, \alpha_i) \equiv 0 \mod n\}$

- Recall $m(\alpha) := n/ \operatorname{gcd} (n, \mathbf{Q}(\alpha))$, define $\alpha^n := m(\alpha)\alpha$
- Then $\Phi^n := \{\alpha^n : \alpha \in \Phi\}$ is a root system, with weight lattice $P^n := \{\mu \in P : \mathbf{B} (\mu, \alpha_i) \equiv 0 \mod n\}$
- \mathcal{P}^n group algebra: $\mathbb{C}_Y := \mathbb{C}_Y[\mathcal{P}^n] = \langle Y^\mu : \mu \in \mathcal{P}^n
 angle$

- Recall $m(\alpha) := n/ \operatorname{gcd} (n, \mathbf{Q}(\alpha))$, define $\alpha^n := m(\alpha)\alpha$
- Then $\Phi^n := \{\alpha^n : \alpha \in \Phi\}$ is a root system, with weight lattice $P^n := \{\mu \in P : \mathbf{B} (\mu, \alpha_i) \equiv 0 \mod n\}$
- P^n group algebra: $\mathbb{C}_Y := \mathbb{C}_Y[P^n] = \langle Y^\mu : \mu \in P^n \rangle$
- Affine Hecke algebra $\mathcal{H} = \mathcal{H}^n = \langle H, \mathbb{C}_Y \rangle$ with relations

$$T_i Y^{\mu} - Y^{s_i \mu} T_i = (k - k^{-1}) \left(\frac{Y^{s_i \mu} - Y^{\mu}}{Y^{\alpha_i^n} - 1} \right)$$

- Recall $m(\alpha) := n/ \operatorname{gcd} (n, \mathbf{Q}(\alpha))$, define $\alpha^n := m(\alpha)\alpha$
- Then $\Phi^n := \{\alpha^n : \alpha \in \Phi\}$ is a root system, with weight lattice $P^n := \{\mu \in P : \mathbf{B} (\mu, \alpha_i) \equiv 0 \mod n\}$
- P^n group algebra: $\mathbb{C}_Y := \mathbb{C}_Y[P^n] = \langle Y^\mu : \mu \in P^n \rangle$
- Affine Hecke algebra $\mathcal{H}=\mathcal{H}^n=\langle H,\mathbb{C}_Y
 angle$ with relations

$$T_i Y^{\mu} - Y^{s_i \mu} T_i = (k - k^{-1}) \left(\frac{Y^{s_i \mu} - Y^{\mu}}{Y^{\alpha_i^n} - 1} \right)$$

• Induced representation: $\pi = Ind_{H}^{\mathcal{H}}(U_{\mathcal{C}})$ realized on $N_{\mathcal{C}} = U_{\mathcal{C}} \otimes \mathbb{C}_{Y}$

• Recall $v = k^2$ and $\{g_j : j \in \mathbb{Z}/n\mathbb{Z}\}$: $g_0 = -1$, $g_jg_{-j} = v^{-1}$ for $j \not\equiv 0$

Image: A math a math

3

• Recall
$$v = k^2$$
 and $\{g_j : j \in \mathbb{Z}/n\mathbb{Z}\}$: $g_0 = -1$, $g_j g_{-j} = v^{-1}$ for $j \not\equiv 0$
• For $j \in \mathbb{Z}$ define $\gamma_j = \begin{cases} 1 & \text{if } j \in \mathbb{Z}_{\geq 0} \\ k^{-1} & \text{if } j \in n\mathbb{Z}_{< 0} \\ -kg_j & \text{otherwise} \end{cases}$

* ロ > * 個 > * 注 > * 注 >

• Recall
$$v = k^2$$
 and $\{g_j : j \in \mathbb{Z}/n\mathbb{Z}\}$: $g_0 = -1$, $g_j g_{-j} = v^{-1}$ for $j \neq 0$
• For $j \in \mathbb{Z}$ define $\gamma_j = \begin{cases} 1 & \text{if } j \in \mathbb{Z}_{\geq 0} \\ k^{-1} & \text{if } j \in n\mathbb{Z}_{< 0} \\ -kg_j & \text{otherwise} \end{cases}$
• For $\lambda \in C$ define $\gamma(\lambda) := \prod_{\alpha \in \Phi^+} \gamma_{\mathbf{Q}(\alpha)(\lambda, \alpha^{\vee})}$

3

Image: A mathematical states and a mathem

• Recall
$$v = k^2$$
 and $\{g_j : j \in \mathbb{Z}/n\mathbb{Z}\}$: $g_0 = -1$, $g_jg_{-j} = v^{-1}$ for $j \neq 0$
• For $j \in \mathbb{Z}$ define $\gamma_j = \begin{cases} 1 & \text{if } j \in \mathbb{Z}_{\geq 0} \\ k^{-1} & \text{if } j \in n\mathbb{Z}_{<0} \\ -kg_j & \text{otherwise} \end{cases}$

• For $\lambda \in C$ define $\gamma(\lambda) := \prod_{\alpha \in \Phi^+} \gamma_{\mathbf{Q}(\alpha)(\lambda, \alpha^{\vee})}$

• Define a surjective map $N_C = U_C \otimes \mathbb{C}_Y \left[P^n
ight] \stackrel{\psi}{\longrightarrow} \mathbb{C}_x \left[P
ight]$ by

$$\psi\left(u_\lambda\otimes Y^\mu
ight)=rac{1}{\gamma(\lambda)}x^{\lambda+\mu}$$

• Recall
$$v = k^2$$
 and $\{g_j : j \in \mathbb{Z}/n\mathbb{Z}\}$: $g_0 = -1$, $g_jg_{-j} = v^{-1}$ for $j \neq 0$
• For $j \in \mathbb{Z}$ define $\gamma_j = \begin{cases} 1 & \text{if } j \in \mathbb{Z}_{\geq 0} \\ k^{-1} & \text{if } j \in n\mathbb{Z}_{< 0} \\ -kg_j & \text{otherwise} \end{cases}$

• For $\lambda \in C$ define $\gamma(\lambda) := \prod_{\alpha \in \Phi^+} \gamma_{\mathbf{Q}(\alpha)(\lambda, \alpha^{\vee})}$

• Define a surjective map $N_C = U_C \otimes \mathbb{C}_Y \left[P^n
ight] \stackrel{\psi}{\longrightarrow} \mathbb{C}_x \left[P
ight]$ by

$$\psi\left(u_\lambda\otimes Y^\mu
ight)=rac{1}{\gamma(\lambda)}x^{\lambda+\mu}$$

Theorem (S.-Stokman-Venkateswaran)

The kernel of ψ is stable under (π, \mathcal{H})

• Recall
$$v = k^2$$
 and $\{g_j : j \in \mathbb{Z}/n\mathbb{Z}\}$: $g_0 = -1$, $g_jg_{-j} = v^{-1}$ for $j \neq 0$
• For $j \in \mathbb{Z}$ define $\gamma_j = \begin{cases} 1 & \text{if } j \in \mathbb{Z}_{\geq 0} \\ k^{-1} & \text{if } j \in n\mathbb{Z}_{< 0} \\ -kg_j & \text{otherwise} \end{cases}$

• For $\lambda \in C$ define $\gamma(\lambda) := \prod_{\alpha \in \Phi^+} \gamma_{\mathbf{Q}(\alpha)(\lambda, \alpha^{\vee})}$

• Define a surjective map $N_C = U_C \otimes \mathbb{C}_Y \left[P^n \right] \stackrel{\psi}{\longrightarrow} \mathbb{C}_x \left[P \right]$ by

$$\psi\left(u_\lambda\otimes Y^\mu
ight)=rac{1}{\gamma(\lambda)}x^{\lambda+\mu}$$

Theorem (S.-Stokman-Venkateswaran)

The kernel of ψ is stable under (π, \mathcal{H})

• Metaplectic rep. ω : Quotient action of \mathcal{H} on $\mathbb{C}_{x}[P]$

• Recall $\mathcal{H} = \langle H, \mathbb{C}_Y [P^n] \rangle$, localization $\mathcal{H}_{loc} := \langle H, \mathbb{C}_Y (P^n) \rangle$

3

- Recall $\mathcal{H} = \langle H, \mathbb{C}_Y [P^n] \rangle$, localization $\mathcal{H}_{loc} := \langle H, \mathbb{C}_Y (P^n) \rangle$
- Localization of affine group algebra $\mathcal{A}_{\mathit{loc}} := \langle \mathbb{C} \left[W
 ight], \mathbb{C}_{Y} \left(P^{n}
 ight)
 angle$

- Recall $\mathcal{H} = \langle H, \mathbb{C}_Y [P^n] \rangle$, localization $\mathcal{H}_{loc} := \langle H, \mathbb{C}_Y (P^n) \rangle$
- Localization of affine group algebra $\mathcal{A}_{\mathit{loc}} := \langle \mathbb{C} \left[W
 ight], \mathbb{C}_{Y} \left(P^{n}
 ight)
 angle$

Theorem (Localization)

The identity on $\mathbb{C}_{Y}(P^{n})$ extends to an algebra isomorphism $\mathcal{A}_{loc} \approx \mathcal{H}_{loc}$, with $s_{i} \mapsto c_{i}(Y)(T_{i}-k)+1$ where $c_{i}(Y) = (1-Y^{\alpha_{i}^{n}}) / (k^{-1}-kY^{\alpha_{i}^{n}})$.

- Recall $\mathcal{H} = \langle H, \mathbb{C}_Y [P^n] \rangle$, localization $\mathcal{H}_{loc} := \langle H, \mathbb{C}_Y (P^n) \rangle$
- Localization of affine group algebra $\mathcal{A}_{\mathit{loc}} := \langle \mathbb{C} \left[W
 ight], \mathbb{C}_{Y} \left(P^{n}
 ight)
 angle$

Theorem (Localization)

The identity on $\mathbb{C}_{Y}(P^{n})$ extends to an algebra isomorphism $\mathcal{A}_{loc} \approx \mathcal{H}_{loc}$, with $s_{i} \mapsto c_{i}(Y)(T_{i}-k)+1$ where $c_{i}(Y) = (1-Y^{\alpha_{i}^{n}}) / (k^{-1}-kY^{\alpha_{i}^{n}})$.

Theorem (S.-Stokman-Venkateswaran)

The metaplectic representation ϖ of \mathcal{H} on $\mathbb{C}_{\times}[P]$ extends (uniquely) to a representation ϖ_{loc} of \mathcal{H}_{loc} on $\mathbb{C}_{\times}(P)$. The action of W induced by the isomorphism $\mathcal{A}_{loc} \approx \mathcal{H}_{loc}$ coincides with the CG action.

イロト 不得下 イヨト イヨト 二日

 ϖ can be extended to the double affine Hecke algebra.

 This leads to Cherednik operators and "metaplectic" polynomials depending on additional parameters g₁,..., g_{n-1}.

- This leads to Cherednik operators and "metaplectic" polynomials depending on additional parameters g_1, \ldots, g_{n-1} .
- For *n* = 1, these are the "usual" nonsymmetric Macdonald polynomials

- This leads to Cherednik operators and "metaplectic" polynomials depending on additional parameters g_1, \ldots, g_{n-1} .
- For *n* = 1, these are the "usual" nonsymmetric Macdonald polynomials
- The *p*-parts of WMDS are Whittaker functions for *p*-adic groups

- This leads to Cherednik operators and "metaplectic" polynomials depending on additional parameters g_1, \ldots, g_{n-1} .
- For *n* = 1, these are the "usual" nonsymmetric Macdonald polynomials
- The *p*-parts of WMDS are Whittaker functions for *p*-adic groups
- For *n* = 1, by the Casselman-Shalika formula they are specializations of Macdonald polynomials

- This leads to Cherednik operators and "metaplectic" polynomials depending on additional parameters g_1, \ldots, g_{n-1} .
- For *n* = 1, these are the "usual" nonsymmetric Macdonald polynomials
- The *p*-parts of WMDS are Whittaker functions for *p*-adic groups
- For *n* = 1, by the Casselman-Shalika formula they are specializations of Macdonald polynomials
- For general *n* the metaplectic polynomials bear an analogous relationship with *p*-parts of WMDS.

 ϖ can be extended to the double affine Hecke algebra.

- This leads to Cherednik operators and "metaplectic" polynomials depending on additional parameters g_1, \ldots, g_{n-1} .
- For *n* = 1, these are the "usual" nonsymmetric Macdonald polynomials
- The *p*-parts of WMDS are Whittaker functions for *p*-adic groups
- For *n* = 1, by the Casselman-Shalika formula they are specializations of Macdonald polynomials
- For general *n* the metaplectic polynomials bear an analogous relationship with *p*-parts of WMDS.
- One can similarly obtain symmetric metaplectic polynomials, which generalize symmetric Macdonald polynomials

(日) (同) (三) (三)

Formulas for $E_{\lambda}^{(n)}(x)$, $1 \le n \le 5$ and $\lambda \in \mathbb{Z}^3$ of weight at most 2. $E_{(0.0,0)}^{(1)}(x) = 1$ $E_{(0.0.0)}^{(2)}(x) = 1$ $E_{(0,0,0)}^{(3)}(x) = 1$ $E_{(0,0,0)}^{(4)}(x) = 1$ $E_{(0\ 0\ 0)}^{(5)}(x) = 1$ $E_{(1,0,0)}^{(1)}(x) = x_1$ $E_{(1,0,0)}^{(2)}(x) = x_1$ $E_{(1.0,0)}^{(3)}(x) = x_1$ $E_{(1.0,0)}^{(4)}(x) = x_1$ $E_{(1 \ 0 \ 0)}^{(5)}(x) = x_1$

$$\begin{split} E_{(0,1,0)}^{(1)}(x) &= \frac{(k-1)(k+1)}{k^4q-1}x_1 + x_2\\ E_{(0,1,0)}^{(2)}(x) &= \frac{(k-1)(k+1)}{k(kq^2+\epsilon)}x_1 + x_2\\ E_{(0,1,0)}^{(3)}(x) &= \frac{(k-1)(k+1)g_1}{k^4g_1^3q^3+1}x_1 + x_2\\ E_{(0,1,0)}^{(4)}(x) &= \frac{(k-1)(k+1)g_1}{k^4g_1^3q^4+1}x_1 + x_2\\ E_{(0,1,0)}^{(5)}(x) &= \frac{(k-1)(k+1)g_1}{k^4g_1^3q^5+1}x_1 + x_2 \end{split}$$

$$\begin{split} E_{(0,0,1)}^{(1)}(x) &= \frac{(k-1)(k+1)}{qk^2-1} x_1 + \frac{(k-1)(k+1)}{qk^2-1} x_2 + x_3 \\ E_{(0,0,1)}^{(2)}(x) &= -\frac{(k-1)(k+1)}{k(k+\epsilon q^2)} x_1 + \frac{(k-1)(k+1)}{q^2+\epsilon k} x_2 + x_3 \\ E_{(0,0,1)}^{(3)}(x) &= -\frac{(k-1)(k+1)g_1^2}{k^2 g_1^3 q^3+1} x_1 + \frac{(k-1)(k+1)g_1}{k^2 g_1^3 q^3+1} x_2 + x_3 \\ E_{(0,0,1)}^{(4)}(x) &= -\frac{(k-1)(k+1)g_1^2}{k^2 g_1^3 q^4+1} x_1 + \frac{(k-1)(k+1)g_1}{k^2 g_1^3 q^4+1} x_2 + x_3 \\ E_{(0,0,1)}^{(5)}(x) &= -\frac{(k-1)(k+1)g_1^2}{k^2 g_1^3 q^5+1} x_1 + \frac{(k-1)(k+1)g_1}{k^2 g_1^3 q^5+1} x_2 + x_3 \end{split}$$

3

$$\begin{split} E_{(0,1,1)}^{(1)}(x) &= \frac{(k-1)(k+1)}{qk^2-1} x_1 x_2 + \frac{(k-1)(k+1)}{qk^2-1} x_3 x_1 + x_3 x_2 \\ E_{(0,1,1)}^{(2)}(x) &= -\frac{(k-1)(k+1)}{k(k+\epsilon q^2)} x_1 x_2 + \frac{(k-1)(k+1)}{q^2+\epsilon k} x_3 x_1 + x_3 x_2 \\ E_{(0,1,1)}^{(3)}(x) &= -\frac{(k-1)(k+1)g_1^2}{k^2 g_1^3 q^3+1} x_1 x_2 + \frac{(k-1)(k+1)g_1}{k^2 g_1^3 q^3+1} x_3 x_1 + x_3 x_2 \\ E_{(0,1,1)}^{(4)}(x) &= -\frac{(k-1)(k+1)g_1^2}{k^2 g_1^3 q^4+1} x_1 x_2 + \frac{(k-1)(k+1)g_1}{k^2 g_1^3 q^4+1} x_3 x_1 + x_3 x_2 \\ E_{(0,1,1)}^{(5)}(x) &= -\frac{(k-1)(k+1)g_1^2}{k^2 g_1^3 q^5+1} x_1 x_2 + \frac{(k-1)(k+1)g_1}{k^2 g_1^3 q^5+1} x_3 x_1 + x_3 x_2 \end{split}$$

$$\begin{split} E_{(1,0,1)}^{(1)}(x) &= \frac{(k-1)(k+1)}{k^4q-1} x_1 x_2 + x_3 x_1 \\ E_{(1,0,1)}^{(2)}(x) &= \frac{(k-1)(k+1)}{k(kq^2+\epsilon)} x_1 x_2 + x_3 x_1 \\ E_{(1,0,1)}^{(3)}(x) &= \frac{(k-1)(k+1)g_1}{k^4g_1^3q^{3}+1} x_1 x_2 + x_3 x_1 \\ E_{(1,0,1)}^{(4)}(x) &= \frac{(k-1)(k+1)g_1}{k^4g_1^3q^{4}+1} x_1 x_2 + x_3 x_1 \\ E_{(1,0,1)}^{(5)}(x) &= \frac{(k-1)(k+1)g_1}{k^4g_1^3q^{5}+1} x_1 x_2 + x_3 x_1 \end{split}$$

3

$$\begin{split} E^{(1)}_{(1,1,0)}(x) &= x_1 x_2 \\ E^{(2)}_{(1,1,0)}(x) &= x_1 x_2 \\ E^{(3)}_{(1,1,0)}(x) &= x_1 x_2 \\ E^{(4)}_{(1,1,0)}(x) &= x_1 x_2 \\ E^{(5)}_{(1,1,0)}(x) &= x_1 x_2 \end{split}$$

$$\begin{split} E_{(2,0,0)}^{(1)}(x) &= x_1^2 + \frac{q(k-1)(k+1)}{qk^2 - 1} x_1 x_2 + \frac{q(k-1)(k+1)}{qk^2 - 1} x_3 x_1 \\ E_{(2,0,0)}^{(2)}(x) &= x_1^2 \\ E_{(2,0,0)}^{(3)}(x) &= x_1^2 \\ E_{(2,0,0)}^{(4)}(x) &= x_1^2 \\ E_{(2,0,0)}^{(5)}(x) &= x_1^2 \\ \end{split}$$

3 🕨 🖌 3

æ

Image: A mathematical states and a mathem

$$E_{(0,2,0)}^{(1)}(x) = \frac{(k-1)(k+1)}{(qk^2-1)(qk^2+1)}x_1^2 + x_2^2 + \frac{(k-1)(k+1)(k^4q^2+qk^2-q-1)}{(qk^2+1)(qk^2-1)^2}x_1x_2 + \frac{(k-1)^2(k+1)^2q}{(qk^2+1)(qk^2-1)^2}x_3x_1 + \frac{q(k-1)(k+1)}{qk^2-1}x_3x_2$$

$$\begin{split} E_{(0,2,0)}^{(2)}(x) &= \frac{(k-1)(k+1)}{(q^2k^2-1)(q^2k^2+1)}x_1^2 + x_2^2\\ E_{(0,2,0)}^{(3)}(x) &= \frac{(k-1)(k+1)g_1^2}{k^2g_1^3+q^6}x_1^2 + x_2^2\\ E_{(0,2,0)}^{(4)}(x) &= \frac{(k-1)(k+1)}{k(q^8k+\epsilon)}x_1^2 + x_2^2\\ E_{(0,2,0)}^{(5)}(x) &= \frac{(k-1)(k+1)g_2}{k^4g_2^3q^{10}+1}x_1^2 + x_2^2 \end{split}$$

(日) (周) (三) (三)

æ

$$E_{(0,0,2)}^{(1)}(x) = \frac{(k-1)(k+1)}{(kq-1)(kq+1)}x_1^2 + \frac{(k-1)(k+1)}{(kq-1)(kq+1)}x_2^2 + x_3^2 + \frac{(q+1)(k-1)^2(k+1)^2}{(kq-1)(kq+1)(kq+1)}x_1x_2 + \frac{(q+1)(k-1)(k+1)}{(kq-1)(kq+1)}x_3x_1 + \frac{(q+1)(k-1)(k+1)}{(kq-1)(kq+1)}x_3x_2$$

$$\begin{split} E_{(0,0,2)}^{(2)}(x) &= \frac{(k-1)(k+1)}{(kq^2-1)(kq^2+1)} x_1^2 + \frac{(k-1)(k+1)}{(kq^2-1)(kq^2+1)} x_2^2 + x_3^2 \\ E_{(0,0,2)}^{(3)}(x) &= -\frac{(k-1)(k+1)g_1}{k^4g_1^3 + q^6} x_1^2 + \frac{(k-1)(k+1)k^2g_1^2}{k^4g_1^3 + q^6} x_2^2 + x_3^2 \\ E_{(0,0,2)}^{(4)}(x) &= -\frac{(k-1)(k+1)}{k(\epsilon q^8 + k)} x_1^2 + \frac{(k-1)(k+1)}{q^8 + \epsilon k} x_2^2 + x_3^2 \\ E_{(0,0,2)}^{(5)}(x) &= -\frac{(k-1)(k+1)g_2}{k^2g_2^3q^{10}+1} x_1^2 + \frac{(k-1)(k+1)g_2}{k^2g_2^3q^{10}+1} x_2^2 + x_3^2 \end{split}$$

3