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Wey! group multiple Dirichlet series (WMDS)

Dirichlet series L (s) = }_,>1 a,n"°; important in number theory
Satisfy functional equation; Multiplicativity = Euler product
Example: £ (5) = Ly n* =1, 1= p*) ", £(5) =L (1—5)
WMDS are Dirichlet series in several variables.

Satisfy system of functional equations ~ Weyl group W
Historical: Siegel, Kazhdan-Patterson, Goldfeld-Hoffstein.

Recent: Brubaker, Bump, Chinta, Friedberg, Gunnells.

Related to Eisenstein series for “metaplectic” covers of adelic groups.
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Our results

WMDS are “twisted” multiplicative; determined by their “p-parts”.
Rational functions in p~° and nth order Gauss sums gi,...gn—1.
Chinta-Gunnells gave a formula involving a “mysterious” W-action.
Not clear from the definition that it is a group action!

C-G did a computer check and asked for a conceptual proof.

We resolve this by a two-part process called “Baxterization”.

We construct a representation of the (double) affine Hecke algebra
and show the C-G action arises by a suitable localization.

@ This construction also yields a new family of “metaplectic”
polynomials, which generalize Macdonald polynomials.
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Roots, weights and Weyl group

® = {a} root system, {a;} simple roots, {s;} generators of W
Coxeter presentation: s? = 1 + braid relations s;s;s; - - - = sjs;5; - - -
with 2,3, 4,6 terms, if # of (i, j)-edges in Coxeter graph is 0,1,2, 3.
Affine Weyl group = W x P, where P = {A} is the weight lattice.
W also acts on C«[P] = (x*) group algebra, C,(P) fraction field.
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Chinta-Gunnells action

Fix a bilinear form: B on P, W-invariant, Q (A) = iB (A, 1) € Z

Fix a natural number n € IN (metaplectic degree) and set
P":={A € P:B(A,a;) =0 mod n}
m(«):=n/ged (n,Q(a)); 0<rp(j) < mremainder of j mod m
Fix parameters: v = k? and {gj : j € Z/nZ} satisfying
g=-1 gg j=viforj#0
For f € C4(P") and A € P define
-1
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Chinta-Gunnells action

o Fix a bilinear form: B on P, W-invariant, Q (A) = iB (A, 1) € Z

o Fix a natural number n € IN (metaplectic degree) and set

P":={A € P:B(A,a;) =0 mod n}

m(«):=n/ged (n,Q(a)); 0<rp(j) < mremainder of j mod m

Fix parameters: v = k? and {gj : j € Z/nZ} satisfying

g =-1, gg-j= vl for j Z0

For f € C«(P") and A € P define
-1
7 (B4 = 5 () x (1= wem@e)

_r {7 B()\,oci):|‘xl
x DL T — v] = vgga,)—p g x M E [1 - X'"(”"')“’}

e Theorem (C-G). This defines an action of W on C.(P).
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Finite Hecke algebra

o H generated by {T;}, (T; — k) (Tj + k~') =0 + braid relations
@ Reflection representation: Vector space U, basis {uy Tue P}

Us if (p,a))>0
kuy if (p,a))=0

Tiuy =
(k — k‘l)uy +ugy  if (paf) <0

eletC:={AeP| (AMaY)<m(a) Vaed}; Cis W-stable

o Uc :=P)ccCuy is an H-submodule of V
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Affine Hecke algebra

Recall m («) := n/ ged (n, Q (a)), define a” := m(a)a
Then ®" := {a" : &« € P} is a root system, with weight lattice
P":={ue P:B(u a)=0mod n}

e P" group algebra: Cy :=Cy[P"]| = (Y :u € P")
o Affine Hecke algebra H = H" = (H,Cy) with relations
ysit — yn
TiYF YT, = (k— k1) | ————
Yo —1
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Affine Hecke algebra

Recall m («) := n/ ged (n, Q (a)), define a” := m(a)a

Then ®" := {a" : &« € P} is a root system, with weight lattice
P":={ue P:B(u a)=0mod n}

P" group algebra: Cy :=Cy[P"]| = (Y*:u € P")

o Affine Hecke algebra H = H" = (H,Cy) with relations
ySsih _ yH
TiYH - YT, = (k— k) [ 75—
Yo —1

Induced representation: 71 = Ind,7_," (Uc) realized on N¢ = Uc ® Cy
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Metaplectic representation

o Recall v=k>and {gj:j € Z/nZ}: go=—1,ggj=v Lforj#0
1 if j € Z>o
o For j € Z define v; = k=1 ifjenZ
—kg; otherwise

o For A € C define ¥(A) 1= [Trea+ Yq(u)(Aav)
o Define a surjective map N¢ = Uc ® Cy [P"] Y. ¢, [P] by

iz :LXAW
P e Y =273

Theorem (S.-Stokman-Venkateswaran)
The kernel of ¢ is stable under (7t, H)

o Metaplectic rep. @: Quotient action of H on Cy [P]
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@ Recall H = (H,Cy [P"]), localization Hoc := (H,Cy (P"))
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@ Recall H = (H,Cy [P"]), localization Hoc := (H,Cy (P"))
@ Localization of affine group algebra A, := (C[W],Cy (P"))

Theorem (Localization)

The identity on Cy (P") extends to an algebra isomorphism Ajpc &= Hioc,
with s; — ¢; (Y) (T; — k) + 1 where ¢; (Y) = (1 - Y"‘7) / (k_1 - kY"‘in).
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@ Recall H = (H,Cy [P"]), localization Hoc := (H,Cy (P"))
o Localization of affine group algebra A := (C[W],Cy (P"))

Theorem (Localization)

The identity on Cy (P") extends to an algebra isomorphism Ajpc &= Hioc,
with s; — ¢; (Y) (T; — k) + 1 where ¢; (Y) = (1 - Y"‘7) / (k‘l - kY"‘in).

Theorem (S.-Stokman-Venkateswaran)

The metaplectic representation @ of H on Cy [P] extends (uniquely) to a
representation @joc of Hjoc on Cx (P). The action of W induced by the
isomorphism Aj,c = Hoc coincides with the CG action.
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@ The p-parts of WMDS are Whittaker functions for p-adic groups
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Double affine Hecke algebras

Theorem (S.-Stokman-Venkateswaran)

@ can be extended to the double affine Hecke algebra.

@ This leads to Cherednik operators and “metaplectic” polynomials
depending on additional parameters g1,...,8n—1-

@ For n =1, these are the “usual’ nonsymmetric Macdonald
polynomials

@ The p-parts of WMDS are Whittaker functions for p-adic groups

@ For n =1, by the Casselman-Shalika formula they are specializations
of Macdonald polynomials

@ For general n the metaplectic polynomials bear an analogous
relationship with p-parts of WMDS.

@ One can similarly obtain symmetric metaplectic polynomials, which
generalize symmetric Macdonald polynomials
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Some Metaplectic polynomials for GL(3)

Formulas for E/gn) (x), 1< n<5and A € Z3 of weight at most 2.

A

(€2 I N SO S S e

N

m_ T _m

m
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Some Metaplectic polynomials for GL(3)

)(k+1)

E((ol)l 0) (x) = le + X2

E((g)1 0(x) = I«;iij-:—)l)x + X

E<(3)1o (x) = Uit

Elon0) () = “gleiifa +x

Elono) () = Cit™n + 0

E((ol,)o,l)(x) = % 1+ %Xz + x3
Eoon) () = = Utegra + E2E 0 +

£ o) — bty Bllee
E((g,)(),l)(x) - (kzzlg)g((k,jjig% + (k;%s(ﬁ,(ffl)gl X2+ x3
Eloon (x) = — et + UGl +
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Some Metaplectic polynomials for GL(3)

(k—1)(k+1) (k—1)(k+1)

E((o,)1,1)(x) = ko et et xex e
E(((i)m)(x) = %X Xo + %xyl + Xx3x0
E((g.)l,l)(x) - %Xﬂ? + %&M + x3x
E((g,)Ll)(X) (kk21g)13(:::ig1 X1X2 + %&M + x3%0
E((OS-)LI)(X) - _%’q)@ + %Xﬂl + X3
E((ll,)o,l)(x) = %)QXZ + x3x1

E((lz,)o,l)(x) = %sz + x3x1

E((13,)0,1)(X) = %Xﬂz +x3x1

E((f,)o,l)(x) = %XMQ + x3x1

E((15,)o,1)(x) = %n@ + x3x1
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Some Metaplectic polynomials for GL(3)

E((ll,)l,o)(x) = X1 X0
E((lz,)l,o)(x) = x1%
E((13,)1,0)(X) = x1%
E((f,)l,o)(x) = X1
E((15,)1,0)(X) = X1 X0
Elypo)(X) = +
Eiz00)(x) =
E((23,)o,o)(x) =}
Elz0)(x) =
Elzo0)(x) =

q(k=1)(k+1)

gk2—1
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