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1. A brief reminder on partitions

A partition is an integer sequence λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . . )
with λk = 0 for large enough k . The size of λ is |λ| :=

∑
i λi .

.

Figure: Partition (5, 2, 2, 0, 0, . . . )

In representation theory, partitions λ of size N parametrize the
irreducible representations Vλ of the symmetric group GN .



1. Plancherel measures

The Plancherel measure of level N is

PN(λ) :=
(dimλ)2

N!
, |λ| = N ,

where dimλ = dim(Vλ).

Identify partitions with subsets (point configurations) of
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1. Plancherel measures

N = 9, λ = (5, 2, 2, 0, 0, · · · ),

⇒ X (λ) =

{
. . . , 0− 9

2
, 0− 7

2
, 2− 5

2
, 2− 3

2
, 5− 1

2

}
.



1. Limit of Plancherel measures

To study the rightmost particles, consider the embeddings:

iN : {λ : |λ| = N} ↪→ Conf(R)

λ 7→ 1

N1/6

(
X (λ)− 2

√
N
)

Let P̃N be the pushforward of PN under the map iN .



1. Limit of Plancherel measures

Theorem(Baik-Deift-Johansson’99, Borodin-Okounkov-Olshanski’00)

The weak limit P := limN→∞ P̃N exists.

For k ≥ 1, the kkk th point correlation function of P is
ρk(x1, x2, . . . , xk) = det[K (xi , xj)]ki ,j=1,

K (x , y) =
A(x)A′(y)− A′(x)A(y)

x − y
,

where A(x) := 1
π

∫∞
0

cos(u3

3
+ xu)du is the Airy function.



1. Ulam’s problem

Ulam’s problem:
Let πN be a uniform random permutation of (1, 2, . . . ,N).

Let L(πN) = length of longest increasing subsequence of πN .

How does L(πN) behave as N →∞?

Key observation:

L(πN)
d
= λ1 if λ is Plancherel(N)-distributed.

Conclusion:

F (s) = lim
N→∞

Prob

(
L(πN)− 2

√
N

N1/6
≤ s

)

exists for all s ∈ R, is expressed in terms of Airy functions, etc.
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2.1. Orthogonal Z-measures

Let YN := {λ : λN+1 = 0}.
(These partitions parametrize certain irreps. of SO(2N + 1).)

Let z, z′ ∈ C satisfy certain constraints.

The orthogonal Z-measure of level N is

PSO
N|z,z′(λ) :=

1

Z SO
N|z,z′

DimN(λ)2
N∏

k=1

wSO
N|z,z′(λ̃k), λ ∈ YN ,

where λ̃k := λk + N − k + 1
2
, and

wSO
N|z,z′(x) :=

1

Γ(z− x + N)Γ(z′ − x + N)Γ(z + x + N)Γ(z′ + x + N)
.
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2.1. Limit of orthogonal Z-measures

Identify YN with point configurations on R∗+ := (0,+∞) \ {1}:



2.1. Limit of orthogonal Z-measures

Identify YN with point configurations on R∗+ := (0,+∞) \ {1}:

iN : YN ↪→ Conf(R∗+)

λ 7→
{

1 +
ai
N

}d

i=1
t
{

1− bj
N

}d

j=1

and let P̃SO
N|z,z′ be the corresponding measure on Conf(X).



2.1. Limit of orthogonal Z-measures

Theorem (Cuenca ’18).

The weak limit Pz,z′ := limN→∞ P̃SO
N|z,z′ exists.

For k ≥ 1, the k th point correlation function of Pz,z′ is

ρk(x1, x2, . . . , xk) = det[Kz,z′(xi , xj)]ki ,j=1,

Kz,z′(x , y) =
R(x)S(y)− S(x)R(y)

x − y
,

where R(x) = Rz,z′(x), S(x) = Sz,z′(x) are given explicitly....



2.1. Limit of orthogonal Z-measures

....for example, if x > 1, then

R(x) =

√
sin πz sin πz′√

2π
· x

1
4
−z′(x − 1)

z′−z
2 · 2F1

[
z′ − 1

2
z′

z + z′ − 1
2

;
1

x

]
,

S(x) =

√
2 sinπz sin πz′

π
·

Γ(z + 1
2
)Γ(z′ + 1

2
)Γ(z + 1)Γ(z′ + 1)

Γ(z + z′ + 1
2
)Γ(z + z′ + 3

2
)

· x−
3
4
−z′(x − 1)

z′−z
2 · 2F1

[
z′ + 1

2
z′ + 1

z + z′ + 3
2

;
1

x

]
,

where 2F1

[
a b
c

; z
]

=
∑∞

n=0
zn

n!

∏n
i=1

(a+i−1)(b+i−1)
(c+i−1)

is Gauss’s
hypergeometric function.



2.1. Representation-theoretic interpretation

Spherical characters Ψ : K → C:

- central functions: Ψ(xyx−1) = Ψ(y)

- positive-definite: [Ψ(g−1
j gi)]i ,j=1,...,n is Hermitian and ≥ 0

- normalized: Ψ(e) = 1

Example: When K = SO(2N + 1),

Ψ =
∑
λ

cλ
χλ

DimN(λ)
,
∑
λ

cλ = 1, cλ ≥ 0.
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2.1. Representation-theoretic interpretation

Spherical representations T of K ⊂ G :

Hilbert space H , continuous T : G → U(H), unit vector v ∈ H

such that T (K )v = v and T (G )v = H .

Example: For
G = SO(2N + 1)× SO(2N + 1),

K = SO(2N + 1) ⊂ G (via x 7→ (x , x)),

an spherical representation is

HN = L2(SO(2N + 1), µN),

(T (g1, g2)f )(x) = f (g−1
2 xg1),

vN = normalized constant.
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2.1. Representation-theoretic interpretation

For
G = SO(∞)× SO(∞),

K = SO(∞) ⊂ G (via x 7→ (x , x)),

the notions of characters and representations are equivalent!
For example, given representation T , its character is

Ψ(X ) = (T (X , 1)v , v)H , X ∈ SO(∞).

Examples of representations? Olshanski found a distinguished
family of spherical representations {Tz}z:

· · · ↪→ HN−1 ↪→ HN ↪→ . . .H = lim
→

HN

· · · ↪→ vN−1 ↪→ vN ↪→ . . . v∞ = lim
→

vN
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K = SO(∞) ⊂ G (via x 7→ (x , x)),

the notions of characters and representations are equivalent!
For example, given representation T , its character is

Ψ(X ) = (T (X , 1)v , v)H , X ∈ SO(∞).

Examples of characters? Olshanski found a distinguished
family of spherical characters {Ψz}z:

Ψz : SO(∞)→ C is the unique map such that

Ψz|SO(2N+1) :=
∑
λ

χλ
DimN(λ)

PSO
N|z,z(λλλ).



2.1. Representation-theoretic interpretation

Semisimplicity. If Υ is the space of irreducible characters ψω,
any character Ψ equals

Ψ(g) =

∫
Υ

ψω(g)P(dω), g ∈ SO(∞),

for a unique prob. measure P on Υ (the spectral measure).

Can one describe the measure Pz corresponding to Ψz? This is
the problem of noncommutative harmonic analysis.
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2.1. Representation-theoretic interpretation

Characterization of irreps. The space Υ was characterized
for SO(∞) (Boyer ’92, Okounkov-Olshanski ’06):

Υ ∼=
{

(α, β, δ) ∈ R∞+ × R∞+ × R+ : α1 ≥ α2 ≥ · · · ≥ 0,

1 ≥ β1 ≥ β2 ≥ · · · ≥ 0, δ ≥
∞∑
i=1

(αi + βi)}

A general framework shows that, after the embedding
i : Υ ↪→ Conf(R∗+)

(α, β, δ) 7→ ({1 + αi}i≥1 t {1− βj}j≥1) \ {0, 1},

the image of Pz is equal to limN→∞ PSO
N|z,z.

Conclusion: To describe the spectral measure Pz, we had to
compute the weak limit: limN→∞ PSO

N|z,z !!!
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2.2. BC type Z-measures

The problem of harmonic analysis can also be formulated for
Sp(∞) = lim→ Sp(N). The answer is very similar.

Is there a unifying theory for SO(∞), Sp(∞), and other
inductive limit groups?

Observation #1: The character χ
SO(2N+1)
λ (M) is an explicit

function of the eigenvalues {1,±x1, . . . ,±xN} of M :

χ
SO(2N+1)
λ (M) = Ja,b

λ (x1, . . . , xN)
∣∣∣
(a,b)= 1

2
,− 1

2

where Ja,b
λ (x1, . . . , xN) are the multivariate Jacobi polynomials.
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2.2. BC type Z-measures

Observation #2: The measures {PN}N≥1 come from Fourier
expansions of the restrictions Ψz |SO(2N+1). This implies a
coherence relation between PN and PN−1:

Define CN
N−1CN
N−1CN
N−1(λ, µ) via the branching

χ
SO(2N+1)
λ

DimN(λ)

∣∣∣∣∣
SO(2N−1)

=
∑

µ∈YN−1

CN
N−1CN
N−1CN
N−1(λ, µ)

χ
SO(2N−1)
µ

DimN−1(µ)
, λ ∈ YN .

The coherence relations are:∑
λ∈YN

PN(λ)CN
N−1CN
N−1CN
N−1(λ, µ) = PN−1(µ), µ ∈ YN−1.
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2.2. BC type Z-measures

Miraculously, the orthogonal Z-measures admit 2-parameter
(a, b) generalizations (Olshanski-Osinenko ’12):

Ja,b
λ (x1, . . . , xN−1, 1)

Ja,b
λ (1, . . . , 1, 1)

=
∑
µ

CN
N−1CN
N−1CN
N−1(λ, µ)

Ja,b
µ (x1, . . . , xN−1)

Ja,b
µ (1, . . . , 1)

.

The coherent measures are

PN|z,z ′,a,b(λ) ∝
∏

1≤i<j≤N

(λ̃i − λ̃j)2
N∏

k=1

wz,z ′,a,b(λ̃k),

wz,z ′,a,b(x) is the weight for Racah polynomials.

Theorem (C ’18) The limit Pz,z ′,a,b = limN→∞ PN|z,z ′,a,b
has determinantal correlation functions.
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3. q-analogues of rep-theoretic measures

Wishful thinking: Many of our objects have q-analogues:

SO(N), Sp(N) 7→ SOq(N), Spq(N)

Jacobi orthogonal polys 7→ little q-Jacobi orthogonal polys

hypergeometric functions 2F1 7→ q-hypergeometric functions 2φ1

Question: Are there q-analogues of representation theoretic
measures?



3. q-analogues of rep-theoretic measures

Answer: Yes!! Point configurations live in the 2-sided lattice
L = ζ−qZ t ζ+qZ, where ζ− < 0 < ζ+, 0 < q < 1:

i.e. ΥN = set of size N subsets of L.

We seek:

(1) CN
N−1CN
N−1CN
N−1(X ,Y ), where X ∈ Υ

N
, Y ∈ ΥN−1.

(2) Sequences of probability measures {PN(X )}N≥1 satisfying:∑
X∈ΥN

PN(X )CN
N−1CN
N−1CN
N−1(X ,Y ) = PN−1(Y ).
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3. q-analogues of rep-theoretic measures

Example 1: Gorin-Olshanski (’16) studied the q-ZW measures
(q-analogues of measures related to U(∞)):

(1)

CN
N−1CN
N−1CN
N−1(X ,Y ) = 1{Y≺X}

∏
y∈Y

|y | · (1− q) · · · (1− qN−1) · V (Y )

V (X )
.

(Come from branching of q-shifts of Schur polynomials)

(2)

PN(X ) =
1

ZN
V (X )2

∏
x∈X

wq;α,β,γN ,δN (x),

wq;α,β,γ,δ(x) is the weight for big q-Jacobi polynomials.



3. q-analogues of rep-theoretic measures

Example 2: Cuenca-Olshanski (’18, ’19+) studied q-Z measures
(q-analogues of measures related to SO(∞), Sp(∞)):

(1)

CN
N−1CN
N−1CN
N−1(X ,Y ) = 1{Y≺X} · (certain function of Y ) · V (Y )

V (X )
.

(Come from branching of little q-Jacobi polynomials)

(2)

PN(X ) =
1

ZN
V (X )2

∏
x∈X

wq;sN0 ,s
N
1 ,s

N
2 ,s

N
3

(x),

wq;s0,s1,s2,s3(x) is the weight for q-Racah polynomials.



3. q-analogues of rep-theoretic measures

Several basic properties of the q-ZW and q-Z measures have
been proved in Gorin-Olshanski(’16), C-Olshanski (’19+) and
C-Gorin-Olshanski (’19), e.g:

Theorem. The q-ZW measures Pq;α,β,γ,δ and q-Z measures
Pq;s0,s1,s2,s3 (obtained as limits limN→∞ PN) have determinantal
correlation functions, in terms of the basic hypergeometric
functions 2φ1, 3φ2.(

e.g. 2φ1

[
a b

c
; q; z

]
=
∞∑
n=0

zn
n∏

i=1

(1− aqi−1)(1− bqi−1)

(1− cqi−1)(1− qi)
is the

q-analogue of Gauss’s hypergeometric function 2F1

[
a b

c
; z

])



3. q-analogues of rep-theoretic measures

But even the most basic questions can’t be answered yet!

Are there limits q → 1 that turn Pq;α,β,γ,δ, Pq;s0,s1,s2,s3

into the ZW measures and BC type Z measures?

Meaning of the two-sided lattice L = L− t L+?
Conjecturally, L−/L+ relate to rows/columns of partitions

Interpretation from harmonic analysis/quantum groups?
Plancherel measures←− Ulam’s problem

orthogonal Z measures←− harmonic analysis for SO(∞)

q-Z measures←− ???

Thank you for your attention!
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Are there limits q → 1 that turn Pq;α,β,γ,δ, Pq;s0,s1,s2,s3

into the ZW measures and BC type Z measures?

Meaning of the two-sided lattice L = L− t L+?
Conjecturally, L−/L+ relate to rows/columns of partitions

Interpretation from harmonic analysis/quantum groups?
Plancherel measures←− Ulam’s problem

orthogonal Z measures←− harmonic analysis for SO(∞)

q-Z measures←− ???

Thank you for your attention!


