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1. A brief reminder on partitions

A partition is an integer sequence A = (A\; > Ay > A3 > ...)
with A\, = 0 for large enough k. The size of Ais [A| .=, A

Figure: Partition (5, 2, 2,0, 0, ...)

In representation theory, partitions \ of size N parametrize the
irreducible representations V) of the symmetric group .



1. Plancherel measures

The Plancherel measure of level N is

(dim \)?

PN()\) = NI s

Al =N,
where dim A = dim( V).



1. Plancherel measures

The Plancherel measure of level N is

(dim \)?

PN()\) = NI s

Al =N,
where dim A = dim( V).

Identify partitions with subsets (point configurations) of
Z,::{... _§ _113...}:

27 20202

5 3 1
A'-)X()\):{, )\3—5, )\2—57 )\1—5}



1. Plancherel measures
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1. Limit of Plancherel measures

To study the rightmost particles, consider the embeddings:

iv: {\: |\ = N} — Conf(R)

s ﬁ (x() —2vN)

Let 5,\, be the pushforward of Py under the map iy.



1. Limit of Plancherel measures

Theorem(Baik-Deift-Johansson'99, Borodin-Okounkov-Olshanski'00)
The weak limit P := limy_o :BN exists.

For k > 1, the k*" point correlation function of P is
k(X1 X2, - .., xx) = det[K(x;, )(j)]f'(’j:].,

K(X, y) _ A(X)A/(y)z : }’?/(X)A(y)7

where A(x) := L [ cos(”?3 + xu)du is the Airy function.




1. Ulam’s problem

Ulam’s problem:
Let my be a uniform random permutation of (1,2,..., N).

Let L(mn) = length of longest increasing subsequence of 7.

How does L(my) behave as N — oo?



Ulam’s problem:
Let my be a uniform random permutation of (1,2,..., N).

Let L(mn) = length of longest increasing subsequence of my.

How does L(7y) behave as N — o0?

Key observation:
L(mn) & Ay if A is Plancherel(N)-distributed.

Conclusion:

N—oo

. L(mn) — 2N
F(s) = lim Prob <T < s)

exists for all s € R, is expressed in terms of Airy functions, etc.



Plan of the talk

1. Basic example: Plancherel measures & Ulam’s
problem

2. The BC type Z-measures
2.1. Orthogonal Z-measures & representation theory
2.2. The BC type Z-measures

3. g-analogues of rep. theoretic measures



2.1. Orthogonal Z-measures

Let Yy :={A: Any1 =0}
(These partitions parametrize certain irreps. of SO(2N + 1).)

Let z,Z' € C satisfy certain constraints.



2.1. Orthogonal Z-measures

Let YN = {)\ . )\N—|—1 = 0}
(These partitions parametrize certain irreps. of SO(2N + 1).)

Let z,Z' € C satisfy certain constraints.

The orthogonal Z-measure of level N is

1
PRb2(A) = Z50- ——Dimpy(\ H ‘ZZ, M), A E Yy,

N|z,z’

Where)\k =X+ N— k+— and

Wi (%) =
1
Mz—x+N)[(zZ —x+N)[(z+x+ N)[(Z +x+ N)




2.1. Limit of orthogonal Z-measures

Identify Yy with point configurations on R* := (0, +00) \ {1}:

N
~
N
~




2.1. Limit of orthogonal Z-measures

Identify Yy with point configurations on R* := (0, +00) \ {1}:

~
N a1

iy 1 Yy — Conf(R?)
a; d bj d
{1 gh Y {1— N}Fl
pSO

and let Py, ,, be the corresponding measure on Conf(X).



2.1. Limit of orthogonal Z-measures

Theorem (Cuenca '18).
The weak limit P, := limy_o P,f,ﬁ , €Xists.

For k > 1, the k™ point correlation function of P, is

pk(X17X27 .. 7Xk) - det[KZ,Z/(Xivxj)]f(,j:Ia

Koo (x,y) = R(X)S (y)z - f (IR(y)

where R(x) = R,/(x), S(x) = S, (x) are given explicitly....




2.1. Limit of orthogonal Z-measures

....for example, if x > 1, then

Vsintz sintz’ 1, /e Z-1 7 1
oF ' )

z+2 -1 x

R(x) = Jon x4 (x—1) 2

V2sinz sinmz [(z+ 37 + H(z+1)M (2 +1)

S(x) =
() m Fz+2+3)MN(z+7 +3)
/ 22 / l Zl—f-]. 1
X_i_z(x_1)2'2F1{2+2 3 ?—}7
z+27'+3 X

where oF; [ P z] = 3% (2 T, % is Gauss's
hypergeometric function.



2.1. Representation-theoretic interpretation

Spherical characters ¥V : K — C:
- central functions: W(xyx™1) = Y(y)

,,,,,

- normalized: W(e) =1



2.1. Representation-theoretic interpretation

Spherical characters V : K — C:
- central functions: \IJ(xyx_l) = \IJ(y)

,,,,,

- normalized: V(e ) 1

Example: When K = SO(2N + 1),

V= ZC)\DImN ZC)\—]_ C)\>O



2.1. Representation-theoretic interpretation

Spherical representations T of K C G:
Hilbert space H, continuous T : G — U(H), unit vector v € H

such that T(K)v =v and T(G)v = H.



2.1. Representation-theoretic interpretation

Spherical representations T of K C G:
Hilbert space H, continuous T : G — U(H), unit vector v € H

such that T(K)v =v and T(G)v = H.

Example: For
G = SO(2N + 1) x SO(2N + 1),

K =SO(2N +1) C G (via x — (x,x)),
an spherical representation is

HN = L2(50(2N + 1), ,UN)a

(T(g1, &)f)(x) = (g 'xa1),
vy = normalized constant.



2.1. Representation-theoretic interpretation

For
G = SO(o0) x SO(0),
K = SO(x) C G (via x — (x, x)),

the notions of characters and representations are equivalent!
For example, given representation T, its character is

W(X) = (T(X,1)v,v),, X € SO(c0).



2.1. Representation-theoretic interpretation

For
G = SO(0) x SO(o0),
K = SO(c0) C G (via x — (x, x)),

the notions of characters and representations are equivalent!
For example, given representation T, its character is

W(X) = (T(X,1)v,v),, X € SO(c0).

Examples of representations? Olshanski found a distinguished
family of spherical representations { T, },:

---;)HN_l‘—>HN‘—>...H:“mHN
H

S VNI S VN LV = limvy
_>



2.1. Representation-theoretic interpretation

For
G = S0(o0) x SO(0),
K = SO(x) C G (via x — (x, x)),

the notions of characters and representations are equivalent!
For example, given representation T, its character is

W(X) = (T(X,1)v,v),, X € SO(c0).

Examples of characters? Olshanski found a distinguished
family of spherical characters {V,},:

WV, : SO(o0) — C is the unique map such that

o Z XA o)
\UZ|SO(2N+1) T DImN()\) PN\z,i(A)'
A



2.1. Representation-theoretic interpretation

Semisimplicity. If T is the space of irreducible characters ¢*,
any character ¥ equals

/ v (g)P(dw), g € SO(c0),

for a unique prob. measure P on T (the spectral measure).



2.1. Representation-theoretic interpretation

Semisimplicity. If T is the space of irreducible characters ¢*,
any character ¥ equals

/1/1 P(dw), g € SO(c0),
for a unique prob. measure P on T (the spectral measure).

Can one describe the measure P, corresponding to W,7 This is
the problem of noncommutative harmonic analysis.



2.1. Representation-theoretic interpretation

Characterization of irreps. The space T was characterized
for SO(o0) (Boyer '92, Okounkov-Olshanski '06):

Tg{(a;ﬂ,é)EfofoR_i_ : a12a2>...207

1>61 20> 20, 522(04i+5i)}
i=1



2.1. Representation-theoretic interpretation

Characterization of irreps. The space T was characterized
for SO(o0) (Boyer '92, Okounkov-Olshanski '06):

T§{(a,6,5)efofoR+ : 04120522...20’

1> >B>>0,6>Y (a;+8)}
i=1

A general framework shows that, after the embedding
i:T — Conf(RY)

(o, 8,0) = ({1 + ai}izi U{1 = Bi}j>1) \ {0, 1},

the image of P, is equal to limy_. P,f”ozi.



2.1. Representation-theoretic interpretation

Characterization of irreps. The space T was characterized
for SO(o0) (Boyer '92, Okounkov-Olshanski '06):

Tg{(&,ﬁ,5)€fofoR+ : 04120522...20’

1> >8> >0,6>> (ai+6)}
i=1

A general framework shows that, after the embedding
i:T — Conf(RY)

(a, 8,0) = ({1 + aitiz1 U{L = Bj}j>1) \ {0, 1},
the image of P, is equal to limy_. P,f,ﬁj.

Conclusion: To describe the spectral measure P,, we had to
compute the weak limit: limy_ P,f,gi I
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2.2. BC type Z-measures

The problem of harmonic analysis can also be formulated for
Sp(o0) = lim_, Sp(N). The answer is very similar.

Is there a unifying theory for SO(c0), Sp(o0), and other
inductive limit groups?



The problem of harmonic analysis can also be formulated for
Sp(o0) = lim_, Sp(N). The answer is very similar.

Is there a unifying theory for SO(c0), Sp(o0), and other
inductive limit groups?

Observation #1: The character Xio(zNH)(l\/]) is an explicit
function of the eigenvalues {1, £x, ..., £xy} of M:

SO(2N+1 ~a,b
% 2N+ )(/\/]) =30, xn) (su5)2d )
)T 2

where {f\’b(xl, ..., Xy) are the multivariate Jacobi polynomials.



2.2. BC type Z-measures

Observation #2: The measures {Py}n>1 come from Fourier
expansions of the restrictions W,[s5,y, ). This implies a
coherence relation between Py and Py_;:



2.2. BC type Z-measures

Observation #2: The measures {Py}n>1 come from Fourier
expansions of the restrictions w2|50(2/\/+1)- This implies a
coherence relation between Py and Py_;:

Define CfY_;(, i2) via the branching

XSO(2N+1) XSO(2N—1)
AN = E Gl p)E—, NeY

. N—1\N 1 . ) N-
Dimn(A) SO(2N—1)  HEYN_1 Dimp-1(12)



2.2. BC type Z-measures

Observation #2: The measures {Py}n>1 come from Fourier
expansions of the restrictions w2|50(2/\/+1)- This implies a
coherence relation between Py and Py_;:

Define CfY_;(, i2) via the branching

X50(2N+1) XSO(2N 1)
ASVR—. CH L )2 NeYn
Dimy(\) = 2 GLOmp - gy S

SO(2N—-1)  p€Yn_1

The coherence relations are:

Z Pnv(N)CA_1(A\ 1) = Pu-1(p), 1€ Yn1.
AEY Ny




2.2. BC type Z-measures

Miraculously, the orthogonal Z-measures admit 2-parameter
(a, b) generalizations (Olshanski-Osinenko '12):

~a,b

’ .. _1,1 a,b sy XN
Jy MS);L y XN—1, ):ZCN— ()\ ) ~§>;1 XN 1)‘
(1 ..,1,1) i (1,...,1)

I

@ The coherent measures are

N
PN|z,z’,a,b()\) X H ()\i - )\j)z H Wz,z’,a,b()\k)a

1<i<j<N k=1

W, 2 b(X) is the weight for Racah polynomials.



2.2. BC type Z-measures

Miraculously, the orthogonal Z-measures admit 2-parameter
(a, b) generalizations (Olshanski-Osinenko '12):

~a,b

’ .. _1,1 a,b sy XN
Jy MS);L y XN—1, ):ZCN— ()\ ) M§>;1 XN 1)'
(1 ..,1,1) i (1,...,1)

I

@ The coherent measures are

N
PN\z,z/,a,b()\) X H ()\i - )\j)z H Wz,z’,a,b()\k)a
1<i<j<N k=1
W, 2 b(X) is the weight for Racah polynomials.

o Theorem (C '18) The limit P, 5 p = limn_yo0 Pnjz2,ab
has determinantal correlation functions.



Plan of the talk

1. Basic example: Plancherel measures & Ulam’s
problem

2. The BC type Z-measures
2.1. Orthogonal Z-measures & representation theory
2.2. The BC type Z-measures

3. g-analogues of rep. theoretic measures



3. g-analogues of rep-theoretic measures

Wishful thinking: Many of our objects have g-analogues:

SO(N), Sp(N) > SO4(N), Spy(N)
Jacobi orthogonal polys — little g-Jacobi orthogonal polys
hypergeometric functions »,F; — g-hypergeometric functions >¢;

Question: Are there g-analogues of representation theoretic
measures?



3. g-analogues of rep-theoretic measures

Answer: Yes!! Point configurations live in the 2-sided lattice
£=0(q*Uq” where(_ <0< (., 0<q<1:

-0 3 o0

i.e. Ty = set of size N subsets of £.



3. g-analogues of rep-theoretic measures

Answer: Yes!! Point configurations live in the 2-sided lattice
£=0(q*Uq” where(_ <0< (., 0<q<1:

-0 8 o0
i.e. Ty = set of size N subsets of £.

We seek:
(1) CY_,(X,Y), where X € T, Y € Tp_1.
(2) Sequences of probability measures {Py(X)}n>1 satisfying:

Z Pn(X)CN_1 (X, Y) = Pu_a(Y).

XeTy



3. g-analogues of rep-theoretic measures

Example 1: Gorin-Olshanski ('16) studied the g-ZW measures
(g-analogues of measures related to U(o0)):

(1)
(X, V) =1y [T v —q) - (1= ") %

yey

(Come from branching of g-shifts of Schur polynomials)
(2)
Pn(X) X)? 1T Wasasomam(x

xeX

Wa:a,8.4,6(X) is the weight for big g-Jacobi polynomials.



3. g-analogues of rep-theoretic measures

Example 2: Cuenca-Olshanski ('18, '19+) studied g-Z measures
(g-analogues of measures related to SO(o0), Sp(o0)):

(1)

Ca_1(X,Y) = 1;y_x; - (certain function of Y)- %
(Come from branching of little g-Jacobi polynomials)
(2)
Pu(X) XV T wepstr oot s (%),
xeX

Wa:sy.51.5,5 (X) 1S the weight for g-Racah polynomials.



3. g-analogues of rep-theoretic measures

Several basic properties of the g-ZW and g-Z measures have
been proved in Gorin-Olshanski('16), C-Olshanski ('19+) and
C-Gorin-Olshanski ('19), e.g

Theorem. The q-ZW measures Pq.. 5,5 and q-Z measures
Pq:sy.51.50.5; (obtained as limits limy_,~, Py) have determinantal
correlation functions, in terms of the basic hypergeometric
functions >¢1, 3¢».

n

a = 1—aq’1 1—bg' 1) .
(e.g. 2(;51[ c i q; z] Zz H e 1((1 &) ) is the
n=0 i=1

a b
g-analogue of Gauss's hypergeometric function ,F; [ ;z])
c




But even the most basic questions can't be answered yet!

@ Are there limits g — 1 that turn Pq.o 5.6, Pgso.si.s0.8
into the ZW measures and BC type Z measures?

@ Meaning of the two-sided lattice £ =£_ 11 £.7
Conjecturally, £_/£, relate to rows/columns of partitions

-00 8 00

@ Interpretation from harmonic analysis/quantum groups?
Plancherel measures <— Ulam’s problem

orthogonal Z measures <— harmonic analysis for SO(c0)
g-Z measures «— 777



But even the most basic questions can't be answered yet!

@ Are there limits g — 1 that turn Pq.o 5.6, Pgso.si.s0.8
into the ZW measures and BC type Z measures?

@ Meaning of the two-sided lattice £ =£_ 11 £.7
Conjecturally, £_/£, relate to rows/columns of partitions

-00 8 00

@ Interpretation from harmonic analysis/quantum groups?
Plancherel measures <— Ulam’s problem

orthogonal Z measures <— harmonic analysis for SO(c0)
g-Z measures «— 777

Thank you for your attention!



