## Theta Correspondence for Dummies

(Correspondance Theta pour les nuls)

Jeffrey Adams Dipendra Prasad Gordan Savin

Conference in honor of Roger Howe Yale University June 1-5, 2015

#### THETA CORRESPONDENCE

$$Mp = Sp(2n, F)$$
: metaplectic group

(G, G') a reductive dual pair:

$$G = Cent_{Mp}(G'), \quad G' = Cent_{Mp}(G)$$

$$\psi$$
 character of  $\emph{F}$ ,  $ightarrow$  oscillator representation  $\omega = \omega_{\psi}$ 

Definition: 
$$\pi \in \widehat{G}, \pi' \in \widehat{G'}$$
, say  $\pi \longleftrightarrow \pi'$  if

$$\mathsf{Hom}_{G\times G'}(\omega,\pi\boxtimes\pi')\neq 0$$

Howe Duality Theorem (Howe, Waldspurger, Gan-Takeda) F local

$$\pi \longleftrightarrow \pi'$$
 is a bijection

(between subsets of  $\widehat{G}$  and  $\widehat{G}'$ )

Definition: 
$$\pi' = \theta(\pi)$$
,  $\pi = \theta(\pi')$ 

# Computing $\theta(\pi)$

Describe  $\pi \to \theta(\pi)$  (in terms of some kinds of parameters) Properties of the map: preserving tempered, unitary, relation on wave front sets, functoriality (Langlands/Arthur)...

Typically there are some easy cases, and some hard ones



 $\Theta(\pi)$ 

$$\theta(\pi)$$
 irreducible,  $\omega \to \pi \boxtimes \theta(\pi)$ 

Defintion (Howe)  $\omega(\pi)$ =the maximal  $\pi$ -isotypic quotient of  $\omega$ 

$$\Theta(\pi)$$
 ("big-theta" of  $\pi$ ):

$$\omega(\pi) \simeq \pi \boxtimes \Theta(\pi)$$

Proof of the duality theorem:  $\theta(\pi)$  is the unique irreducible quotient of  $\Theta(\pi)$ 

Generically,  $\Theta(\pi)$  is irreducible and  $\theta(\pi) = \Theta(\pi)$ 

# The structure of $\Theta(\pi)$

 $\Theta(\pi)$  is important, interesting, complicated

 $\Theta(1)$  (Kudla, Rallis, ...)

Structure of reducible principal series (Howe...)

Lee/Zhu:  $Sp(2n, \mathbb{R})$ :



# EXAMPLE: SEE-SAW PAIRS AND RECIPROCITY

Howe



$$\int_{\pi}^{\Theta(\sigma')} \Theta(\pi)$$

$$\Theta(\sigma')[\pi] \boxtimes \sigma' \simeq \pi \boxtimes \Theta(\pi)[\sigma']$$

Roughly:

$$\operatorname{mult}_{G}(\pi,\Theta(\sigma')) = \operatorname{mult}_{H'}(\sigma',\Theta(\pi))$$

## THETA CORRESPONDENCE AND INDUCTION

$$\begin{array}{c|c}
\operatorname{GL}(n+r) \\
\Theta_{m,n+r} \\
& \\
\operatorname{GL}(m) \xrightarrow{\Theta_{m,n}} \operatorname{GL}(n)
\end{array}$$

$$m = n$$
:  $\Theta_{n,n}(\pi) = \theta_{n,n}(\pi) = \pi^*$ 

Kudla: 
$$P = MN$$
,  $M = GL(n) \times GL(r)$ 

$$\mathsf{Hom}_{\mathsf{GL}(m)}(\omega_{m,n+r},\pi\boxtimes\mathsf{Ind}_P^{\mathsf{GL}(n+r)}(\theta_{m,n}(\pi)\otimes 1))\neq 0$$

$$\operatorname{Ind}_{P}^{GL(n+r)}(\theta_{m,n}(\pi) \otimes 1)$$

$$\xrightarrow{\theta_{m,n}} \theta_{n}(\pi)$$

### Yale Freshman graduate student's dream

$$\Theta_{m,n+r}(\pi) \stackrel{?}{=} \operatorname{Ind}_{P}^{GL(n+r)}(1 \otimes \theta_{m,n}(\pi))$$

 $\theta_{m,n+r}(\pi)$  is (?) the unique irreducible quotient of  $\operatorname{Ind}_P^{GL(n+r)}(1\otimes\theta_{m,n}(\pi))$ 

Neither is true in general

$$\omega = \mathcal{S}(M_{m,n})$$

filtration:  $\omega_k$ : functions supported on matrices of rank  $\geq k$ :

$$0 = \omega_t \subset \omega_{t-1} \subset \cdots \subset \omega_0 = \omega$$

Serious issues with extensions here. . . also reducibility of induced representations

### CHARACTERISTIC

## Basic Principle

$$\mathsf{Hom} \to \mathsf{Ext} \to \mathsf{EP} = \sum_i (-1)^i \mathsf{Ext}^i$$

(+ vanishing. . . )

Problem: Study

$$\operatorname{Ext}_{G\times G'}^{i}(\omega,\pi\boxtimes\pi')$$
,  $\operatorname{EP}_{G\times G'}(\omega,\pi\boxtimes\pi')$ 

alternatively:

$$\operatorname{Ext}_G^i(\omega,\pi), \operatorname{EP}_G(\omega,\pi)$$
 as (virtual) representations of  $G'$ 

Idea:  $\mathsf{EP}_{\mathcal{G}}(\omega,\pi)$  is like  $\mathsf{Hom}_{\mathcal{G}}(\omega,\pi)$  with everything made completely reducible. . . all "boundary terms" vanish

# Example: GL(1), or Tate's Thesis

$$(G,G')=(GL(1),GL(1))\subset SL(2,F)$$
  
 $\omega\colon \mathcal{S}(F)\ (\mathcal{S}=C_c^\infty, \text{ the Schwarz space})$   
 $\omega(g,h)(f)(x)=f(g^{-1}xh) \text{ (up to } |\det|^{\pm\frac{1}{2}})$   
 $\chi \text{ character of } GL(1)$   
Question:  $\operatorname{Hom}_{GL(1)}(\mathcal{S}(F),\chi)=?$ 

$$0 \to \mathcal{S}(F^{\times}) \to \mathcal{S}(F) \to \mathbb{C} \to 0$$

$$\mathsf{Hom}(\,,\chi) = \mathsf{Hom}_{\mathsf{GL}(1)}(\,,\chi)$$

$$0 \to \mathsf{Hom}(\mathbb{C},\chi) \to \mathsf{Hom}(\mathcal{S}(F),\chi) \to \mathsf{Hom}(\mathcal{S}(F^\times),\chi) \to \mathsf{Ext}(\mathbb{C},\chi)$$

# Example: GL(1), or Tate's Thesis

$$0 \to \operatorname{Hom}(\mathbb{C},\chi) \to \operatorname{Hom}(\mathcal{S}(F),\chi) \to \operatorname{Hom}(\mathcal{S}(F^\times),\chi) \to \operatorname{Ext}(\mathbb{C},\chi)$$
 
$$\chi \neq 1:$$

$$0 o 0 o \mathsf{Hom}(\mathcal{S}(F),\chi) o \mathsf{Hom}(\mathcal{S}(F^{ imes}),\chi) o 0$$

$$\operatorname{\mathsf{Hom}}_{\mathsf{GL}(1)}(\mathcal{S}(F),\chi) = \operatorname{\mathsf{Hom}}_{\mathsf{GL}(1)}(\mathcal{S}(F^*),\chi) = \mathbb{C}$$
  
 $\chi = 1$ :

$$0 \to \mathbb{C} \to \mathsf{Hom}(\mathcal{S}(F), \chi) \to \mathsf{Hom}(\mathcal{S}(F^{\times}), \chi) \to \mathbb{C} \to \mathsf{Ext}^1(\mathcal{S}(F), \mathbb{C}) = 0$$

 $\mathsf{Hom}_{\mathsf{GL}(1)}(\mathcal{S}(F),\chi)=1$  in all cases  $\mathsf{Remark}$ : Tate's thesis: this is true provided  $|\chi(x)|=|x|^s$  with s>1. General case: analytic continuation in  $\chi$  of Tate L-functions.

## THETA AND THE EULER POINCARE CHARACTERISTIC

## Punch line:

Theorem (Adams/Prasad/Savin)

Fix m, and consider the dual pairs (G = GL(m), GL(n))  $n \ge 0$ .  $\pi \in \widehat{G}$ 

$$\mathsf{EP}_{\mathsf{G}}(\omega_{m,n},\pi)^{\infty} \simeq egin{cases} 0 & n < m \ \mathsf{Ind}_{\mathsf{P}}^{\mathsf{GL}(n)}(1 \otimes \pi) & n \geq m \end{cases}$$

where  $M = GL(n - m) \times GL(m)$ 

More details...

## EULER-POINCARE CHARACTERISTIC

Reference: D. Prasad, Ext Analogues of Branching Laws

F: p-adic field, G: reductive group/F

 $\mathcal{C} = \mathcal{C}_{\mathcal{G}}$  :category of smooth representations

 $\mathcal{S}(G)=C_c^\infty(G)$  , smooth compactly supported functions, smooth representation of  $G\times G$ 

Lemma:  $\mathcal C$  has enough projectives and injectives

 $\operatorname{Ext}_G^i(X,Y)$ : derived functors of  $\operatorname{Hom}_G(\_,Y)$  or  $\operatorname{Hom}_G(X,\_)$ .

## EULER-POINCARE CHARACTERISTIC

 $P = MN \subset G$ ,  $\operatorname{Ind}_P^G$  normalized induction  $r_P^G$  normalized Jacquet functor

X, Y smooth

- 1.  $\operatorname{Ext}_G^i(X,Y) = 0$  for  $i > \operatorname{split}$  rank of G
- 2. S(G) is projective (as a left G-module)
- **3.**  $\operatorname{Hom}_G(\mathcal{S}(G),X)^{G-\infty} \simeq X$
- 4.  $EP_{GL(m)}(X, Y) = 0$  (X, Y finite length)
- 5.  $\operatorname{Ext}_G^i(X,\operatorname{Ind}_P^G(Y)) \simeq \operatorname{Ext}_M^i(r_P^G(X),Y)$
- **6.**  $\operatorname{Ext}_G^i(\operatorname{Ind}_P^G(X), Y) \simeq \operatorname{Ext}_M^i(X, r_G^{\overline{P}}(Y))$
- 7. Kunneth Formula  $(X_1 \text{ admissible})$ :

$$\operatorname{Ext}^i_{G_1 \times G_2}(X_1 \boxtimes X_2, Y_1 \boxtimes Y_2) \simeq \bigoplus_{i+k=i} \operatorname{Ext}^i_{G_1}(X_1, Y_1) \otimes \operatorname{Ext}^k_{G_2}(X_2, Y_2)$$

## EULER-POINCARE CHARACTERISTIC

 $X: G \times G'$ -modules (for example:  $\omega$ )

Y: G-module

 $\operatorname{Ext}_G^i(X,Y)$  is an G'-module (not necessarily smooth)

## Definition:

$$\operatorname{Ext}_G^i(X,Y)^\infty = \operatorname{Ext}_G^i(X,Y)^{G'-\infty}$$
 (a smooth  $G'$ -module)

Dangerous bend:  $\operatorname{Ext}_G^i(X,Y)$  is (probably) not the derived functors of  $Y \to \operatorname{Hom}_G(X,Y)^{G'-\infty}$ 

Definition: Assume  $\operatorname{Ext}_G^i(X,Y)$  has finite length for all i

 $\mathsf{EP}_G(X,Y) = \sum_i (-1)^i \mathsf{Ext}_G(X,Y)^\infty$  is a well-defined element of the Grothendieck group of smooth representations of G'

### Back to $\Theta(\pi)$

$$(G,G')$$
 dual pair,  $\omega$ ,  $\pi$  irreducible representation of  $G$ 

$$\mathsf{EP}_{G}(\omega,\pi)^{\infty}$$

$$\omega \to \pi \boxtimes \Theta(\pi)$$

Proposition:  $\operatorname{Hom}_G(\omega,\pi)^{\infty} = \Theta(\pi)^{\vee}$ 

∨ : smooth dual

proof:

$$0 \to \omega[\pi] \to \omega \to \pi \boxtimes \Theta(\pi) \to 0$$

 $\mathsf{Hom}(\pi)$  is left exact:

$$0 \to \operatorname{\mathsf{Hom}}_{G}(\pi \boxtimes \Theta(\pi), \pi) \to \operatorname{\mathsf{Hom}}_{G}(\omega, \pi) \overset{\phi}{\to} \operatorname{\mathsf{Hom}}_{G}(\omega[\pi], \pi)$$

 $\phi=0\Rightarrow \operatorname{Hom}(\omega,\pi)\simeq \Theta(\pi)^*$ , take the smooth vectors

#### COMPUTING EP

Recall: 
$$\omega_k = \mathcal{S}(\text{matrices of rank } \geq k)$$

$$0 = \omega_t \subset \omega_{t-1} \subset \cdots \subset \omega_0 = \omega$$

$$\omega_k/\omega_{k+1} = \mathcal{S}(\Omega_k)$$
  $(\Omega_k = \text{ matrices of rank } k)$ 

$$\mathcal{S}(\Omega_k) \simeq \operatorname{Ind}_{\operatorname{GL}(k) \times \operatorname{GL}(m-k) \times \operatorname{GL}(k) \times \operatorname{GL}(n-k)}^{\operatorname{GL}(m) \times \operatorname{GL}(n)} (\mathcal{S}(\operatorname{GL}(k)) \boxtimes 1).$$

Compute

$$\operatorname{Ext}^{i}_{\operatorname{GL}(m)}(\mathcal{S}(\Omega_k),\pi)$$

By Frobenius reciprocity, Kunneth formula, other basic properties. . .

 $\operatorname{Ext}^i_{\mathsf{GL}(m)}(S(\Omega_k),\pi)^\infty \simeq \sum_{i=1}^\ell \operatorname{Ind}_{GL(k) \times GL(n-k)}^{\mathsf{GL}(n)}(\sigma_j \boxtimes 1) \otimes \operatorname{Ext}^i_{\mathsf{GL}(m-k)}(1, au_j)$ 

$$r_{\overline{P}}(\pi) = \sum \sigma_i \boxtimes \tau_i$$
 implies

#### Lemma

 $\operatorname{Ext}^i_{\operatorname{GL}(m)}(\mathcal{S}(\Omega_k),\pi)$  is a finite length  $\operatorname{GL}(n)$ -module

 $\mathsf{EP}_{\mathsf{GL}(m)}(\mathcal{S}(\Omega_k),\pi)$  is well defined

 $\mathsf{EP}_{\mathsf{GL}(m)}(\mathcal{S}(\Omega_k),\pi)=0$  unless k=m.

## MAIN THEOREM: TYPE II

#### Theorem

Fix m, and consider the dual pairs (G = GL(m), GL(n))  $n \ge 0$ .  $\pi \in \widehat{G}$ 

$$\mathsf{EP}_{\mathcal{G}}(\omega_{m,n},\pi)^{\infty} \simeq egin{cases} 0 & n < m \ \mathsf{Ind}_{P}^{\mathit{GL}(n)}(1 \otimes \pi) & n \geq m \end{cases}$$

where  $M = GL(n - m) \times GL(m)$ 

### MAIN THEOREM: TYPE I

Similar idea, using Kudla (and MVW) calculation of the Jacquet module of the oscillator representation

For simplicity: state it for (Sp(2m), O(2n)) (split orthogonal groups)

$$\omega = \omega_{m,n}$$
 oscillator representation for  $(G, G') = (\operatorname{Sp}(2m), \operatorname{O}(2n))$   
 $t < m \to M(t) = \operatorname{GL}(t) \times \operatorname{Sp}(2m - 2t) \subset \operatorname{Sp}(2m)$ 

$$P(t) = M(t)N(t), \operatorname{Ind}_{P(t)}^{G}()$$

$$t < n \rightarrow M'(t) = GL(t) \times O(2n - 2t) \subset O(2m)$$

$$P'(t) = M'(t)N'(t), \operatorname{Ind}_{P'(t)}^{G'}()$$

$$\omega_{M(t),M'(t)}$$
 oscillator representation for dual pair  $(M(t),M'(t))$ 

## MAIN THEOREM: TYPE I

Theorem Fix an irreducible representation  $\pi$  of M(t).

Then

$$\mathsf{EP}_{G}(\omega_{G,G'},\mathsf{Ind}_{P(t)}^{G}(\pi))^{\infty} \simeq \begin{cases} 0 & t > n \\ \mathsf{Ind}_{P'(t)}^{G'}(\mathsf{EP}_{M(t)}(\omega_{M(t),M'(t)},\pi)^{\infty}) & t \leq n. \end{cases}$$

 $\mathsf{EP}(\omega,\_)^\infty$  commutes with induction