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Erratum

David and Lois know each other from High School





One more thing.



Galois Cohomology

F local Γ = Gal(F/F ) G = G (F ) defined over F

G (F ) = G (F )Γ

H i (Γ,G ) = Galois cohomology (group cohomology)

i = 0, 1 if G is not abelian

Example: G (F ) = GL(n,F ) : H1(Γ,G ) = 1

(GL(1,F ) = F ∗ : Hilbert’s Theorem 90)

Example: G = SO(V ):

H1(Γ,G ) = { non-degenerate quadratic forms of same dimension
and discriminant as V }

Example: G = Sp(2n,F )

H1(Γ,G ) = { non-degenerate symplectic forms, dim. 2n} = 1



Rational Forms

Basic Fact:

{rational (inner) forms of G} ←→ H1(Γ,Gad)

(Inner: σ′σ−1 is inner)

NB: (for the experts): equality of rational forms is by the action of
G , not Aut(G ) (Borel: Image(H1(Γ,Gad)→ H1(Γ,Aut(Gad)))

Theorem (Kneser): F p-adic, G simply connected ⇒ H1(Γ,G ) = 1

Not true over R ... G (R) = SU(2), H1(Γ,G ) = Z/2Z)

Problem: Calculate H1(Γ,G ) G simply connected, defined over R

This fact plays a role in statements about the trace formula,
functoriality, packets. . .



Real case
F = R, Γ = Gal(C/R) = 〈σ〉

H0(Γ,G ) = G (R)

H1(Γ,G ) = {g ∈ G | gσ(g) = 1}/[g → xgσ(x−1)]

Write H i
σ(Γ,G )

Digression: H =torus, Ĥ i (Γ,H) Tate cohomology

Ĥ0(Γ,H) = H(R)/H(R)0

Question: Is it possible (and a good idea?) to define Ĥ i (Γ,G )
(i = 0, 1) in such a way that Ĥ0(Γ,G ) = G (R)/G (R)0?



Real Forms: σ and θ pictures

Cartan: classify real forms by their Cartan involution: a real form is
determined by its maximal compact subgroup K (R) - in fact by
K (C) = G (C)θ

θ is a holomorphic involution.

G (C)
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K (C) = G (C)θ
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G (R) = G (C)σ

θ
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K (R) = G (R)θ = K (C)σ



Real Forms: σ and θ pictures

GL(n,C)

σ
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θ
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GL(p,C)× GL(q,C)

σ
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U(p)× U(q)

Theorem: (Cartan)

{σ | σ antiholomorphic}/G ←→ {θ | σ holomorphic}/G

σ −→ θ = σσc

σ = θσc ←− θ



Real Forms: σ and θ pictures

σ, θ pictures are deeply embedded in representation theory

σ : G (R) acting on a Hilbert space

θ : (g,K ) modules g,K both complex

Matsuki duality (later): X = G (C)/B(C)

G (R)\X ←→ K (C)\X

Kostant-Sekiguchi correspondence (nilpotent G (R),K (C) orbits)



Real Forms: θ cohomology

θ holomorphic:

Definition: H i
θ
(Z2,G ): group cohomology with Z2 acting by θ

H0
θ (Z2,G ) = K

(remember K = K (C))

H1
θ (Z2,G ) = {g | gθ(g) = 1}/[g → xgθ(x−1)]

Basic Point: H1
θ
(Z2,G ) is much easier to compute than H1

σ(Γ,G )

Example: θ = 1:

H1
θ (Z2,G ) = {g | g2 = 1}/G = {h ∈ H | h2 = 1}/W

G (R) compact
(Serre): H1(Γ,G ) = H1(Γ,G (R)) = {h ∈ H(R) | h2 = 1}/W



Real Forms: Example
θ = 1, H1(Z2,G ) = H2/W :

Exercise:

G = E8, R=root lattice, |R/2R | = 256

|H1
θ (Z2,G )| = |(R/2R)/W | = 3 (1 + 120 + 135 = 256)



Galois and θ cohomology

H1
θ
(Z2,G ) H1

σ(Γ,G )

Cartan’s Theorem can be stated: σ ↔ θ ⇒

H1
σ(Γ,Gad) ≃ H1

θ (Z2,Gad)

Question: drop the adjoint condition?

Theorem: G connected reductive,

σ antiholomorphic, θ holomorphic
σ ↔ θ (in the sense of Cartan; i.e. defining the same real form)
There is a canonical isomorphism:

H1
σ(Γ,G ) ≃ H1

θ (Z2,G )



Sketch of proof

(1) H torus: 1→ H2 → H
z2
→ H → 1

|Γ = 2| ⇒

H1
σ(Γ,H) ≃ H1

σ(Γ,H2)

H1
θ
(Z2,H) ≃ H1

θ
(Z2,H2)

and θ|H2 = σ|H2

H1
σ(Γ,H) ≃ H1

σ(Γ,H2) = H1
θ (Z2,H2) ≃ H1

θ (Z2,H)

(2) Hf a fundamental (most compact) Cartan subgroup;

H1
σ(Γ,Hf ) ։ H1

σ(Γ,G )

(easy: every semisimple elliptic element is conjugate to an element
of Hf )



Sketch of proof (continued)
(3) Wi (H) = Weyl group of imaginary roots,

H1
σ(σ,H)/Wi (H) →֒ H1

σ(Γ,G )

This is non-trivial but standard:

it comes down to (G/P)(F ) = G (F )/P(F )) (Borel-Tits) and there
is only one conjugacy class of compact Cartan subgroups (very
special to R)

Equivalently: over R stable conjugacy of Cartan subgroups is
equivalent to ordinary conjugacy (Shelstad) (false in the p-adic
case)

H1
σ(Γ,G ) ≃ H1

σ(Γ,Hf )/Wi

Theorem (Borovoi): H1
σ(Γ,G ) ≃ H1

σ(Γ,Hf )/W
σ

Exactly same argument holds for θ-cohomology:

H1
θ (Z2,G ) ≃ H1

θ (Z2,Hf )/Wi



Applications
Two versions of the rational Weyl group

Wσ = NormG(R)(H(R))/H(R)

Wθ = NormK(C)(H(C))/H(C) ∩ K (C)

Theorem (well known, see Warner): Wσ ≃Wθ



Applications
proof:

1→ H → N →W → 1

1→ Hσ → Nσ →W σ → H1
σ(Γ,H)

1 // Wσ = Nσ/Hσ //

��

W σ //

=

��

H1
σ(Γ,H)

≃

��
1 // Wθ = Nθ/Hθ // W θ // H1

θ
(Γ,H)



Applications

Matsuki Correspondence of Cartan subgroups

Theorem (Matsuki): There is a canonical bijection

{σ-stable H}/G (R)↔ {θ-stable H}/K

Proof in quasisplit case:

LHS = H1
σ(Γ,W ) ≃ H1

θ (Z2,W ) = RHS

(general: H1
σ(Γ,N) ≃ H1

θ
(Z2,N) . . . )



Applications: Strong real forms

For simplicity: assume equal rank inner class

Definition (ABV) A strong real form of G is G -conjugacy class of
x ∈ G satisfying x2 ∈ Z (G ).

{strong real forms}։ {real forms} (bijection if G is adjoint)

x → θx = int(x) (conjugation by x)

Pure Real forms: x2 = 1

{strong real forms} // // H1(Γ,Gad) = {real forms}

H1(Γ,G ) = pure real forms
?�

OO

// // [image]
?�

OO

Problem:

1) Give a cohomological definition of strong real forms

2) Define “strong rational forms” of p-adic groups
(Kaletha): H1(u →W ,Z → Z ) =strong real forms in real case



Applications: Strong real forms

Strong Real Forms:

x → inv(x) = x2 ∈ ZΓ

Real forms:

inv : H1(Γ,Gad)→ H2(Γ,Z ) = Ĥ0(Γ,Z ) = ZΓ/(1 + σ)Z

Theorem: Given σ → inv(σ) ∈ ZΓ/(1 + σ)Z → (choose) z ∈ ZΓ

H1(Γ,G )↔ {strong real forms of type z}

→: classical Galois cohomology interpretation of strong real forms

←: compute H1(Γ,G )(the right hand side is easy)



Applications: Strong real forms

Corollary:

{strong real forms} ←→
⋃

z∈S

H1
σz
(Γ,G )

S = ZΓ/(1 + σ)Z

S ∋ z → σz (σz ↔ θx → x2 = z)



Application: Computing H1(Γ,G )

Compute {strong real forms of type z}

(equal rank case):

H1(Γ,G ) ≃ {g ∈ G | g2 = z}/G = {h ∈ H | h2 = z}/W

(z depends on the real form)

Example:

G = Sp(2n,R) x = diag(i , . . . , i ,−i , . . . ,−i) z = −I :

H1
σ(Γ,G ) = {g | g2 = −I}/G = {diag(±i , . . . ,±i)}/W = 1

Example:

G = Spin(p, q)

SO(p, q): ⌊p2⌋+ ⌊
q
2⌋+ 1 (classifying quadratic forms)

Spin(p, q): ⌊p+q
4 ⌋+ δ(p, q) δ(p, q) = 0, 1, 2, 3





9.1 Classical groups

Group |H1(Γ, G)|

SL(n,R), GL(n,R) 1

SU(p, q) ⌊p2⌋+ ⌊
q
2⌋+ 1

Hermitian forms of rank p+ q and

discriminant (−1)q

SL(n,H) 2 R
∗/NrdH/R(H

∗)

Sp(2n,R) 1 real symplectic forms of rank 2n

Sp(p, q) p+ q + 1 quaternionic Hermitian forms of rank p+ q

SO(p, q) ⌊p2⌋+ ⌊
q
2⌋+ 1

real symmetric bilinear forms of rank n

and discriminant (−1)q

SO∗(2n) 2

Here H is the quaternions, and Nrd is the reduced norm map from H
∗ to R

∗

(see [12, Lemma 2.9]). For more information on Galois cohomology of classical
groups see [13], [12, Sections 2.3 and 6.6] and [9, Chapter VII].

9.2 Simply connected groups

The only simply connected groups with classical root system, which are not in
the table in Section 9.1 are Spin(p, q) and Spin∗(2n).

Define δ(p, q) by the following table, depending on p, q (mod 4).

0 1 2 3

0 3 2 2 2

1 2 1 1 0

2 2 1 0 0

3 2 0 0 0

Group |H1(Γ, G)|

Spin(p, q) ⌊p+q4 ⌋+ δ(p, q)

Spin∗(2n) 2
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Simply connected exceptional groups

inner class group K real rank name |H1(Γ, G)|

compact E6 A5A1 4
quasisplit’

quaternionic
3

E6 D5T 2 Hermitian 3

E6 E6 0 compact 3

split E6 C4 6 split 2

E6 F4 2 quasicompact 2

compact E7 A7 7 split 2

E7 D6A1 4 quaternionic 4

E7 E6T 3 Hermitian 2

E7 E7 0 compact 4

compact E8 D8 8 split 3

E8 E7A1 4 quaternionic 3

E8 E8 0 compact 3

compact F4 C3A1 4 split 3

F4 B4 1 3

F4 F4 0 compact 3

compact G2 A1A1 2 split 2

G2 G2 0 compact 2
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9.3 Adjoint groups

If G is adjoint |H1(Γ, G)| is the number of real forms in the given inner class,
which is well known. We also include the component group, which is useful in
connection with Corollary 8.3.

One technical point arises in the case of PSO∗(2n). If n is even there are
two real forms which are related by an outer, but not an inner, automorphism.
See Remark 2.2.

Adjoint classical groups

Group |π0(G(R))| |H1(Γ, G)|

PSL(n,R)




2 n even

1 n odd




2 n even

1 n odd

PSL(n,H) 1 2

PSU(p, q)




2 p = q

1 otherwise
⌊p+q2 ⌋+ 1

PSO(p, q)





1 pq = 0

1 p, q odd and p 6= q

4 p = q even

2 otherwise





⌊p+q+2
4 ⌋ p, q odd

p+q
4 + 3 p, q even, p+ q = 0 (mod 4)

p+q−2
4 + 2 p, q even, p+ q = 2 (mod 4)

p+q+1
2 p, q opposite parity

PSO∗(2n)




2 n even

1 n odd




n
2 + 3 n even

n−1
2 + 2 n odd

PSp(2n,R) 2 ⌊n2 ⌋+ 2

PSp(p, q)




2 p = q

1 else
⌊p+q2 ⌋+ 2

The groups E8, F4 and G2 are both simply connected and adjoint. Further-
more in type E6 the center of the simply connected group Gsc has order 3, and
it follows that H1(Γ, Gad) = H1(Γ, Gsc) in these cases. So the only groups not
covered by the table in Section 9.2 are adjoint groups of type E7.

Adjoint exceptional groups

inner class group K real rank name π0(G(R)) |H1(G)|

compact E7 A7 7 split 2 4

E7 D6A1 4 quaternionic 1 4

E7 E6T 3 Hermitian 2 4

E7 E7 0 compact 1 4
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