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Geometry & analysis

Optimal geometries & evolution of shapes are
governed by PDEs.

Geometric invariance makes the PDE canonical.

It means:

1 The same types of equations appear over and over again
across many diverse areas.

2 The equations also describe phenomena seemingly
unrelated to geometry.
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Geometry & analysis

Often the geometry unlocks the structure
leading to fundamental tools in PDE.

Understanding the equations requires insight into both:

Analysis & geometry

plus the interplay between the two.

We will see examples of this.
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Geometry of PDEs

We will emphasize a few big ideas & themes,

suppressing many other interesting aspects & results.

Hopefully, this will give a taste of a very large & active area,
focusing on joint work with Bill Minicozzi.
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Interplay in 3 examples

Interplay between analysis & geometry in 3 examples:

In optimal regularity in PDEs.

In stability of solutions.

In geometry of diffeomorphism group.
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Interplay; example 1: Existence vs regularity

In PDEs existence is often shown weakly
(like distribution or viscosity).

Challenge:
Proving regularity.

Nonlinear PDE:
Weak solutions might not be smooth.

How smooth?
How big is the singular set?
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Interplay; example 2: Stability of solutions

In Dynamics & PDEs a central question is:

Which solutions are stable?

– which are not?

The stable are the ones that physically happen

– the unstable ones are not seen in nature.

Tobias Holck Colding Geometry of PDEs



Interplay; ex. 3: Geometry of∞-dim’l diffeomorphism group

Geometric properties are universal
– independent of coordinates.

Yet objects look very different in different coordinates.

How do we recognize geometric objects
when no canonical coordinates exist?

Understand the geometry of the diffeomorphism group.
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The equations: Surface tension

Surface tension gives a PDE that describes evolution of shape.

Mean curvature H is the force from surface tension.
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Effect of surface tension

Surface tension causes water to form roughly spherical droplets.
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Mean curvature

Mean curvature H of a surface is sum of principal curvatures.

For a level set of a function u,

~n =
∇u
|∇u|

is a unit normal and

H = div
∇u
|∇u|

.
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Equilibrium: Minimal surfaces

If surface tension is only force acting,
then equilibrium occurs when H = 0. These are minimal surfaces.

Minimal surfaces have a long history
beginning with Euler and Lagrange.
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Mean curvature flow

A surface evolves in time
by each point moving normal ~n to the surface with speed H:

xt = −H~n .

Convex points move inward
– concave points move out.
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Mathematics of surface tension

Mean curvature flow is a nonlinear heat equation.

It is the (negative) gradient flow for area
on the infinite dimensional space of surfaces:

The flow makes the area shrink as fast as possible.

Mean curvature flow goes back more than 100 years
in mathematics & material science.
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Example: Evolution of Grayson’s dumbbell

Initial dumbbell, shrinking neck, & neck pinch singularity.

Cusps retract & each piece becomes round.
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An S1 of singularities

Marriage ring:

A torus of revolution remains a surface of revolution
under the flow, becoming extinct along a round S1.
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Level Set Method from applied mathematics

Tracking moving front = Level Set Method.

Idea: Represent evolving front as level sets of a function:

Which PDE does the function satisfy?
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Level Set Method

The Level Set Method allows for:

Singularities & topological changes.
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Arrival time

Monotone front: Flow that moves inward.

Arrival time function u: u−1(t) are the fronts.

u(x) the time when the front arrives at x .

u defined on domain that initial front bounds.
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Arrival time equation

Evolving curves are level sets of u:

−1 = |∇u|div
∇u
|∇u|

.

Degenerate elliptic equation.
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Spheres & cylinders

Arrival time functions on R3:

For spheres becoming extinct at the origin at time 0:

−1
2

(
x2

1 + x2
2 + x2

3

)

For cylinders becoming extinct in the line x2 = x3 = 0 at time 0:

−
(

x2
2 + x2

3

)
.
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Arrival time equation

Central in applied math, going back to Osher-Sethian.

Arises also in game theory.

Fits into a larger family of natural PDEs.
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Existence & regularity

Evans-Spruck, Chen-Giga-Goto:
Viscosity solutions exist & are Lipschitz.

Fundamental question:
How smooth are solutions?

Examples of Ilmanen: NOT C2 in general;
cf. Huisken, Kohn-Serfaty, Sesum.
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Weak solutions in PDEs: Viscosity

A continuous function u : Rn → R has ∆ u ≥ 0 at x = 0
in the viscosity sense if

∃ a smooth barrier function v with

v(0) = u(0),
u ≥ v ,
∆ v ≥ 0 at x = 0.

Maximum principle holds for such u.

E.g., u(x) = |x | has ∆ |x | ≥ 0 at x = 0.
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Optimal regularity & geometry

Thm (CM): The arrival time is twice differentiable everywhere.

Not always C2!

Being C2 has geometric meaning:
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Optimal regularity & geometry

Thm (CM): The arrival time is C2 iff the entire evolving front
becomes singular at the same time & then extinct.

C2 only if it is like a marriage ring or sphere,

dumbbell NOT C2.
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Differentiability & uniqueness

A function is differentiable if it looks like
the same linear function on all sufficiently small scales.

Derivatives as unique limit of rescalings.

Tobias Holck Colding Geometry of PDEs



Koch curve – uniqueness fails

Koch curve is a fractal; it is an iterative limit of broken lines.
Step

k=1

k=2

k=3

k=4

k=∞

k=0 ‘initiator’

‘generator’

When each broken line is almost flat:

On each scale the curve looks roughly like a line.

Yet under larger magnifications looks like a different line.
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Rescaling of arrival time functions

The flow & u are both smooth away from critical points,
i.e., away from points where ∇u = 0.

If 0 is critical point define rescalings

vλ(x) = λ−2 u(λ x) .

vλ satisfies same equation.

Homogeneous quadratic polynomials are preserved.

Two examples: cylinders & spheres:
Both have quadratic polynomials as arrival time.
For both vλ is independent of λ.
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Rescaling & regularity

Twice differentiable means:
There is a 2nd order Taylor expansion.

Thus must show that vλ(x) has a limit as λ→ 0.

A priori – no reason to expect any limit!

– Even for a subsequence.
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Rescaling of the flow

Huisken-Ilmanen-White get geometric blowups
– but depend on choice of subsequence.

For the flow:
Blowups = dilation-invariant solutions called shrinkers.

Most blowups are non-compact.

Might be like Koch?

For Koch: One sequence of rescalings gives one blowup,
another gives a different blowup.
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Blowup for monotone flows

For monotone flows, possible limits are classified:
Spheres & cylinders,

by Huisken-Sinestrari, White,
Haslhofer-Kleiner, Andrews, CM.

This classification relies on
a matrix maximum principle by Hamilton.
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Uniqueness

Are limits unique?

Or, do different subsequences give different limits?
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Uniqueness

Thm (CM): Uniqueness of blowups for all monotone flows.

Questions of uniqueness
have long been recognized in geometry

as fundamental.

Fundamental work of Allard-Almgren, Simon
on uniqueness questions for minimal varieties.
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Uniqueness & twice differentiabilty

Thm (CM): Uniqueness of blowups implies:

u looks like the same quadratic polynomial at all small scales.

This gives the 2nd order Taylor expansion
& twice differentiability.
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Singular set

Common in nonlinear PDE:

Solutions can have singularities.

Marriage ring:
The singular set can be a curve (1-dimensional).
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The size of the singular set

White (via dimension reduction):
1-dim’l, but measure =∞?

Koch curve has infinite length & non-unique blowups.

Key to bound the singular set: Uniqueness.

Thm (CM): Finite 1-dim’l measure.

Similar results hold in all dim.
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Dynamics

Uniqueness can be understood dynamically for rescaled flow.

Rescaled flow = magnifying continuously along the flow.

Uniqueness⇔ solution of rescaled flow with a limit point
has a unique limit.

This contrasts with wandering points in dynamics:
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Gaussian surface area & monotonicity

Rescaled flow is a gradient flow.

Gaussian surface area of n-dim’l submanifold Σ:

F (Σ) = (4π)−
n
4

∫
Σ

e− |x|2
4 .

Huisken:
F monotone ↓ for rescaled flow around origin.

Singularities at origin
= critical points of F

= equilibrium for rescaled flow.
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Lyapunov function

Entropy =
supremum of Gaussian surfaces areas
over all dilations t0 > 0 & translations x0

λ(Σ) = sup
t0>0,x0

F (t0 Σ + x0) .

Entropy is a Lyapunov function for mean
curvature & all rescaled mean curvature flow.
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Unstable structures

The catenoid is in equilibrium for surface tension,

perturbing it ever so slightly changes it completely.

ww�
It is unstable & will never occur in nature.

Tobias Holck Colding Geometry of PDEs



Stable structures

For the flow (not necessarily monotone):

What singularities are stable?
Which cannot be perturbed away?

Tobias Holck Colding Geometry of PDEs



Stability

In dynamical systems stability near an equilibrium
was investigated by Lyapunov.

If the flow starting out near an equilibrium
stays near the equilibrium forever,

then the equilibrium is Lyapunov stable.
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Generic singularities

Generic singularities
=

singularities that cannot be perturbed away.

Thm (CM):
Only generic singularities:

Shrinking spheres & cylinders – in all dim.
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Recognizing singularities

As one approaches a singularity & magnifies
at any time, one only sees part of the singularity.

Closer to the singularity one sees more,
yet always only a finite part.

Is a finite part enough
to recognize the singularity?
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Can one recognize the whole from a finite part?

Not in PDEs!

Closeness on a piece does NOT typically fix a solution.

A nontrivial harmonic function on Rn can be
arbitrarily small on a large set.

The real part of (x , y)→ ex+i y :

When x << 0. When 0 << x .

Tobias Holck Colding Geometry of PDEs



Can one recognize the whole from a finite part?

Not in geometry!

Ricci flat gravitational instantons contain

arbitrarily large, almost Euclidean regions.
Photo: Tamas Hausel.
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Shrinker principle

Contrast:
Strong rigidity for most important singularities

requires just the compact piece
& just that one knows roughly what it looks like.

This is the shrinker principle:
Uniqueness radiates outwards.

Originally discovered in mean curvature flow:

Thm (C-Ilmanen-M):
Generic singularities are strongly rigid;
a compact piece determines the whole space.
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Geometry & analysis

For most PDEs it is unreasonable to expect
that a finite part determines the entire space.

The shrinker principle is an example of how
the geometry unlocks the structure of the PDE.

Tobias Holck Colding Geometry of PDEs



Shrinker principle in Ricci flow

Shrinker principle holds for other equations.

Ricci flow is a system of PDEs (introduced by Hamilton)
that describes the evolution of a metric on a manifold.

Thm (CM): The shrinker principle also holds for Ricci flow.

Special case shown independently by Li-Wang,
using work of Brendle and Kotschwar.
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Shrinker principle in Ricci flow

A major issue in Ricci flow: Gauge group.

To recognize a metric one needs to look at it the “right” way.
In the wrong coordinate system it would be unrecognizable:

Metrics that could even be the same
look very different in different coordinates.

Need to understand∞-dim’l group of diffeomorphisms
(gauge group) on non-compact shrinkers.
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Shrinker principle in Ricci flow

To find “right” gauge: Solve a “canonical”
non-linear PDE that finds a diffeo, Φ.

Right gauge is orthogonal to the action
of∞-dim’l group of diffeo’s.

Show optimal bounds for the displacement:

x → dist(x ,Φ(x)) ,

that measures
“how different the right gauge is from the given one.”
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Concluding remarks

We have discussed several canonical equations,
where many key issues come up.

Seen interplay between analysis & geometry.

In particular, how:

Analysis helps understand geometry.

Geometry unlocks analysis,
– Optimal regularity.
– Stability of solutions.
– Geometry of diffeomorphism group.
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