
Summaries, May 10 and 12

Recall that from now on our fields are assumed to have characteristic zero.

Let K be an extension of a field F . The Galois group G(K/F ) is the group of F -automorphisms of K. A
splitting field K of a polynomial f(x) with coefficients in F is also called a Galois extension of F .

We have seen that if K is a Galois extension, then the order of the Galois group is equal to the degree of
the extension: |G(K/F )| = [K : F ].

It is also true that, for any finite field extension K/F ,
|G(K/F )| ≤ [K : F ], and that if |G(K/F )| = [K : F ], then K is a Galois extension of F . However, we
didn’t go over this in class.

We have also seen that, if G is a finite group of automorphisms of a field K and F = KG is the fixed field,
then [K : F ] = |G|. Therefore K is a Galois extension of F .

Corollary 1. If K/F is a Galois extension and G is its Galois group, then F is the fixed field KG.

This is true because, by definition of an F -automorphism, F ⊂ KG. Then the formula [K : F ] = [K :
KG][KG : F ] shows that [KG : F ] = 1, and therefore F = KG. �

adjoining square roots

Any field extension K/F of degree two is a splitting field, and it can be obtained by adjoining a square
root. If α is in K and not in F , then F ⊂ F [α] ⊂ K, and by counting degrees, one sees that α has degree
2 over F and that F [α] = K. If α is a root of the quadratic polynomial f(x) = x2 + bx + c and D is the
discriminant b2 − 4c, then F [α] = F [δ], where δ =

√
D.

Now let F be the field of rational numbers, and let K = F [α, β], be the field obtained by adjoining two
sqauare roots to F . We’ll use α =

√
3 and β =

√
5 as an example. Then β isn’t in the field F [α]. It has degree

2 over that field, and [K : F ] = 4.

We ask: Are there other square roots in K?
Of course, a number such as 72α shouldn’t be considered different. We should really ask for other field

extensions of degree 2 that are contained inK. The field F [γ], where γ = αβ =
√
15 is an example of another

such field.
The elements 1, α, β, γ form a basis for K over F . So to find all square roots algebraically, one would take

a combination δ = d + aα + bβ + cγ of this basis, and find a, b, c, d such that δ2 is in F . This leads to the
equations

ad+ 5bc = 0, bd+ 3ac = 0, cd+ ab = 0

I’ve never tried to solve these equations, because there is a much easier method, which is to look at the Galois
group.

The field K is the splitting field of the polynomial f(x) = (x2 − 3)(x2 − 5) over F , so it is a Galois
extension, and the Galois group G has order [K : F ] = 4. Since α2 is in F , an element σ of G must send α to
±α, and similarly, it must send β to ±β. And, when we know the images of α and β, σ is determined. Thus
the four elements of G are 1, σ, τ, στ , where

σ(α) = −α, σ(β) = β

τ(α) = α), τ(β) = −β
στ(α) = −α, στ(β = −β

Since σ2 = τ2 = 1, G is the product C2 × C2 of cyclic groups of order 2.

Now suppose that δ =
√
d is in K, with d an element of F that isn’t a square in F , and let L = K[δ]. Then

[L : F ] = 2, and since F ⊂ L ⊂ K, [K : F ] = 2. Also, K is a splitting field over L. Let its Galois group (of
order 2) be H . Since F ⊂ L, an L-automorphism of K is also an F -automorphism, so H ⊂ G. Therefore L
is the fixed field KH of the subgroup H of G oforder 2.

There are three subgroups of G(K/F ) of order 2. They are generated by the three elements of order 2 in
G, which are σ, τ , and στ . Therefore K contains three fields of degree 2 over F , and they are F [α], F [β] and
F [αβ]. There are no others.
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cubic equations

Let K be a splitting field over F of an irreducible polynomial f(x) = x3 − a1qx2 + a2x− a3 in F [x] of
degree 3, and let α1, α2, α3 be the roots of f in K, listed in an arbitrary order. We form a tower of fields:

F ⊂ F [α1] = F1 ⊂ F [α1, α2] = F2 ⊂ F [α1, α2, α3] = K

Since f is an irreducible cubic polynomial in F [x], the degree [F1 : F ] is 3. Next, f(x) has a root α1 in F1.
so in F1[x], f(x) = (x− α1)q(x) for some quadratic polynomial q(x) in F1[x] whose roots are α2, α3. That
polynomial may be irreducible in F1[x] or not. If it is reducible, then α2 and α3 are in F1, so F1 = F2 = K,
and [K : F ] = 3. On the other hand, if q(x) is an irreducible element of F2[x], then [F2 : F1] = 2 and
[K : F ] = 6. In any case, the third root α3 will be in F2, one reason being that the sum of the roots is the
quadratic coefficient a1 of f . It is in F , and α3 = a1 − α1 − α2. Summing up, the splitting field K will have
degree either 3 or 6 over F .

The Galois group G = G(K/F ) operates on the roots αi, and then because K = F [α1, α2, α3], an
element σ of G that fixes every one of the roots will be the identity automorphism. So G operates faithfully
on the roots, and by that operation, it becomes a subgroup of the symmetric group S3. Since we know that
|G| = [K : F ], we will have G = S3 if [K : F ] = 6, and G = A3 if [K : F ] = 3. The alternating group A3 is
the only subgroup of S3 of order 3.

How can we tell which of these two possibilities we have in a particular case?
Recall that the discriminant of f is the productD = (α1−α2)

2(α1−α3)
2(α2−α3)

2 of the squares of the
differences of the roots. The discriminant is an element of F . Its square root δ = (α1−α2)(α1−α3)(α2−α3)
is an element of K. If δ isn’t in F , then K contains a quadratic extension F [δ] of F , and the degree [K : F ] is
divisible by 2. Therefore [K : F ] = 6 if δ isn’t in F .

Next, you will be able to check that a permutation σ of the roots multiplies δ by the sign of that permutation.
Therefore, if δ is an element of F , then an F -automorphism of K must be an even permutation. In that case,
G = A3 and [K : F ] = 3. So the element δ determines the degree [K : F ] and the Galois group G(K/F ).

intermediate fields

Let K/F be a Galois extension. An intermediate field L is a field extension of F that is contained in K:
F ⊂ L ⊂ K. As we see in the cases discussed above, the intermediate fields are useful tools for determining
the structure of the extension. The Main Theorem describes these fields:

Main Theorem. Let K/F be a Galois extension with Galois group G. There is a bijective correspondence
between intermediate fields and subgroups of G. If H is a subgroup of G, the corresponding intermediate
field is the fixed field KH , and if L is an intermediate field, the corresponding subgroup is the Galois pgroup
G(K/L). If a subgroup H corresponds to the intermediate field L, then the degree [K : L] is equal to the
index [G : H] of H in G, and the degree [L : F ] is the order of H .

proof We must show two things:
• If H is the Galois group G(K/L) of an intermediate field L, then L is its fixed field KH .
• If L is the fixed field KH of a subgroup H of G, then H is the Galois group G(K/L).
Both are easy. IfK is a splitting field over F of a polynomial f(x) in F [x], then it is also a splitting field for the
smae polynomial over an intermediate fieldL. ThereforeK/L is a Galois extension, and |G(K/L)| = [K : L].

Let L be an intermediate field, and let H = G(K/L). Since K is a Galois extension of L, L is the fiexed
field of H

Let H be a subgroup and let L be the fixed field KH . Every element of H fixes L, so it is an L-
automorphism of K. Therefore H ⊂ G(K/L). By the Fixed field Theorem, [K : L] = |H|. Therefore
|H| = |G(K/L)|, which shows that H = G(K/L). �

Let’s exhibit the correspondence in the case that K is a splitting field of an irreducible cubic polynomial
and [K : F ] = 6. So the Galois group is the symmetric group

G = S3 = {1, σ, σ2, τ, στ, σ2τ}

with the usual relations σ3 = 1, τ2 = 1, and τσ = σ2τ . Let’s say that σ = (1 2 3) and τ = (2 3).
There are four proper subgroups, all cyclic: < σ >,< τ >,< στ >, and < σ2τ >. Therefore there

are exactly four intermediate fields in addition to F and K. They are F [δ], F [α1], F [α2], and F [α3]. In
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the correspondence between subgroups and intermediate fields, < σ > corresponds to F [δ] and < τ >
corresponds to F [α1].

Proposition 1. Let K be a splitting field of a polynomial f(x) in F [x], let G be the Galois group G(K/F ),
and let α1, ..., αn be the roots of f in K. Then G operates on the set of roots.
(i) The operation of G on the roots of f is faithful: if an element σ of G fixes every root, then σ is the identity.
Therefore the operation on the roots embeds G as a subgroup of the symmetric group Sn.
(ii) If f(x) is an irreducible polynmoial in F [x], then the operation is transitive: Fpor every i = 1, ..., n, there
is an element σ in G such that σ(α1) = αi.

proof (i) If an F -automorphism σ of K fixes every root, then because K is generated by the roots, σ is the
identity.
(ii) We must show that the roots form a G-orbit. Say that we have an orbit of order k. We number the roots so
that the orbit is α1, ..., αk. The coefficients of the polynomial g(x) = (x − α1) · · · (x − αk) with these roots
are symmetric functions in the orbit, so they are invariant, which means that g has coefficients in F . If f is
irreducible, it generates the ideal of all polynomials with roots α1, so f divides g, and therefore f = g. �

quartic equations

Let K be an splitting field of an irreducible quartic polynomial f(x) = x4 − a1x3 + a2x
2 − a3x+ a4 in

F [x], and let G be the Galois group of K/F . According to the proposition, G embeds as a transitive subgroup
of S4. Therefore its order is divisible by 4, and of course |G| divides |S4| = 24. The order can be 4, 8, 12 or
24.

The transitive subgroups of S4 are: S4, A4, D4, C4, D2, and they have orders 24, 12, 8, 4, 4, respectively.
We form a tower of field extensions:

F
4
⊂ F [α1]

≤3
⊂ F [α1, α2]

≤2
⊂ F [α1, α2, α3] = K

The degrees of the field extensions are given above the⊂ symbols. The last root α4 is in the field F [α1, α2, α3]
because the sum of the roots is a coefficient of f , and is in F .

How can we decide, in a given case, which group is the Galois group? The first thing is to look at the
discriminant D of f . (Of course we don’t want to compute the discriminant unless it is absolutely necessary.)
Let

δ =
√
D = (α1 − α2)(α1 − α3)(α1 − α4)(α2 − α3)(α2 − α4)(α3 − α4)

Lemma 1. With notation as above, δ ∈ F if and only if the Galois group G is a subgroup of the alternating
group A4.

The proof is similar to the proof for cubic equations.

Next, one can use Lagrange’s resolvent cubic to determine whether or not G contains an element of order
3. Let

β1 = α1α2 + α3α4, β2 = α1α3 + α2α4, β3 = α1α4 + α2α3

These are all of the elements that are sums of products of the roots αi. Therefore they form an S4-orbit. The
coefficients of the polynomial

g(x) = (x− β1)(x− β2)(x− β3) = x3 − b1x2 + b2x− b3

are symmetric functions in αi, so they are in the field F . For example, b2, the sum of the roots βi is the
symmetic function s2(α), which is the coefficient a2 of x2 in f . It isn’t hard to determine the other coefficients
in terms of the symmetric functions si(α) = ai. You can do this as an exercise.

One happy accident is that the discriminant of g is equal to the discriminant of f , from which it follows
that the discriminant of g isn’t zero. The discriminant of f isn’t zero because f is irreducible, but g may be
reducible. The discriminant of g is (β1 − β2)2(β1 − β3)2(β2 − β3)2. Using the following computation, it is
easy to check that the two dicriminants are the same:

(α1 − α4)(α2 − α3) = α1α2 + α3α4 − α1α3 − α2α4 = β1 − β2

3



Proposition 2. Let g bethe resolveny cubic of an irreducible polynomial f in F [x] of degree 4, and let K be a
splitting field for f over F .
(i) If the resolvent cubic g is irreducible over F , then G = S4 or A4.
(ii) If g has one root in F , then G is either D4 or C4.
(iii) If g has three roots in F , then G is D2.

We ran out of time for the proof, but it is simple:

proof The resolvent cubic g has roots in a splitting field. If g is irreducible, its roots will have degree 3 over
F , and therefore [K : F ] will be divisible by 3. Then G = S4 or A4.

With variable u1, u2, u3, u4, let w1 = u1u2 + u3u4, w2 = u1u3 + u2u4, and w3 = u1u4 + u2u3. The
symmetric group S4, operating on the set {ui} permutes w1, w2, w3, and the permutations that fix all three
of these three elements form the group D2 whose elements are (1), (12)(34), (13)(24), (14)(23). Therefore,
β1, β2, β3 are all in F , if and only if G is that dihedral group. The remaining possibility is that g has just one
root in F . Then G 6= S4, A4, D2, so G = D4 or C4. �

adjoining two square roots in succession

We consider an element α =
√
r + s

√
t with r, s, t in F . To find its irreducible polynomial f(x) over F ,

one way is to guess the other roots. Here, we guess that α′ =
√
r − s

√
t is also a root of f , and then −α and

−α′ might also be roots. We expand the polynomial

f(x) = (x− α)(x− α′)(x+ α)(x+ α′) = (x2 − α2)(x2 − α′2) = (x2 − (r + s
√
t))(x2 − (r − s

√
t)) =

= (x2 − r)2 − s2t = x4 − 2rx2 + (r2 − s2t)

If this polynomial is irreducible, it will be the irreducible polynomial for α over F , and the splitting field will
be K = F [α, α′].

Let’s take for example F = Q and α =
√
2 + 3

√
5. Then α′ =

√
2− 3

√
5, and f(x) = x4 − 4x2 − 41.

This polynomial is irreducible over F , as expected, so it is the irreducible polynomial for α over F . Then
[F [α] : F ] = 4. Since 2 + 3

√
5 is positive, α is real, and since 2− 3

√
5 is negative, α′ is complex. Therefore

α′ 6∈ F [α]. On the other hand,
√
5 is in F [α]. Therefore α′ has degree 2 over F [α], and since K = F [α, α′],

[K : F ] = 8. So the Galois group of K/F has order 8. It is the dihedral group D4.

It is possible that the polynomial f(x) of degree 4 is reducible. This happens for example when α =√
1 + 2

√
2. Computing as above, one finds that f(x) = x4 − 6x2 + 1, which factors:

x4 − 6x2 + 1 = (x2 + 2x− 1)(x2 − 2x− 1)

This reflects the fact that
√
1 + 2

√
2 = 1 +

√
2:

(1 +
√
2)2 = 1 + 2

√
2 + 2 = 3 + 2

√
2

Howver, for most choices of r, s, t, the Galois group of α =
√
r + s

√
t tends to be the dihedral group.

One more example. Let α =
√
5 +
√
5, α′ =

√
5−
√
5. Proceeding as above,

f(x) = (x− α)(x− α′)(x+ α)(x+ α′) = x4 − 10x2 + 20

which is irreducible over F = Q, by the Eisenstein Criterion. In this case, αα′ =
√
20 = 2

√
5. Therefore,

since
√
5 is in the field F [α], so is α′. ThenK = F [α] and [K : F ] = 4. The Galois groupG ofK/F operates

transitively on the roots of f , so there is an element σ in G such that σ(α) = α′. Then σ(5 +
√
5) = σ(α2) =

α′
2
= 5−

√
5, and σ(

√
5) = −

√
5. Therefore σ(αα′) = σ(2

√
5) = −2

√
5 = −σ(αα′). Since σ(α) = α′),

we must have σ(α′) = −α. Then when the roots are listed in the order α, α′,−α,−α′, σ = (1 2 3 4). The
Galois group G is the cyclic group of order 4.

roots of unity

Let F = Q. Let p be a prime, and let ζ be the pth root of unity e2πi/p. The irreducible polynomial for ζ
over F is f(x) = xp−1+· · ·+x+1 = (xp−1)/(x−1). It was proved that this polynomial is irreducible using
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the Eisenstein Criterion. The roots of f are the powers ζ, ζ2, ..., ζp−1, so the splitting fieldK is generated over
F by ζ, and [K : F ] = p− 1.

Proposition 3. (i) The Galois group G of K/F is isomorphic to the multiplicative group F×p of nonzero
integers modulo p.
(ii) G is a cyclic group.

proof The group G operates transitively on the roots of f . Let σi, i = 1, ..., p − 1, be the elements such that
σi(ζ) = ζi. The fact that G ≈ F×p follows from this equation, in which indices are to be read modulo p:

σiσj(ζ) = σi(ζ
j) = ζij

Then G is cyclic because F×p is cyclic. We’re supposed to know that. �

A generator for the cyclic group F×p called a primitive root modulo p, but which residue classes are primi-
tive roots is a mystery. When p = 5, 2 is a primitive root. Its powers run through the nonzero residue classes
in this order: 20 = 1, 21 = 2, 22 = 4, 23 = 3, 24 = 1. (We won’t bother to put bars over the residue classes.)
However, 2 isn’t a primitive root moduulo 7, because 23 ≡ 1 modulo 7. Instead, 3 is a primitive root modulo
7: 30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. The primitive root isn’t unique: 5 is also a
primitive root modulo 7.

Let p = 7, and let σ be the element of G such that σ(ζ) = ζ3. The powers of the primitive root 3 runs
through the nonzero classes modulo 7 in the order listed above, and σ runs through the roots of f(x) in the
corresponding order:

σ : ζ1 → ζ3 → ζ2 → ζ6 → ζ4 → ζ5 → ζ1

Next, 2 is a primitive root modulo 11. Its powers modulo 11, listed, in order, are 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1. 8,
7, and 6 are also primitive roots modulo 11.

We go back to the case p = 7, in which G is a cyclic group of order 6 generated by the element σ
described above. This group has two proper subgroups: H =< σ2 >, and N =< σ3 >. So there are just
two intermediate fields KH and KN properly between F and the splitting field K. Since H has order 3, the
degree [K : KH ] is 3, and since [K : F ] = 6, [KH : F ] = 2. To determine the fixed field, we look at the
orbit of σ2, operatng on the powers of ζ. The element σ2 runs through the powers in the order shown above.
Therefore σ2 operates as

ζ → ζ2 → ζ4 → ζ and ζ3 → ζ6 → ζ5 → ζ3

Let α be the sum over the first orbit: α = ζ + ζ2 + ζ4and let α′ = ζ3 + ζ6 + ζ5. These elements are roots of a
quadratic polynomial: α+α′ is the sum of all powers of 3, which is the negative of the cofficient 1 of xp−2 in
f(x): α+α′ = −1. Next, to compute αα′ we must multiply the three terms making up α by those making up
α′. There will be a large number of occurences of the symbol ζ. So we use a shorthand notation. Let [1, 2, 4]
denote the sum ζ + ζ2 + ζ4. Then α = [1, 2, 4]. Similarly, α′ = [3, 6, 5]. These are the exponents, so when
we multiply, we must add them, modulo 7. For example, [1][3, 6, 5] = [4, 0, 6]. Then

αα′ = [1, 2, 4][3, 6, 5] = [4, 0, 6, 5, 1, 0, 0, 3, 2]

Here 0 stands for ζ0 = 1. Besides the zeros, right side of the equation is the sum of all powers of ζ different
from 1, which is −1. So the right side is −1 + 3 = 2: αα′ = 2. The irreducible equation for α ovr
F is x2 + x + 2. Its roots α, α′ are 1

2 (1 ±
√
−7). Looking at the roots of unity on the unit circle, one

sees that the imaginary part of α is positive. So the sign is + for α and − for α′. Since [KH : F ] = 2,
K = f [α] = F [

√
−7].

The fixed field HN of the subgroup N =< σ2 > can be determined in the same way. We take ths sums
of every third power of ζ in the list of power of 3. Let β1 = [1, 6], β2 = [3, 4], and β3 = [2, 5]. These
elements are roots of a cubic polynomial. Here β1 + β2 + β3 = −1. Next β1β2 = [4, 5, 2, 3]. We don’t
get any zeros here. The second symmeric function s2(β) = β1β2 + β1β3 + β2β3 is a sum of 12 products.
This sum must include every nonzero class twice. So s2(β) = −2. Finally, since we have computed β1β2,
β1β2β3 = [4, 5, 2, 3][2, 5] = [6, 2, 0, 3, 4, 0, 5, 1] = 1 + 1− 1 = 1. The irreducible polynomial for βi over F
is x3 + x2 − 2x+ 1.
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