
Summaries, March 29 and 31

Plane Lattices

Let A be a lattice in R2 or in C. A pair of elements (α1, α2) is a lattice basis if every element of A is an
integer combination of those two elements.

Given such a lattice basis, let Π(A) denote region of the plane that is obtained from the parallelogram with
vertices 0, α1, α2, α1 +α2 by removing the ’far edges’ [α1, α1 +α2] and [α2, α1 +α2]. We refer to this region
as a parallelogram though two of the edges are missing.

The lattice basis (α1, α2) will be a basis for the plane as a real vector space. Any real vector β can be
written uniquely as a combination rα1 + sα2 with r, s in R. We take out the integer parts of r and s, writing
r = m+ r0 and s = n+ s0 with m,n in Z and 0 ≤ r0, s0 < 1. Then β = a+ β0, where a is in the lattice A
and β0 is in the parallelogram Π(A) described above.

Thus the translates of the parallelogram Π(A) by elements of A cover the plane, and because we’ve elimi-
nated two edges, they cover the plane without overlaps.

We denote the area of Π(A) by ∆(A). Say that αi is the vector (αi1, αi2)t. Then, up to sign, ∆(A) is
equal to the determinant ±(α11α22 − α12α21). It isn’t worth taking time to explain the signs.

Inclusions of Lattices

Let B ⊂ A be two lattices, with lattice bases (β1, β2) and α1, α2). Then

(β1, β2) = (α1, α2)Q

where A is a 2× 2 integer matrix, and

∆(B) = ±∆(A)detQ

The additive cosets of B in A are the sets of the form a+B, with a in A, and, as always, the index [A : B]
of B in A is the number of distinct cosets. Every coset of B contains just one point in the parallelogram Π(A).
So the index [A : B] of B in A is equal to the number of points of A in the parallelogram Π(B). All of the
translates b+ Π(B) by vectors in B contain the same number of points.

Lemma 1. The index [A : B] is equal to ∆(B)/∆(A).

proof Let (β1, β2) be a lattice basis forB, and let Π(nB) be the parallelogram whose vertices are 0, nβ1, nβ2, n(β1+
β2), with its far edges removed. Its area is n2∆(B). The number of points a of the lattice A that are in
Π(nB) is n2[A : B]. Moreover, the region Π(nB) is approximately covered by the translates of ∆(A) by
the n2[A : B] points a. The covering isn’t perfect along the boundary, but the area of Π(nB) is approx-
imately equal to (n2[A : B])∆(A). This is the usual approximation of the integral

∫ ∫
R
dα1dα2. Thus

∆(B) ≈ [A : B]∆(A), and as n tends to infinity, the error tends to zero. �

Corollary 1. Le A ⊃ B ⊃ C be ideals of R. Then [A : C] = [A : B][B : C]. �

Estimating the Shortest Vector in a Lattice.

Let α1 be a (nonzero) vector of minimal length in a lattice A. We choose coordinates so that α1 is horizontal:
α1 = (a, 0) with a > 0. Then |α1| = a.

If β is an element of A not on the line spanned by α1, we may add an integer multiple of α1 to obtain a
vector α2 = β + nα1 of the form (b, c), with −a < b ≤ a. We choose such a vector α2 with c > 0 minimal.
Then there will be no point of A in the parallelogram with vertices 0, α1, α2, α1 + α2, and (α1, α2) will be
a lattice basis of A. The area of the parallelogram Π(A) spanned by this lattice is ac. Now because α1 has
minimal length, α2 cannot be in the circle of radius a about the points 0, α1, or −α1. Then c cannot be less
than (

√
3/2)a =

√
3/2)|α1|. (See 13.10.8.)

The area ∆(A) of the parallelogram spanned by the lattice basis is ∆(A) = ac ≥ |α1|2
√

3/2. Therefore

|α1|2 ≤
2√
3

∆(A)
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Corollary 2. Every lattice A contains a nonzero vector α with |α|2 ≤ 2√
3
∆(A). �

multiplication by n

If A is a lattice, nA is the lattice consisting of the elements that are multiples of n of elements of A. Its
index in A is [A : nA] = n2. (We used this fact above, in the proof of Lemma 1.) Also, if A ⊃ B are lattices,
then [A : B] = [nA : nB], simply because multiplication by n is an automorphism of the vector space R2.

March 31

Back to the Ring of Integers in Q[δ].

Recall that every ideal A (not the zero ideal) of the ring of integers R is product of prime ideals: A =
P1 · · ·Pk in a unique way, up to order.

Proposition 1. (i) Let P be a prime ideal of R. There is an integer prime p such that, either P = (p) (= pR),
or PP = (p).

(ii) Let p be an integer prime. There is a prime ideal P of R such that, either (p) = P , or (p) = PP .

proof (i) The Main Lemma tells us that PP is a principal ideal (n) = nR, generated by a positive integer n.
We factor n into prime integers: n = p1 · · · pk. The principal ideal (n) is the product of the principal ideals
(pi): PP = (n) = (p1) · · · (pk), and each (pi) can befactored into prime ideals. Since PP has just two
prime factors, k ≤ 2. If k = 1, then PP = (p1). If k = 2, then P = (p1).

(ii) We factor (p) into prime ideals in R: (p) = P1 · · ·Pk. Since (p) = (p), we also have (p) = P 1 · · ·P k,
and (p)2 = (P 1P1) · · · (P kPk). The k products on the right are principal ideals, say P iPi = (ni). Then
p2 = n1 · · ·nk, and therefore k ≤ 2. If k = 1, then (p) = P1 (= P 1). If k = 2, then (p) = P 1P1. �

Note that, when p is given and (p) = P or P (p) = PP , the ideal P or the pair of prime ideals P, P are
uniquely detemined. This follows from the uniqueness of the factorization of (p).

Proposition 2. Let A,B,C be ideals, with B ⊃ C. Then the index [B : C] is equal to the index [AB : AC].

proof Since A is a product of prime ideals, it is enough to prove this when A is a prime ideal. Then we can
use induction. So we must show that [B : C] = [PB : PC] when P is a prime ideal. By Proposition 1, there
is a prime integer such that P = (p) or PP = (p). The ideal (p)B is equal to pB, and (p)C = pC. Therefore
[B : pB] = p2 = [C : pC] and [B : C] = [pB : pC].

So if P = (p), then [PB : PC] = [pB : pC] = [B : C].
Suppose that PP = (p). We inspect the inclusions B ⊃ PB ⊃ PPB = pB. We can’t have B = PB,

because B = RB. If we had RB ⊃ PB, the Cancellation law would show that R = P . So B > PB.
Similarly, PB > PPB = pB. Since [B : pB] = p2 and since [B : pB] = [B : PB][PB : pB], we must
have [B : PB] = [PB : pB] = p, and similarly, [C : PC] = p.

Now the inclusion B ⊃ C ⊂ PC shows that [B : PC] = [B : C]p, and the inclusion B ⊃ PB ⊃ PC
shows that [B : PC] = p[PB : PC]. Therefore [B : C] = [PB : PC]. �

the Norm

This is just terminology. The norm of a complex number is defined to be its square length: N(α) = αα =
|α|2.

If A is an ideal of R, then AA = (n) for sme positive integer n. Tht integer is defined to be the norm of
A: N(A) = n if AA = (n).

Note that N(αβ) = N(α)N(β) and N(AB) = N(A)N(B).

Proposition 3. Let A be an ideal of R. Then

N(A) = [R : A] =
∆(A)

∆(R)

proof The second equality has been proved before. We show that N(A) = [R : A]:
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n2 = [R : nR] = [R : AA] = [R : A][A : AA][R : A][RA : AA] = [R : A][R : A] = [R : A]2.
�

Ideal Classes

The ideal classes are equivalence classes of ideals, the relation being that A ∼ A′ if A′ = cA, for some
complex number c. Writing c = reiθ, the geometric meaning of this is that the lattice A′ is obtained from
the lattice by stretching A by the factor r and rotating by the angle θ. Thus the ideals are similar geometric
figures, the similarity being orientation-preserving. I don’t know if there is a term for orientation-preserving
similarity, but we’ll call such a similarity a proper similarity. So two ideals are in the same ideal class if they
are properly similar geometric figures. We have seen that when δ =

√
−5, there are two ideal classes.

If A is an ideal, we denote its class by 〈A〉.

Lemma 2. The class of the unit ideal R consists of the principal ideals.

proof An ideal A is similar to R if and only if A = cR, and then c = c · 1 is in A and in R. This means that A
is a principal ideal. �

Note that whenever A′ = cA, the scalar c will be an element of the field K = Q[δ], but it needn’t be an
element of R.

Let C denote the set of ideal classes.
The product of two ideal classes is defined by the rule 〈A〉〈B〉 = 〈AB〉, where AB is the product ideal. If

A ∼ A′ and B ∼ B′, say A′ = cA and B′ = dB, then A′B′′ = cdAB. So the product is well-defined. It is
associative and commutative, and the class 〈R〉 of the unit ideal is an identity element that we may denote by
1 as usual. Moreover, since AA = (n) is a principal ideal, 〈A〉〈A〉 = 〈(n)〉 = 1. So 〈A〉 is an inverse of 〈A〉.

Corollary 3. With multiplication defined as above, the set C of ideal classes becomes an abelian group, the
ideal class goup. �

Proposition 4. The ideal class group is the trivial group if and only if R is a unique factorization domain.

proof The class group of R is trivial if and only if every deal of R is principal. Any principal ideal domain
has unique factorization of elements. Conversely, suppose that the ring R of algebraic integers has unique
factorization of elements. We show that every ideal A is principal. Since A is a product of prime ideals, it
suffices to show that every prime ideal P is principal. Let π be an irreducible element of P . Since R is a
UFD, π is a prime element, and it generates a prime ideal. In the ring of algebraic integers, a prime ideal is a
maximal ideal. Therfore (π) is a maximal ideal, and since (π) ⊂ P , (π) = P . So P is a principal ideal. �
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