Summaries, March 29 and 31

Plane Lattices

Let A be a lattice in R? or in C. A pair of elements (a1, ) is a lattice basis if every element of A is an
integer combination of those two elements.

Given such a lattice basis, let II(A) denote region of the plane that is obtained from the parallelogram with
vertices 0, a1, a2, a + g by removing the *far edges’ [a1, a1 + o] and [ag, a1 + 2. We refer to this region
as a parallelogram though two of the edges are missing.

The lattice basis («v, ap) will be a basis for the plane as a real vector space. Any real vector 8 can be
written uniquely as a combination ra; + sap with 7, s in R. We take out the integer parts of r and s, writing
r=m-+rgand s =n + sg withm,n inZ and 0 < rg, sgp < 1. Then 8 = a + [y, where a is in the lattice A
and [y is in the parallelogram II(A) described above.

Thus the translates of the parallelogram II(A) by elements of A cover the plane, and because we’ve elimi-
nated two edges, they cover the plane without overlaps.

We denote the area of I1(A) by A(A). Say that «; is the vector (1, a;2)t. Then, up to sign, A(A) is
equal to the determinant +(c1 e — a2ae1). It isn’t worth taking time to explain the signs.

Inclusions of Lattices

Let B C A be two lattices, with lattice bases (1, 32) and a1, a). Then

(Blv 52) = (0417 QQ)Q
where A is a 2 x 2 integer matrix, and
A(B) = £A(A)det Q

The additive cosets of B in A are the sets of the form a + B, with a in A, and, as always, the index [A : B|
of B in A is the number of distinct cosets. Every coset of B contains just one point in the parallelogram IT( A).
So the index [A : B] of B in A is equal to the number of points of A in the parallelogram II(B). All of the
translates b + II(B) by vectors in B contain the same number of points.

Lemma 1. The index [A : B]is equal to A(B)/A(A).

proof Let (31, B2) be a lattice basis for B, and let II(nB) be the parallelogram whose vertices are 0, n1, nf32, n(S1+
B2), with its far edges removed. Its area is n2A(B). The number of points a of the lattice A that are in
II(nB) is n?[A : B]. Moreover, the region II(nB) is approximately covered by the translates of A(A) by
the n?[A : B] points a. The covering isn’t perfect along the boundary, but the area of II(nB) is approx-
imately equal to (n?[A : B])A(A). This is the usual approximation of the integral [ [, doydas. Thus
A(B) = [A: BJA(A), and as n tends to infinity, the error tends to zero. O

Corollary 1. Le A D B D C be ideals of R. Then [A: C] = [A : B][B: C]. O
Estimating the Shortest Vector in a Lattice.

Let vy be a (nonzero) vector of minimal length in a lattice A. We choose coordinates so that «; is horizontal:
ai = (a,0) with @ > 0. Then || = a.

If 3 is an element of A not on the line spanned by «1, we may add an integer multiple of a; to obtain a
vector aie = 3 + nay of the form (b, ¢), with —a < b < a. We choose such a vector ay with ¢ > 0 minimal.
Then there will be no point of A in the parallelogram with vertices 0, a1, a2, a1 + o, and (o, ) will be
a lattice basis of A. The area of the parallelogram II(A) spanned by this lattice is ac. Now because a; has
minimal length, as cannot be in the circle of radius a about the points 0, a1, or —aq. Then ¢ cannot be less
than (v/3/2)a = v/3/2)|a1]. (See 13.10.8.)

The area A(A) of the parallelogram spanned by the lattice basis is A(A) = ac > |a;|?v/3/2. Therefore

o |? < %A(A)
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Corollary 2. Every lattice A contains a nonzero vector « with |a|? < %A(A). O

multiplication by n

If A is a lattice, nA is the lattice consisting of the elements that are multiples of n of elements of A. Its
index in A is [A : nA] = n?. (We used this fact above, in the proof of Lemma 1.) Also, if A D B are lattices,
then [A : B] = [nA : nB], simply because multiplication by 7 is an automorphism of the vector space R2.

March 31
Back to the Ring of Integers in Q[0].

Recall that every ideal A (not the zero ideal) of the ring of integers R is product of prime ideals: A =
P, - - Py in a unique way, up to order.

Proposition 1. (i) Let P be a prime ideal of R. There is an integer prime p such that, either P = (p) (= pR),
or PP = (p).

(i) Let p be an integer prime. There is a prime ideal P of R such that, either (p) = P, or (p) = PP.

proof (i) The Main Lemma tells us that PP is a principal ideal (n) = nR, generated by a positive integer 7.
We factor n into prime integers: n = p; - - - pg. The principal ideal (n) is the product of the principal ideals
(p;): PP = (n) = (p1)--- (px), and each (p;) can befactored into prime ideals. Since PP has just two
prime factors, k < 2. If k = 1, then PP = (p;). If k = 2, then P = (py).

(i) We factor (p) into prime ideals in R:  (p) = Py - - P. Since (p) = (p), we also have (p) = Py --- Py,
and (p)? = (P1P1)---(PrPg). The k products on the right are principal ideals, say P;P; = (n;). Then
p? =ny---ny, and therefore k < 2. If k = 1, then (p) = Py (= Py). If k = 2, then (p) = P, P,. O

Note that, when p is given and (p) = P or P(p) = PP, the ideal P or the pair of prime ideals P, P are
uniquely detemined. This follows from the uniqueness of the factorization of (p).

Proposition 2. Let A, B, C be ideals, with B D C. Then the index [B : C] is equal to the index [AB : AC].

proof Since A is a product of prime ideals, it is enough to prove this when A is a prime ideal. Then we can
use induction. So we must show that [B : C] = [PB : PC] when P is a prime ideal. By Proposition 1, there
is a prime integer such that P = (p) or PP = (p). The ideal (p) B is equal to pB, and (p)C = pC'. Therefore
[B:pB]=p?>=[C:pCland [B:C] = [pB : pC].

Soif P = (p), then [PB : PC] = [pB : pC] = [B : C.

Suppose that PP = (p). We inspect the inclusions B D PB D PPB = pB. We can’t have B = PB,
because B = RB. If we had RB O PB, the Cancellation law would show that R = P. So B > PB.
Similarly, PB > PPB = pB. Since [B : pB] = p? and since [B : pB] = [B : PB][PB : pB], we must
have [B : PB| = [PB : pB] = p, and similarly, [C' : PC] = p.

Now the inclusion B O C' C PC shows that [B : PC| = [B : C|p, and the inclusion B D PB D PC
shows that [B : PC| = p[PB : PC]. Therefore [B : C] = [PB : PC|. O

the Norm

This is just terminology. The norm of a complex number is defined to be its square length: N (o) = aa =
.

If A is an ideal of R, then AA = (n) for sme positive integer n. Tht integer is defined to be the norm of
A: N(A) =nif AA = (n).

Note that N (af) = N(a)N(f) and N(AB) = N(A)N(B).

Proposition 3. Let A be an ideal of R. Then

N(A)[R:A]igg

proof The second equality has been proved before. We show that N(A) = [R: A]:
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n?=[R:nR]=[R:AA] = [R: AJ[A: AA][R: A][RA: AA| = [R: A|[R: A] = [R: A%

Ideal Classes

The ideal classes are equivalence classes of ideals, the relation being that A ~ A’ if A’ = cA, for some
complex number c. Writing ¢ = re*?, the geometric meaning of this is that the lattice A’ is obtained from
the lattice by stretching A by the factor r and rotating by the angle 6. Thus the ideals are similar geometric
figures, the similarity being orientation-preserving. I don’t know if there is a term for orientation-preserving
similarity, but we’ll call such a similarity a proper similarity. So two ideals are in the same ideal class if they
are properly similar geometric figures. We have seen that when § = /=5, there are two ideal classes.

If A is an ideal, we denote its class by (A).
Lemma 2. The class of the unit ideal R consists of the principal ideals.

proof An ideal A is similar to R if and only if A = cR, and then ¢ = ¢- 1 isin A and in R. This means that A
is a principal ideal. O

Note that whenever A" = cA, the scalar ¢ will be an element of the field X' = Q[¢], but it needn’t be an
element of .

Let C denote the set of ideal classes.

The product of two ideal classes is defined by the rule (A)(B) = (AB), where AB is the product ideal. If
A~ A"and B~ B',say A’ = cA and B’ = dB, then A’B"” = cdAB. So the product is well-defined. It is
associative and commutative, and the class (R) of the unit ideal is an identity element that we may denote by
1 as usual. Moreover, since AA = (n) is a principal ideal, (A)(A) = ((n)) = 1. So (A) is an inverse of (A).

Corollary 3. With multiplication defined as above, the set C of ideal classes becomes an abelian group, the
ideal class goup. U

Proposition 4. The ideal class group is the trivial group if and only if R is a unique factorization domain.

proof The class group of R is trivial if and only if every deal of R is principal. Any principal ideal domain
has unique factorization of elements. Conversely, suppose that the ring R of algebraic integers has unique
factorization of elements. We show that every ideal A is principal. Since A is a product of prime ideals, it
suffices to show that every prime ideal P is principal. Let 7w be an irreducible element of P. Since R is a
UFD, 7 is a prime element, and it generates a prime ideal. In the ring of algebraic integers, a prime ideal is a
maximal ideal. Therfore (7) is a maximal ideal, and since (7) C P, () = P. So P is a principal ideal. O



