
Summaries, March 17 and 19

Factoring Polynomials.

We consider the problem of factoring a given polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

with rational coefficients.
First, we may as well clear the denominators. So we can suppose that f has integer coefficients. The cost

of doing this is that, whereas with rational coefficients we aan assume that f is monic, i.e., that an = 1, we
can’t do this if we want integer coefficients. However, if a polynomial

g(x) = brx
r + · · ·+ b0

divides f in Q[x], then if we make it primitive, the quotient will have integer coefficients too. This was
discussed before. So at the cost of working with nonmonic polynomials, we can stay with integers.

(Recall that g is primitive if bi are integers for all i, they have no common divisor, and br is positive.)
The simplest case is that g has degree 1, g = b1x + b0. Then if g divides f , b1 divides an and b0 divides

a0. Since an and a0 have finitely many intger divisors, there are finitely many linear polynomials to check for
dividing f . Of course we prefer not to do such a check.

It is harder to decide if f has a divisor g of degree 2.

Reduction modulo p

The homomorphism Z[x] π−→ Fp[x], p a prime integer, is a useful tool for studying divisibility. We denote
the image π(f) by f as usual:

f(x) = anx
n + · · ·+ a0

If f factors, f = gh, then f = gh, and provided that p doesn’t divide the leading coefficient an of f , g and h
will have the same degrees as g and h, respectively. So if we factor f , we will, among other things, know the
degrees of possible factors of f . This is helpful because there are finitely many polynomials of a given degree
in Fp[x], so factoring of f can be done in finitely many steps.

The simplest application is to show that a polynomial f is irreducible. If we suspect that f is irreducible,
we can reduce modulo som prime p. If f turns out to be irreducible, then we will have proved that f is
irreducible.

Let’s take the prime p = 2. There are two rules making computation modulo 2 particularly simple. Let R
be a ringR of characteristi 2, i.e., in which 1+1 = 0. Then, first, if a is inR, then, then a+a = a(1+1) = 0,
so a = −a. This means that we can bring an element a that appears on one side of any equation to the other
side without changing it. Second, if a and b are in R, then (a+ b)2 = a2+ b2 becauseth cross term 2ab is zero.

OK: Let’s list the irrducible polynomials in F2[x]. First, in degree 1 there are two polynmials x and x+ 1,
and obviously, both are irreducible. We use the “sieve method” to find the irrducible polynomials of degree 2.
The polynomials of degree 2 are:

x2, x2 + x, x2 + 1, x2 + x+ 1

The first two have 0 as root, and not irreducible. The third one x2 + 1 has root 1, also not irreducible. The last
one, x2 + x+ 1 doesn’t have 0 or 1 as root. it is the only irreducible polynomial of degree 2.

We see here two necessary conditions that a polynomial must satisfy in order to be irreducible: The constant
coefficient must be 1. If it is 0, then 0 is a root, and there must be an odd number of monomials with coefficient
1. If the number of those monomials is even, then 1 is a root.

Any reducible polynomial of degree 5 or less must have a linear factor or an irreducible quadratic factor. If
it is made up of an odd number of monomials including 1 and is irreducible, it must be divisible by x2+x+1.
And it isn’t hard to check divibility by that polynomial.

One way to can make that check easily is to look at the quotient ringK = F2[x]/I , where I is the principal
ideal generated by g = x2 + x+ 1. Since g has degree 2, the residues of 0, 1, x, x2 form a basis for K, which
is therefore a vector space of dimension 4 over the field F2. Let’s use the same notation 0, 1, x, x2 forthe
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residues. Since the residue of x2+x+1 is zero, x2 = x+1 in K. Since g is irreducible, K is a finite domain,
and therefore a field. The multiplicative group K× of nonzeo elements of K has order 3. It is a cyclic group.
generated by any element different from 1, for example by x (more precisely, its residue). Then the powers of
x run through the group K×:

1, x, x2 = x+ 1, x3 = 1, x4 = x, x5 = x+ 1, ...

Now to check whether a polynmial such as f = x5 + x3 + x2 + x + 1 is irreducible in F2[x], we
look at its residue f in F2[x]/I . Working modulo g, we substitute the values of the powers, obtaining f =
(x+1) + 1 + (x+1) + x + 1. We cancel pairs of xs and pairs of 1s, and are left with x. Therefore f isn’t
zero and f isn’t divisible by x2+x+1. Since it has an odd number of terms and 1 appears, f is an irreducible
element of F2[x]. Of course, there are otherways to do this.

the Eisenstein Criterion

It is easiest to understand this by going through an example. Let f = x5 + 3x3 − 6x2 + 3. Reducing
modulo 3, we get the polynomial f = x5 in F3[x]. Now suppose that f were reducible, say f = gh, where
g = x2 + b1x + b0 and h = x3 + · · · + c0. Then in F5[x], we will have f = gh, and since f = x6, g = x2

and h = x3. Therefore the coefficients b1, b0, and c2, c1, c0 are all divisible by 3. The constant term of f is the
product b0c0. So it must be divisible by 32. Since the constant term is 3, this is a contradiction. So we can’t
have f = gh.

The principle at work here is the Eisenstein Criterion: Let f(x) = anx
2+· · ·+a0 be an integer polynomial

and let p be a prime integer. Suppose that

• p doesn’t divide an,
• p divides all other coefficients an−1, ..., a0, and
• p2 doesn’t divide a0.

Then f is irreducible in Z[x] and in Q[x].
The proof is the same as the one given in the example.

The Eisenstein Criterion doesn’t apply often, but it is very useful when it does apply. Its most important
application is to prove that the cyclotomic polynomial φ(x) = xp−1 + xp−2 + · · ·+ x+ 1 is irreducible when
p is a prime. (When p is not a prime, this polynomial won’t be irreducible.) The cyclotomic polynomial is the
result of dividing xp − 1 by x− 1:

xp − 1 = (x− 1)(xp−1 + · · ·+ x+ 1) = (x− 1)φ(x)

To prove that φ(x) is irreducible, we substitute x = y + 1 into this equation:

(y + 1)p − 1 = yφ(y + 1)

If φ(x) factors, so does φ(y + 1). So it suffices to prove that φ(y + 1) is irreducible. We expand the left side
of the equation:

(y + 1)p − 1 =
(
yp +

(
p

1

)
yp−1 + · · ·

(
p

p− 1

)
y + 1

)
− 1

Dividing both sides of the equation by y,

yp−1 +

(
p

1

)
yp−2 + · · ·

(
p

p− 1

)
= φ(y + 1)

Now,
(
p
i

)
is divisible by p for every i = 1, ..., p − 1. The reason is that

(
p
i

)
= p!

i!(p−i)! . In this fraction, the
numerator is divisible by p but the denominator is not. The hypotheses of the Eisenstein Criterion are satisfied,
so φ(y + 1) and φ(x) are irreducible.
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March 19: Imaginary Quadratic Number Fields

a particular case We look at the ring R = Z[δ], with δ =
√
−5. The elements of R have the form a+ bδ with

a, b ∈ Z.
The example

2 · 3 = 6 = (1 + δ)(1− δ)

shows that factoring in R isn’t unique. It is easy to check that the factors 2, 3, 1 + δ and 1− δ are irreducible,
and that they aren’t associates. The method of handling arithmetic in such a ring was one of the important
developments in number theory in the 19th century.

an aside Let R be a principal ideal domain, and suppose that we have two factorizations in R, say au = bv.
To reconcile the two sides, we would look for a common divisor of a and b. Their greatest common divisor in
R is the element d that generates the ideal aR + bR. Then we would have a = da′ and b = db′ with a′, b′ in
R. We’d cancel d from both sides of the equation da′u = db′v and we left with a smaller pair of factorizations
a′u = b′v to reconcile.

Now: Our ring R = Z[delta] isn’t a principal ideal domain, and there is no element (other than ±1) that
divides both 2 and 1 + δ. However, there is an ideal that contains the two elements, namely the ideal I that is
generated by the two elements: 2R+(1+δ)R. The elements of this ideal are combinations r · · · 2+r′ ·(1+δ)
with r and r′ in R.

Let’s write the ideal of a ringR that is generated by some elements a1, ..., ak using parnthesis, as (a1, ..., ar).
The elements of (a1, ..., ar) are combinations r1a1 + · · ·+ rkak with coefficients ri in R. With this notation,
the ideal I is (2, 1 + δ). Let’s denote this ideal by A.

You will be able to check that the elements of the ideal A = (2, 1 − δ) are the complex conjugates of the
elements of A. The ring R is equal to its complex onjugate, so the conjugateof an ideal is an ideal. Similarly
we can consider the ideals B = (3, 1 + δ), and B = (3, 1− δ).

We need to define the product ideal. If I an J are ideals of a ring R, the notation IJ stands for the set of
elements of R that are finite sums of products x1y1 + · · ·+ xnyn with xi in I and yi in J , and arbitrary n. It
doesn’t consist only of the products themselves.

If I is generated by a1, ..., ak, I == (a1, ..., ak), and J = (b1, ..., bb`), the product IJ will be generated
by the k` products {aibj}.

Going back to our four ideals A,A,B,B, we form the product AB = (2, 1+ δ)(3, 1+ δ). It is generaated
by the four products:

AB = (6, 2(1 + δ), 3(1 + δ), (1 + δ)2)

We don’t need to evaluate (1 + δ)2. What we see is that all four of the generators for AB are divisible by
1 + δ. Therefore the principal ideal (1 + δ) conntains AB. Moreover, 1 + δ is the difference of the third and
second generators of AB, so it is in AB, and therefore (1+ δ) ⊂ AB. Putting these two conclusions together,
we find that AB = (1 + δ). Similarly, one. So finds that AB = (1− δ), AA = (2), and BB = (3). So

(AA)(BB) = (2)(3) = (6) = (1 + δ)(1− δ) = (AB)(AB)

So uniqueness of factoring is saved by looking at ideals.
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