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Summary, February 26 and March 1

I plan to explain the proof of the Main Theorem.

We need to be precise about isomorphic representations. An isomorphism of representations G
ρ−→ V an

G
ρ′−→ V ′ is an isomorphism of vector spaces V ′ T−→ V that is compatible with the two operations of G:

T (gv′) = gT (v′) for all g in G and all v′ in V ′. This relation can also be written as

Tρ′g = ρgT

for all g. I like to display this relation as a diagram:

(0.0.1)

V ′
T−−−−→ V

ρ′g

y yρg
V ′

T−−−−→ V

A linear transformation V ′ T−→ V , not necessarily an isomorphism, with this property is called an inveriant
transformation. An isomorphism of representations is an invariant isomorphism of vector spaces.

Invariant transformations provide a method to compare two representations. However, as the next lemmas
explain, it is very hard for a linear transformation to be invariant. For instance, if ρ′ is a trivial representation,
i.e., V ′ has dimension one and ρ′g = 1 for all g, then T (v′) = T (gv′). In this case, T (gv′) = gT (v′) only if
T (v′) is an invariant vector.

Lemma 1. If T is an invariant linear transformation, then the kernel of T is an invariant subspace of V ′ and
the image of T is an invariant subspace of V .

proof. Let K be the kernel of T . To show that K is invariant, we must show that if x is in K, then gx is in K
for all g in G. Since T is invariant, T (gx) = gT (x) = g0 = 0. Yes, gx is in K.

Let W be the image of T . We must show that if y is in W , then gy is in W for all g. Since y is in W ,
y = T (v′) for some v′. Then gy = gT (v′) = T (gv′) So gy is T (something), and is in the image W . �

Schur’s Lemma. (i) Let G
ρ−→ V and G

ρ′−→ V ′ be irreducible representations. A nonzero invariant
transformation V ′ T−→ V is an isomorphism. If ρ and ρ′ are not isomorphic, the only invariant transformation
V ′

T−→ V is zero.
(ii) Let G

ρ−→ V be an invariant representation, and let T be an invariant transformation V → V . Then T is
multiplication by a scalar: T (v) = cv for some c ∈ C.

proof. (i) Let K and W be the kernel and image of T , respectively. Since K is an invariant subspace of V ′,
either K = 0 or K = V ′, and if T 6= 0, then K = 0. Similarly, since W is an invariant subspace of V ,
W = 0 or W = V , and if T 6= 0, then W = V . So, if T 6= 0, then k = 0, W = V , and T is an invariant
isomorphism.

(ii) Suppose given a nonzero invariant transformation V T−→ V . Since ρ is irreducible, T , (i) tells us that
T is an isomorphism, an invertible linear operator on V . We choose an eigenvector v for this operator. Say
T (v) = cv, and we inspact the linear operator S = T − cI defined by S(w) = T (w) − cw. This operator is
invariant, and v is in its kernel. Since its kernel is not zero, S is the zero operaator, and T = cI . �

Now: Though Schur’s Lemma shows that it is very hard for a linear transformation to be invariant, we can
use the averaging process to produce an invariant transformation from an arbitrary transformation. The aver-
aging process is as follows: Let ρ and ρ′ be given representations, and let V ′ T−→ V be an arblitrary linear
transformation. Then

T̃ =
1

|G|
∑
g

ρ−1g Tρg
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is invariant. To show this, we must show that for every h in G, T̃ ρ′h = ρhT̃ , or T̃ = ρ−1h T̃ ρh. We expand:

ρ−1h T̃ ρh =
1

|G|
∑
g

ρ−1h ρ−1g Tρgρ
′
h =

1

|G|
∑
g

ρ−1gh Tρ
′
gh

As g runs through the group, so does g1 = gh. Therefore ρ−1h T̃ ρh = 1
|G|

∑
g ρ
−1
gh Tρgh = 1

|G|
∑
g1
ρ−1g1 Tρg1 =

T̃ .

Corollary 1. If ρ and ρ′ are non-isomorphic irreducible representations, the transformation T̃ produced by
averaging from a linear transformation V ′ T−→ V is zero.

Let ρ and ρ′ be representations ofG. The set L of linear transformations V ′ → V is a vector space. (When
bases for the spaces V ′ and V are given, L becomes isomorphic to the space of m× n matrices, m = dimV

and n = dimV ′.) The averaging operator on the space L will be denoted by Φ. When V ′ T−→ V is an element
of L,

Φ(T ) =
1

|G|
∑
g

ρ−1g Tρg

Lemma 2. Let A and B be n × n and m ×m matrices. Let F be the linear operator on the space of m × n
matrices defined by F (M) = AMB. The trace of F is the product τ A τ B.

You can prove this lemma, or refer to the text 10.8.1. �

Lemma 3. Let χ be the character of a representation ρ: χ(g) = τ ρg . Then τ ρ−1g = χ(g).

proof. By definition, χ(g) = τ ρg is the sum of the eigenvalues of ρg . Since G is a finite group, the element g
has finite order. Therefore all of its eigenvalues λ have finite order. They lie on the unit circle in the complex
plane. If λ is on the unit circle, then λ−1 = λ. Then the eigenvaues of ρg−1 are the complex conjugates of the
eigenvalues of ρg , and τ ρg−1 = τ ρg = χ(g). �

Proposition. (trace of the averaging operator) Let χ and χ′ be the characters of ρ and ρ′. The trace of Φ is
< χ,χ′ >.

proof. Since trace is a linear operation, Lemma 2 shows that

trace Φ =
1

|G|
∑
g

trace ρg−1 trace ρ′g =
1

|G|
∑
g

χ(g)χ′(g) =< χ,χ′ >

�

Corollary 2. If ρ and ρ′ are non-isomorphic irreducible representations, then < χ,χ′ >= 0.

proof. When ρ and ρ′ are irreducible and not isomorphic, Corollary 1 asserts that Φ is the zero operator. Its
trace, which is < χ,χ′ >, is zero. �

Lemma. Let L̃ and K denote the image and kernel of Φ, respectively.
(i) L is the direct sum L̃⊕K.
(ii) The trace of Φ is equal to dim L̃.

proof. (i) This follows from the fact that Φ2 = Φ: If T is invariant, then T̃ = T . So Φ2(T ) = Φ(T̃ ) = T̃ .
(The factor 1

|G| , which is often irrelevant, is important here.)

(ii) The trace of Φ is the sum of the traces of its restrictions to L̃ and K. The restriction to K is the zero
operator, and the rstriction to L̃ is the identity. Its trace is equal to dim L̃. �

Corollary 3. If χ is the character of an irreducible representation, then < χ,χ >= 1.

proof. Schur’s Lemma tells us that the invariant transformations V → V are multiplication by scalars. This
means that the space L̃ of invariant transformations has dimension one. By part (ii) of the previous lemma,
trace Φ = 1. The proposition above tells us that trace Φ =< χ,χ >. �
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To complete the proof that the irreducible characters form an orthonormal basis for the space of class
functions (functions that are constant on conjugacy classes), we must still show that the irreducible characters
span that space. We do this by showing that a class function that is orthogonal to every character is zero.

Let H be the space of class functions, and let C be the subspace spanned by the characters. The hermitian
form onH is the one used for characters. If u and v are class functions, then < u, v >= 1

|G|
∑
g u(g)v(g).

Let ϕ be a class function that is orthogonal to every character χ: < ϕ,χ >= 1
|G|

∑
g f(g)χ(g). Say that

χ is the character of the representation G
ρ−→ GL(V ).

We form a linear operator T on V , a combination of the operators ρg , defining T = 1
|G|

∑
g f(g)ρg .

Lemma. For any representation ρ,
(i) the operator T is invariant. In fact
(ii) T is the zero operator.

proof. (i) We must show that for any h in G, ρ−1h Tρh = T . We substitute into the definition, remembering
that f(g) is a scalar. Let g′′ = h−1gh. As g runs through the group, so does g′′, and since f is a class function,
f(g) = f(g′′). Then

ρh−1Tρh =
1

|G|
∑
g

f(g)ρh−1ρgρh =
1

|G|
∑
g

f(g)ρg′′ =
1

|G|
∑
g′′

f(g′′)ρg′′ = T

(ii) We may assume that ρ is irreducible.
Let c(g) be the scalar coefficient 1

|G|f(g) of ρg in T . Since trace is linear, the trace of T is

traceT =
∑
g

c(g) trace ρg =
1

|G|
∑
g

f(g)χ(g) =< f, χ >

Since f is orthogonal to χ, traceT = 0. Since T is invariant, Schur’s Lemma tells us that T = cI for some
scalar c. Then because the trace is zero, T = 0. �

We apply the lemma to the regular representaton rhoreg . Recall that this is the permutation representation
of G operating on itself by multiplication. The lemma tells us that 1

|G|f(g)ρregg = 0. We notice that the
operators ρregg are independent. If we order G with 1 as the first element of the list, the matrix Rregg of ρreg)g
will have a single nonzero entry, a 1, in the first column at the place where g appears in the list. Thus the first
columns are independent.

This being so, the relation
∑
g f(g)ρregg = 0 tells us that the coefficients f(g) are zero for all g, and

therefore that f = 0, as we wanted to show.
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