
Summaries, February22 and 24

We determine some character tables.

I. Let G be the tetrahedral group of symmetries of a regular tetrahedron, which is also the alternating group
A4. Its order is 12. The conjugacy classes were probably discussed in 18.701. Unfortunately, we can’t
show the process easily, so we display the table. Initx denotes a rotation by angle 2π/3 about a vertex and y
denotes rotation by π about an edge. There are four conjugacy classes, so four irreducible characters. Let their
dimensions be d1, ..., d4. The formula |G| = d21 + · · · + d2r shows that di = 1, 1, 1, 3. This determines χi(1)
for i = 1, 2, 3, 4.

The character χ is the one corresponding to the operation A4 by permutations of four indices. So χ(y) is
the number of indices fixed by y, which is a product of two disjoint transpositions. That number is zero. The
character χ is a sum of irreducible chacters, including th trivial character χ1. This determines chi4.

Finally, let ρ be the one-dimensional representation of G whose character is χ2. Then χ2(x) is the unique
eigenvalue of the one-dimensional operator ρx. Since x3 = 1, it is also true that (ρx)3 = 1 and that χ2(x)

3 =
1. There are three possibilities: χ2(x) = 1, ω or ω2, with ω = e2πi/3. Moreover, χ2(x

2) is the unique
eigenvalue of ρ2x, which is the square of χ2(x). The three possibilities for χ2 are the first three rows of the
table.

(0.0.1)chartableT

(1) (3) (4) (4)

1 y x x2

χ1 : 1 1 1 1

χ2 : 1 1 ω ω2

χ3 : 1 1 ω2 ω

χ4 : 3 −1 0 0

χ : 4 0 1 1

II. Let G be the dihedral group D5 of symmetries of a regular pentagon. Let x denote rotation by 2π/5,
and let y be one of the reflection symmetries. The elements of G, grouped into conjugacy classes, are
1, {x, x4}, {x2, x3}, {y, xy, x2y, x3y, x4y} The dimensions of the irreducible characters are 1, 1, 2, 2.

The character χ in the bottom row is the permutation character in which G operates on the vertices of the
pentagon. It is the sum χ1 + χ3 + χ4.

The character χ3 is the one that corresponds to the operation of G on the plane, in which x is rotation by
2π/5 and y is a reflection. The value of the character on x is α = 2 cos 2π/5 = ζ + ζ−1, with ζ = e2πi/5, and
β = 2 cos 4π/5 = ζ2 + ζ3.

The character table is

(0.0.2)
chartableD5

(1)(2)(2) (5)

1 x x2 y

χ1 : 1 1 1 1

χ2 : 1 1 1 −1

χ3 : 2 α β 0

χ4 : 2 β α 0

χ : 5 0 0 1

III. Let G be an arbitrary finite group. The permutation reprsentation in which G operates on itself by left
multiplication is called the regular representation, and its character χreg is the regular character. Then χreg(g)
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is the number of elements of G fixed by left multiplication by g. That number is zero unless g is the identity,
in which case it is the order of the group: χreg(1) = |G|. If χi is an irreducible character of G,

〈χreg, χi〉 =
1

|G|
∑
g

χreg(g)χi(g) =
1

|G|
χreg(1)χi(1) + 0 + · · ·+ 0 =

1

|G|
|G|χi(1) = dimχi

Let di be the dimension of χi The projection formula χreg =
∑
i〈χreg, χi〉χi shows that χreg =

∑
i diχi.

Therefore |G| = dimχreg =
∑
didimχi =

∑
d2i . This proves one part of the Main Theorem !
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February 24.

Summing over the group. Let ρ be a representation of G on V . Because G is finite, one can sum over the
group. This is a way to produce something that is invariant.

The simplest examples start with a subspace W of V . The sum U =
∑
g gW of the subspaces gW is

invariant, and so is the intersection T =
⋂
g gW : For any group element h, U = hU and T = hT .

The reason that these subspaces are invariant subspaces is that, as g runs over the group, so does g′ = hg,
though in a different order.

For example, let G = S3, and let h = y. As g runs through the group in the order 1, x, x2, y, xy, x2y,
g′ = hg runs through G in the order y, x2y, xy, 1, x2, x.

Therefore
∑
g hg = sumgg

′ =
∑
g′ g
′ =

∑
g g, and

hU =
∑
g

g′W =
∑
g

gW = U

Similarly,
hT =

⋂
g

hgW =
⋂
g

g′W =
⋂
g

gW = T

The next example is averaging an element v of the vector space V . The averaging operation is

ṽ =
1

|G|
∑
g

gv

If h is a group element, then hṽ = 1
|G|

∑
g hgv. We put g′ = hg: hṽ = 1

|G|
∑
g g
′v. As g runs over the group,

so does g′, in a different order. Therefore the sum
∑
g g
′ is equal to

∑
g′ g
′, and hṽ = 1

|G|
∑
g gv = ṽ.

However, it may very well happen that ṽ is the zero vector. So this averaging process isn’t always interest-
ing.

The factor 1
|G| that appears isn’t important. It is there so that, if v happens to be inveriant itself, then ṽ = v

Next, let [ , ] be a positive definite hermitian form on V . The form is called invariant if [v, w] = [gv, gw]
for all g. If the form is invariant, the operators ρg will be unitary.

The averaging process can be used to produce an invariant form from an arbitrary form.
We start with an arbitrary positive definite hermitian form { , } on V . For instance, we could choose a

basis for V and carry the standard hermitian form on Cn over using the basis. We define a new form [ , ] by

[v, w] =
1

|G|
{gv, gw}

This form is positive definite and invariant. To prove that it is invariant, we show that [v, w] = [hv, hw] for all
h in G:

[hv, hw] =
1

|G|
∑
g

{ghv, ghw} = 1

|G|
∑
g

{g′v, g′w}

As g runs over the group, so does g′′ = gh, though in a different order. Therefore

[hv, hw] =
1

|G|
∑
g′′

{g′′v, g′′w} = [v, w]

V. Proof of Maschke’s Theorem The theorem asserts that every representation is a direct sum of irreducible
representations. To prove it, we start with a representation ρ on a space V . If there is no proper invariant
subspace, then ρ is irreducible. If there is a proper invariant subspace W , we look for a complementary
subspace W ′ such that V is the direct sum W ⊕W ′. If W ′ exists, we can apply induction on the dimension to
conclude that the restrictions of ρ to W and W ′ are direct sums of irreducible repreentations, and then ρ will
be a sum of irreducibles too.

We choose an invariant positive definite form [ , ] on V , so that [v, w] = [ρgv, ρgw] for all g in G and all
v, w in V . I hope you have earned that this formula shows that ρg are unitary operators. (See Proposition 8.6.3
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of the text. A unitary operator preserves orthogonality. Therefore, if W is invariant, W = ρgW , and if W ′ is
the orthogonal space W⊥, then ρgW ′ will be the orthogonal space to ρgW =W . So W ′ = ρgW

′, i.e., W ′ is
invariant.

Character table for the icosahedral group.
Let G be the icosahedral group of rotational symmetries of a regular icosahedron or dodecahedron. It

is isomorphic to the alternating group A5. The conjugacy classes were described in 18.701, I hope. They
can be identified by the angles of rotation. or by the type of permutation of five indices. I’ve displayed two
permutation representations below. The first is the operation of A5 on five indices. The second is the operation
of the icosahedral group on the six pairs of opposite faces of a dodecahedron. For example, a rotation x by
2π/5 fixes the axis of rotation, i.e., one pair of opposite faces. So χf.pr(x) = 1. Rotation by 2π/3 fixes no pair
of opposite faces. Looking at a picture of the dodecahedron, I can’t see the face pairs fixed by a rotation by π
about an edge, so the number (2) is in parentheses. It can be seen to be the only possible value by orthogonality
with the trivial representation.

(0.0.3) charsA5

(1) (15) (20) (12) (12)

0 π 2π, 32π/5 4/5 (angle)

(.)(..)(..) (...) (.....)(.....)(perm)

χperm : 5 1 2 0 0

χf.pr. : 6 (2) 0 1 1

Subtracting the trivial character from χperm and from χf.pr. gives two of the irreducible representations.
One also has the representation of 3-space by rotations. Its character can be computed easily. Remember that
the trace of rotation by θ on 3-space is 1 + 2 cos θ, the 1 resulting from the fact that the rotation fixes its axis.

With this information, the character table is computed easily. It is in the text.
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