
Summaries, April 7 and 9

linear algebra over a ring

The most basic problem of linear algebra is solving a system AX = B of linear equations. For example,
when R is the ring of integers Z and A,B have coeffiients in Z, one can ask for integer solutions of.

Example 1. (
1 1 0
2 0 4

)x1

x2

x3

 =

(
2
2

)
We can ask to find the integers x1, x2, x3 that solve the system We’ll come back to this example below.

Linear algebra over a field F is usually expressed in terms of F -vector spaces. Over a ring R, the analogous
concept is called an R-module. The definition of R-module is the same as that of a vector space. An R-module
V is a set with two laws of composition: addition v + w of elements o V and scalar multiplication av of an
element v of V by an element a of R. The operatiosn are required to satisfy these relations:

•With addition, V is an abelian group. Its identity is denoted by 0.

• Scalar multiplication is associative: (ab)v = a(bv), and multiplication by the unit element 1 of R is the
identtity operator: 1v = v.

• Two asociative laws hold: (a+ b)v = av + bv and a(v + w) = av + aw, for all a, b in R and all v, w in V .

These are the axioms for a vector space, when R is a field.

Example 2. R = Z. To give a module V over the ring of integers, one must, first of all, give an V the structdure
of an abelian group. Then one must define scalar multiplication by integers. However, scalar multiplication is
already determined: 2v = (1 + 1)v = 1v + 1v = v + v, etc. So we don’t need to define it separately.

Corollary. Z-module and abelian group, with law of composition written as addition, are equivalent concepts.

Example 3. R = F [x] is the ring of polynomials over a field F . Given an F [x]-module V , scalar multiplication
by any polynomal is defined. In particular, one can do scalar multiplication by constant polynomials, elements
of F . If we look only at the addition law and at scalar multiplication by elements of F , V becomes an
F -vector space. Then scalar multiplication by x becomes a linear operator on that vector space: x(v + w) =
xv + xw and x(av) = (xa)v = (ax)v = a(xv). And when we know how to multiply by x, multiplication by
a polynomial is uniquely determined: (x2)v = x(xv), for instance.

Corollary. Modules over thie ring F [x] of polynomials correspond to F -vector spaces with a chosen linear
operator.

As these examples show, R-modules encompass several important concepts.

homomorpisms, submodules, quotient modules

A homomorphism of R-modules is a map V
ϕ
r rrW that satisfies the requirements of a lineartransforma-

tion: ϕ(v1 + v2) = ϕ(v1) + ϕ(v2), and ϕ(av+ = aϕ(v) for a ∈ R.

A submodule U of an R-module V is a subset closed under addition and scalar multiplication: If u1, u2

are in U then u1+u2 and au1 are in U . For example, the kernel of the homomorphism ϕ is the set of elements
v ∈ V such that ϕ(v) = 0. It is a submodule of V .

If U is a submodule of a module V , the quotient module V = V/U is the set of (additive) cosets v = v+U
of U . II like to think of the quotient module as the set of equivalence classes, the equivalence relation being
v′ ∼ v if v′ is in the coset v + U . The quotient is made into a module in the usual way.

There is a canonical homomorphism V
π−→ V that sends v to v.

mapping property Homomorphisms V ϕ −→ W corespond bijectively to homomorphism V
ϕ−→ W whose

kernels contain U .
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basis A basis for an R-module V is a set B = (v1, ..., vn) of elements of V such that every element v of V is a
combination: v = r1v1 + · · ·+ rnvn in a unique way. This means that the map (a homomorphism) Rn B−→ V
that sends a column vector X = (x1, ..., xn)

t to the combination BX = v1x1+ · · ·+ vnxn is a bijective map.
If that map is surjective, one says that B = (v1, ..., vn) generates V , and if that map is injective, the set B

is independent.

A set B that generates V exists quite often, but such a set is rarely independent, and therefore rearely a
basis of V . When R isn’t a field, most R-modules will have no basis. For example, a finite abelian group is a
Z-module that has no basis. If F is a field, a linear operator x on a finite-dimensional F -vector space V makes
V into an F [x]-module that has no basis.

mapping property Let B = (v1, ..., vn) be a set that generates an R-module V , so that the map Rn
B−→ V

that sends X to BX is surjective. Let K be the kernel of that map B. Then V is isomorphic to Rn/K.

We go back to a system AX = B of linear equations with coefficients in a ring R. Say that A is an
m × n matrix, B is a 1 ×m an n-dimensional column vector, both with entries in R, and X is an unknown
m-dimensional column vector. To find the solutions in R, one may try to simplify A and B.

Let P be an n × n matrix with entries in R, that has an inverse P−1 whose oefficients are also in R,
Similarly, let Q be an m×m matrix such that both Q and an inverse Q−1 have coefficients in R.

For example, P and Q might be products of elementary matrices that have entries in R and whose inverses
also have entries in R. There are many such matrices because they include those that operate by adding an
R-multiple of one row to another.

Let A′ = Q−1AP , B′ = Q−1B, and X ′ = P−1X , and onsider the system of equations A′X ′ = B′. If
we can solve this new system, we will also be able to solve the orginal one, by A = QA′P−1, B = QB′, and
X = PX ′. So we can try to simplify A by elementary row and column operations (staying in R).

Example 1, again Using elementary operations, we can simplify the coefficient matrix:

A =

(
1 1 0
2 0 4

)
→ A′ =

(
1 0 0
0 2 0

)
In fact, one can do this entirely with column operatons. In this simple example, row operations aren’t needed.
So B is unchanged. The solution of the equation A′X = B becomes X ′ = (2, 1, a)t where a is arbitrary. To
solve the original equaiton, one needs to multiply the elementary matrices used. Let’s not bother to do this.

Theorem. Let A be an m × n integer matrix, There exist an m ×m matrix P and an n × n matrix Q, both
products of invertible elementary integer matrices, such that A′ = Q−1AP is diagonal, and if the diagonal
entries re d1, d2, ..., dk, then d1|d2| · · · |dk.

The proof isn’t hard.
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