Summaries, April 7 and 9

linear algebra over a ring

The most basic problem of linear algebra is solving a system AX = B of linear equations. For example,
when R is the ring of integers Z and A, B have coeffiients in Z, one can ask for integer solutions of.
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We can ask to find the integers x1, 22, x3 that solve the system We’ll come back to this example below.

Example 1.

Linear algebra over a field F'is usually expressed in terms of F'-vector spaces. Over aring R, the analogous
concept is called an R-module. The definition of R-module is the same as that of a vector space. An R-module
V is a set with two laws of composition: addition v 4 w of elements o V' and scalar multiplication av of an
element v of V' by an element a of R. The operatiosn are required to satisfy these relations:

e With addition, V' is an abelian group. Its identity is denoted by 0.

e Scalar multiplication is associative: (ab)v = a(bv), and multiplication by the unit element 1 of R is the
identtity operator: 1v = v.

e Two asociative laws hold: (a + b)v = av + bv and a(v + w) = av + aw, for all @, b in R and all v, w in V.
These are the axioms for a vector space, when R is a field.

Example 2. R = Z. To give a module V' over the ring of integers, one must, first of all, give an V' the structdure
of an abelian group. Then one must define scalar multiplication by integers. However, scalar multiplication is
already determined: 2v = (1 4+ 1)v = 1v 4+ 1lv = v + v, etc. So we don’t need to define it separately.

Corollary. Z-module and abelian group, with law of composition written as addition, are equivalent concepts.

Example 3. R = F[z] is the ring of polynomials over a field F'. Given an F'[x]-module V, scalar multiplication
by any polynomal is defined. In particular, one can do scalar multiplication by constant polynomials, elements
of F. If we look only at the addition law and at scalar multiplication by elements of ', V becomes an
F-vector space. Then scalar multiplication by x becomes a linear operator on that vector space: (v + w) =
2v 4+ 2w and z(av) = (za)v = (az)v = a(zv). And when we know how to multiply by x, multiplication by
a polynomial is uniquely determined: (z2)v = z(zv), for instance.

Corollary. Modules over thie ring F'[z] of polynomials correspond to F-vector spaces with a chosen linear
operator.

As these examples show, R-modules encompass several important concepts.

homomorpisms, submodules, quotient modules

A homomorphism of R-modules is a map V' F rrWV that satisfies the requirements of a lineartransforma-
tion: @(vy + v2) = w(v1) + @(v2), and p(av+ = ap(v) fora € R.

A submodule U of an R-module V is a subset closed under addition and scalar multiplication: If wuq, us
are in U then u; + u2 and au; are in U. For example, the kernel of the homomorphism ¢ is the set of elements
v € V such that ¢(v) = 0. It is a submodule of V.

If U is a submodule of a module V/, the quotient module V = V/U is the set of (additive) cosets v = v+ U
of U. II like to think of the quotient module as the set of equivalence classes, the equivalence relation being
v’ ~ v if v’ is in the coset v + U. The quotient is made into a module in the usual way.

There is a canonical homomorphism V' — V that sends v to 7.

mapping property Homomorphisms Vg — W corespond bijectively to homomorphism V' —, W whose
kernels contain U.



basis A basis for an R-module V is aset B = (v1, ..., v, ) of elements of V' such that every element v of V' is a
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combination: v = r1v1 + - - - + vy, in a unique way. This means that the map (a homomorphism) R — V'
that sends a column vector X = (z1, ..., mn)t to the combination BX = vyxy + - - - + v, &y, is a bijective map.

If that map is surjective, one says that B = (v, ..., v, ) generates V, and if that map is injective, the set B
is independent.

A set B that generates V' exists quite often, but such a set is rarely independent, and therefore rearely a
basis of V. When R isn’t a field, most R-modules will have no basis. For example, a finite abelian group is a
Z-module that has no basis. If F'is a field, a linear operator x on a finite-dimensional F'-vector space V' makes
V into an F[z]-module that has no basis.

mapping property Let B = (v, ..., v;,,) be a set that generates an R-module V, so that the map R"™ N
that sends X to BX is surjective. Let K be the kernel of that map B. Then V' is isomorphic to R"/K.

We go back to a system AX = B of linear equations with coefficients in a ring R. Say that A is an
m X n matrix, B is a 1 X m an n-dimensional column vector, both with entries in R, and X is an unknown
m-dimensional column vector. To find the solutions in R, one may try to simplify A and B.

Let P be an n x n matrix with entries in R, that has an inverse P~! whose oefficients are also in R,
Similarly, let () be an m x m matrix such that both Q) and an inverse ()~ have coefficients in R.

For example, P and () might be products of elementary matrices that have entries in R and whose inverses
also have entries in R. There are many such matrices because they include those that operate by adding an
R-multiple of one row to another.

Let A/ = Q7 'AP, B’ = Q7 'B, and X’ = P~ !X, and onsider the system of equations A’X’' = B’. If
we can solve this new system, we will also be able to solve the orginal one, by A = QA’P~!, B = QB’, and
X = PX'. So we can try to simplify A by elementary row and column operations (staying in R).

Example 1, again Using elementary operations, we can simplify the coefficient matrix:

(1 1 0 , (1 00
A‘(z 0 4> _>A_<0 2 0>
In fact, one can do this entirely with column operatons. In this simple example, row operations aren’t needed.

So B is unchanged. The solution of the equation A’X = B becomes X’ = (2, 1,a)* where a is arbitrary. To
solve the original equaiton, one needs to multiply the elementary matrices used. Let’s not bother to do this.

Theorem. Let A be an m X n integer matrix, There exist an m X m matrix P and an n X n matrix @, both
products of invertible elementary integer matrices, such that A’ = Q' AP is diagonal, and if the diagonal
entries re dy, da, ..., di, then d; |da| - - - |d.

The proof isn’t hard.



