
Summaries, April 28 and 30

symmetric functions
The symmettric group G = Sn of permutations of n elements operates on the ring of polynomials

F [u1, ..., un] in n variables, by permuting the variables:

[σf ](u1, ..., un) = f(uσ1, ..., uσn)

A polynomial f is symmetric if σf = f for all σ in G. The elementary symmetric polynomials are:

s1 = u1 + · · ·+ un,
s2 = u1u2 + · · · =

∑
i<j uiuj ,

s3 = u1u2u3 + · · · =
∑
i<j<k uiujuk,

...

sn = u1u2 · · ·un.

They are the coefficients of the polynomial P (x) that has u1, ..., un as its roots:

(x− u1)(x− u2) · · · (x− un) = xn − s1x
n−1 + s2x

n−2 − · · · ± sn

Notice that the signs alternate and that the indices go from 1 to n.

Theorem 1. (Symmetric Functions Theorem) Every symmetric polynomial can we written, in a unique way,
as a polynomial in the elementrary symmetric functions.

Example 1. Here n = 2. The polynomial u21+u
2
2 is symmetric, and u−12+u2 = s21−2s2, where s1u1+u2

and s2 = u1u2. The same formula works for the sum of any number of squares:

u21 + u22 + · · ·+ u2n = s21 − 2s2

where here s1, s2 are the elementary smmetric functions in n variables.

Example 2. Let n = 3, and let f(u1, u2, u3) = u21u2 + u22u1 + · · · . The dots indicate that one takes all pairs
of distinct indices. We call such an expression an orbit sum because the sum runs through the orbit of u21u2.
There are 6 terms in the sum.

We’ll use a systematic method to write f as a polynmial in s1 = u1+u2+u3, s2 = u1u2+u1u3+u2u3,
s3 = u1u2u3.

According to the theorem, f is a polynomial in s1, s2, s3. The terms in f have total degree e, so the
monomials in si that appear must have total degree 3 as well. Then f = as31 + bs1s2 + cs3 for some scalars
a, b, c.

We set u3 = 0, obtaining a polynomial f◦(u1u2) = f(u2, u2, 0) = u21u2 + u22u1, and we denote the
elementary symmetric polynomials in two variables by s◦1 = u1 + u2 and s◦2 = u1u2. They are obtained by
setting u3 = 0 in s1, s2. Setting u3 = 0 in s3 gives s◦3 = 0. We note that f◦ is symmetric in u1, u2, and that
f◦ = s◦1s

◦
2.

On the other hand, setting u3 = 0 is a homomorphism, so f◦ is also equal to as◦31 +bs◦1s
◦
2+cs3 = as◦1+bs

◦
2.

Therefore a = 0, b = 1, and f = s1s2 + cs3.
A simple way to determine the last coefficient c is to set u1 = u2 = u3 = 1. This amounts to counting

monomials in the equation f = s1s2 + cs3. The result is 6 = 3 · 3 + c1̇. So c = −3, and f = s1s2 − 3s3.
One can do the same thing with four variables. The orbit sum u21u2 + · · · has 12 terms. To write it

as a polynomial in s1, s2, s3, s4 we can use only monoimals in the si whose total degree is 3. Therefore the
elementary symmetric function s4 cannot be used, and f = as31+bs1s2+cs3 for some scalars a, b, c. When we
set u4 = 0, we ge the symmetric polynomial in u1, u2, u3 that we analyzed above. Therefore a, b, c = 0, 1,−3.
The formula f = s1s2 − 3s3 is valid for any number of variables n ≥ 3. �

proof of the Symmetric Functions Theorem

The proof is by a double induction, on the number of variables and on the degree of the symmetric
polynomial. We follow the method of Example 2. Let g(u1, ..., un) be a symmetric polynomial, and let
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g◦(u1, ..., un−1) = g(u1, ..., un−1, 0). Also, let s◦i be defined similarly, for i = 1, ..., n − 1. By induction on
n, we may assume that g◦ is a polynomial in s◦1, ..., s

◦
n−1, say

g◦(u1, ..., un−1) = G(s◦1, ..., s
◦
n−1)

We inspect the polynomial Q(u1, ..., un) = f(u1, ..., un)−G(s1, ..., sn−1), with si = si(u1, ..., un). This is
a symmetric polynomial. Since substituting un = 0 is a homomorphism, Q(u1, ..., un−1, 0) = 0. Therefore
q is divisible by un, and since it is symmetric, Q is divisible by ui for every i = 1, ..., n, and therefore Q is
divisible by sn. Let h(u1, ..., un) = Q/sn = (g − G)/sn. This is a symmetric polynomial whose degree is
less than the degree of g. So by induction on degree, we may assume that it is a polynomial in the elementary
symmetric functions: h(u) = H(s1, ..., sn). Then g = G+ snH . �

Corollary 1. Let f(x) = xn − a1x
n−1 + · · · ± an be a polynomial with coefficients in F . Suppose that f

splits completely in a field extension K, with roots α1, ..., αn. If g(u1, ..., un) is a symmetric polynomial in
F [u], then g(α1, ..., αn) is an element of F .

For example, α3
1 + α3

2 + · · ·+ α3
n is in F .

proof of Corollary 1 The coefficients of f are ai = si(α1, ..., αn). They are elements of F . By the Symmetric
Functions Theorem, g(u) can be written as a polynomial G(s1, ..., sn) in the elementary symmetric functions,
with coefficients in F . Then g(α) = G(s1(α), ..., sn(α)) = G(a1, ..., an) is in F . �

Definition. Let f(x) be a polynomial with coefficients in a field F . A splitting field K of f is a field extension
with these properties:

• f(x) splits completely in K, say with roots α1, ..., αn, and

• the extension K is generated by the roots of f K = F [α1, ..., αn]. Thus every element of K can be written
as a polynomial in α1, ..., αn with coefficients in F .

The next amazing theorem is probably the most important application of the Symmetric Functions Theo-
rem.

Theorem 2. Let f(x) be a polynomial in F [x], and let K be a splitting field of f . If an irreducible polynomial
g(x) in F [x] has a root β1 in K, then g(x) splits completely in K.

proof There is a field extension L ofK in which g splits completely, and there is a polynomial p1(u1, ..., un) in
F [u1, ..., un] such that β1 = p1(α1, ..., αn). Let p1(u), ..., pk(u) be the orbit of p1(u) for the operation of the
symmetric group Sn on F [u1, ..., un]. (We don’t know k. It could be as large as n!.) Let βj = pj(α1, ..., αn).
The roots of our polynomial g(x) will be among the elements βj , but which of those elements are roots depends
on the particular case.

Let h(x) be the polynomial (x− β1) · · · (x− βk) with roots β1, ..., βk. Its coefficients are the elementary
symmetric functions in the roots. But these symmetric functions aren’t the elementary symmetric functions
in u1, ..., un. To keep things straight, we introduce new variables w1, ..., wk, and we call the elementary
symmetric functions in these variables s′j(w) = s′j(w1, ..., wk). So s′1 = w1 + · · ·+ wk, etc. Then

h(x) = (x− β1) · · · (x− βk) = xk − s′1(β)x
k−1 − s′2(β)x

k−2 + · · · ± s′k(β)

We’ll show that h(x) as coefficients in F . Suppose that is proved. Then g(x) and h(x) both have β1 as root, so
they aren’t relatively prime elements ofF [x]. Since g(x) is irreducible, it generates the ideal of all polynomials
with root β1. So g divides h. Then, since h splits completly in K, so does g. The proof will be complete.

Lemma. If q(w1, ..., wk) is a symmetric polynomial in w1, ..., wk, then q(β1, ..., βk) is an element of F .

proof Let p1(u), ..., pk(u) be the orbit of p1(u) for the operation of the symmetric group, as above, and let
q(w1, ..., wk) be a symmetric polynomial in w. Then q(p1(u), ..., pk(u)) will be a symmetric polynomial in
u1, ..., un. This is easy to see: A permutation of u1, ..., un permutes the orbit p1(u), ..., pk(u), and therefore
fixes the symmetric polynomial q(p1, ..., pk).

This being so, q(p1(u), ..., pk(u)) can be written as a polynomial in the elementary symmetric func-
tions s1(u), ..., sn(u), say q(p(u)) = Q(s1(u), ..., sn(u)). Then q(β1, ..., βk) = q(p1(α), ..., pk(α)) =
Q(s1(α), ..., sn(α)) is in F because αi and si(α) are elements of F . �

Now to prove that h(x) has coeffiients in F , we apply the lemma to the elementary symmetric functions
s′j(w1, ..., wk). It tells us that the coefficients s′j(β1, ..., βk) of h are elements of F . �
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