Summaries, April 28 and 30

symmetric functions

The symmetric group $G = S_n$ of permutations of n elements operates on the ring of polynomials $F[u_1, ..., u_n]$ in n variables, by permuting the variables:

$$[\sigma f](u_1, ..., u_n) = f(u_{\sigma 1}, ..., u_{\sigma n})$$

A polynomial f is symmetric if $\sigma f = f$ for all σ in G. The elementary symmetric polynomials are:

$$s_1 = u_1 + \dots + u_n,$$

$$s_2 = u_1 u_2 + \dots = \sum_{i < j} u_i u_j,$$

$$s_3 = u_1 u_2 u_3 + \dots = \sum_{i < j < k} u_i u_j u_k,$$

$$\dots$$

$$s_n = u_1 u_2 \dots u_n.$$

They are the coefficients of the polynomial P(x) that has $u_1, ..., u_n$ as its roots:

$$(x-u_1)(x-u_2)\cdots(x-u_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - \cdots \pm s_n$$

Notice that the signs alternate and that the indices go from 1 to n.

Theorem 1. (Symmetric Functions Theorem) Every symmetric polynomial can we written, in a unique way, as a polynomial in the elementrary symmetric functions.

Example 1. Here n=2. The polynomial $u_1^2 + u_2^2$ is symmetric, and $u-1^2 + u_2 = s_1^2 - 2s_2$, where $s_1u_1 + u_2$ and $s_2 = u_1u_2$. The same formula works for the sum of any number of squares:

$$u_1^2 + u_2^2 + \dots + u_n^2 = s_1^2 - 2s_2$$

where here s_1, s_2 are the elementary smmetric functions in n variables.

Example 2. Let n=3, and let $f(u_1,u_2,u_3)=u_1^2u_2+u_2^2u_1+\cdots$. The dots indicate that one takes all pairs of distinct indices. We call such an expression an *orbit sum* because the sum runs through the orbit of $u_1^2u_2$. There are 6 terms in the sum.

We'll use a systematic method to write f as a polynmial in $s_1 = u_1 + u_2 + u_3$, $s_2 = u_1u_2 + u_1u_3 + u_2u_3$, $s_3 = u_1u_2u_3$.

According to the theorem, f is a polynomial in s_1, s_2, s_3 . The terms in f have total degree e, so the monomials in s_i that appear must have total degree 3 as well. Then $f = as_1^3 + bs_1s_2 + cs_3$ for some scalars a, b, c.

We set $u_3=0$, obtaining a polynomial $f^{\circ}(u_1u_2)=f(u_2,u_2,0)=u_1^2u_2+u_2^2u_1$, and we denote the elementary symmetric polynomials in two variables by $s_1^{\circ}=u_1+u_2$ and $s_2^{\circ}=u_1u_2$. They are obtained by setting $u_3=0$ in s_1,s_2 . Setting $u_3=0$ in s_3 gives $s_3^{\circ}=0$. We note that f° is symmetric in u_1,u_2 , and that $f^{\circ}=s_1^{\circ}s_2^{\circ}$.

On the other hand, setting $u_3=0$ is a homomorphism, so f° is also equal to $as_1^{\circ 3}+bs_1^{\circ}s_2^{\circ}+cs_3=as_1^{\circ}+bs_2^{\circ}$. Therefore $a=0,\,b=1,$ and $f=s_1s_2+cs_3$.

A simple way to determine the last coefficient c is to set $u_1 = u_2 = u_3 = 1$. This amounts to counting monomials in the equation $f = s_1 s_2 + c s_3$. The result is $6 = 3 \cdot 3 + c \dot{1}$. So c = -3, and $f = s_1 s_2 - 3 s_3$.

One can do the same thing with four variables. The orbit sum $u_1^2u_2+\cdots$ has 12 terms. To write it as a polynomial in s_1,s_2,s_3,s_4 we can use only monoimals in the s_i whose total degree is 3. Therefore the elementary symmetric function s_4 cannot be used, and $f=as_1^3+bs_1s_2+cs_3$ for some scalars a,b,c. When we set $u_4=0$, we ge the symmetric polynomial in u_1,u_2,u_3 that we analyzed above. Therefore a,b,c=0,1,-3. The formula $f=s_1s_2-3s_3$ is valid for any number of variables $n\geq 3$.

proof of the Symmetric Functions Theorem

The proof is by a double induction, on the number of variables and on the degree of the symmetric polynomial. We follow the method of Example 2. Let $g(u_1,...,u_n)$ be a symmetric polynomial, and let

 $g^{\circ}(u_1,...,u_{n-1})=g(u_1,...,u_{n-1},0)$. Also, let s_i° be defined similarly, for i=1,...,n-1. By induction on n, we may assume that g° is a polynomial in $s_1^{\circ},...,s_{n-1}^{\circ}$, say

$$g^{\circ}(u_1,...,u_{n-1}) = G(s_1^{\circ},...,s_{n-1}^{\circ})$$

We inspect the polynomial $Q(u_1,...,u_n)=f(u_1,...,u_n)-G(s_1,...,s_{n-1})$, with $s_i=s_i(u_1,...,u_n)$. This is a symmetric polynomial. Since substituting $u_n=0$ is a homomorphism, $Q(u_1,...,u_{n-1},0)=0$. Therefore q is divisible by u_n , and since it is symmetric, Q is divisible by u_i for every i=1,...,n, and therefore Q is divisible by s_n . Let $h(u_1,...,u_n)=Q/s_n=(g-G)/s_n$. This is a symmetric polynomial whose degree is less than the degree of g. So by induction on degree, we may assume that it is a polynomial in the elementary symmetric functions: $h(u)=H(s_1,...,s_n)$. Then $g=G+s_nH$.

Corollary 1. Let $f(x) = x^n - a_1 x^{n-1} + \cdots \pm a_n$ be a polynomial with coefficients in F. Suppose that f splits completely in a field extension K, with roots $\alpha_1, ..., \alpha_n$. If $g(u_1, ..., u_n)$ is a symmetric polynomial in F[u], then $g(\alpha_1, ..., \alpha_n)$ is an element of F.

For example, $\alpha_1^3 + \alpha_2^3 + \cdots + \alpha_n^3$ is in F.

proof of Corollary 1 The coefficients of f are $a_i = s_i(\alpha_1, ..., \alpha_n)$. They are elements of F. By the Symmetric Functions Theorem, g(u) can be written as a polynomial $G(s_1, ..., s_n)$ in the elementary symmetric functions, with coefficients in F. Then $g(\alpha) = G(s_1(\alpha), ..., s_n(\alpha)) = G(a_1, ..., a_n)$ is in F.

Definition. Let f(x) be a polynomial with coefficients in a field F. A *splitting field* K of f is a field extension with these properties:

- f(x) splits completely in K, say with roots $\alpha_1, ..., \alpha_n$, and
- the extension K is generated by the roots of f $K = F[\alpha_1, ..., \alpha_n]$. Thus every element of K can be written as a polynomial in $\alpha_1, ..., \alpha_n$ with coefficients in F.

The next amazing theorem is probably the most important application of the Symmetric Functions Theorem.

Theorem 2. Let f(x) be a polynomial in F[x], and let K be a splitting field of f. If an irreducible polynomial g(x) in F[x] has a root β_1 in K, then g(x) splits completely in K.

proof There is a field extension L of K in which g splits completely, and there is a polynomial $p_1(u_1,...,u_n)$ in $F[u_1,...,u_n]$ such that $\beta_1=p_1(\alpha_1,...,\alpha_n)$. Let $p_1(u),...,p_k(u)$ be the orbit of $p_1(u)$ for the operation of the symmetric group S_n on $F[u_1,...,u_n]$. (We don't know k. It could be as large as n!.) Let $\beta_j=p_j(\alpha_1,...,\alpha_n)$. The roots of our polynomial g(x) will be among the elements β_j , but which of those elements are roots depends on the particular case.

Let h(x) be the polynomial $(x - \beta_1) \cdots (x - \beta_k)$ with roots $\beta_1, ..., \beta_k$. Its coefficients are the elementary symmetric functions in the roots. But these symmetric functions aren't the elementary symmetric functions in $u_1, ..., u_n$. To keep things straight, we introduce new variables $w_1, ..., w_k$, and we call the elementary symmetric functions in these variables $s'_i(w) = s'_i(w_1, ..., w_k)$. So $s'_1 = w_1 + \cdots + w_k$, etc. Then

$$h(x) = (x - \beta_1) \cdots (x - \beta_k) = x^k - s_1'(\beta)x^{k-1} - s_2'(\beta)x^{k-2} + \cdots \pm s_k'(\beta)$$

We'll show that h(x) as coefficients in F. Suppose that is proved. Then g(x) and h(x) both have β_1 as root, so they aren't relatively prime elements of F[x]. Since g(x) is irreducible, it generates the ideal of all polynomials with root β_1 . So g divides h. Then, since h splits completly in K, so does g. The proof will be complete.

Lemma. If $q(w_1,...,w_k)$ is a symmetric polynomial in $w_1,...,w_k$, then $q(\beta_1,...,\beta_k)$ is an element of F.

proof Let $p_1(u), ..., p_k(u)$ be the orbit of $p_1(u)$ for the operation of the symmetric group, as above, and let $q(w_1, ..., w_k)$ be a symmetric polynomial in w. Then $q(p_1(u), ..., p_k(u))$ will be a symmetric polynomial in $u_1, ..., u_n$. This is easy to see: A permutation of $u_1, ..., u_n$ permutes the orbit $p_1(u), ..., p_k(u)$, and therefore fixes the symmetric polynomial $q(p_1, ..., p_k)$.

This being so, $q(p_1(u),...,p_k(u))$ can be written as a polynomial in the elementary symmetric functions $s_1(u),...,s_n(u)$, say $q(p(u))=Q(s_1(u),...,s_n(u))$. Then $q(\beta_1,...,\beta_k)=q(p_1(\alpha),...,p_k(\alpha))=Q(s_1(\alpha),...,s_n(\alpha))$ is in F because α_i and $s_i(\alpha)$ are elements of F.

Now to prove that h(x) has coefficients in F, we apply the lemma to the elementary symmetric functions $s'_j(w_1,...,w_k)$. It tells us that the coefficients $s'_j(\beta_1,...,\beta_k)$ of h are elements of F.