Summaries, April 21, 23, 26

Finite fields
We plan to describe all finite fields. Most of the work will be preliminary.

We give two examples first.

Let F be a field. If f(z) is an irreducible element of the polynomial ring F'[z], then the principal ideal ( f)
it generates is a maximal ideal, so the quotient ring F'[x]/(f) is a field. This gives us a way to construct field
extensions.

Example 1. Let I’ = [y be the field with two elements. We’ll call the elements O and 1. There is just
one irreducible polynomial of degree 2 in F[z], namely f(z) = 2> + x + 1. The field K = F[z]/(f) has
F-basis 1, o, where a denotes the residue of x, which is a root of the polynomial f. The elements of K are
0,1, ,1 + a. To compute in K, one uses the two relations 1 +1 =0anda? + o +1=0. Since 1 +1 =0
in K, signs are irrelevant: a = —a.

The element 1 + « is the second root of f:

(x+a)z+(1+a)=2+z+1

Example 2. Here F' = F3. The elements of F are 0,1, —1 (= 2). The polynomial 22 + 1 has no root in F. It
is an irreducible element of F[z], and K = F[x]/(f) is a field with F-basis 1, o, where « is the residue of .
The elements of F' are

0,1, -l,a,—a,1 4,1 —a,—-14+a,-1 -«
The six elements other than 0, 1, —1 are roots of irreducible quadrtic polynomials, so there must be at least
three irreducible quadratic polynomials in F'[x]. In fact, there are exactly three:

2?+1 224z-1, *-z-1

For example, 1 + « is a root of 24+ —1.

Now for the preliminary work:

Lemma 1. Let F be a field, let f be a monic irreducible polynomial in F'[z], and let K denote the field
F[z]/(f). Also, let « denote the residue of z in K. Then

(i) K contains F' as subfield.

(ii) o is aroot of f(z) in K.

proof (i) This is almost obvious, but it can be a bit confusing. We consider the homomorphisms F' C F[z] —
F[z]/(f) = K. The composed map F' — K is injective because F' is a field. (It has no proper ideals). So F'
is mapped isomorphically to a subfield of K that we identify with F'.

(i) Let’s denote the residue in K of an element z of F'[x] by Z. Then since we are identifying F' with its image
in K,a=awhena € F.

Say that f(r) = 2% + ag_12%"! + - -+ + ag with a; € F. In the homomorphism F[z] — F[z]/(f), the
element f maps to zero: f(x) = 0. Then

0=f=7"+a17" '+ +a =7"+ag_17 "+ +ag = fa)
Thus F[z]/(f) is a field extension of F' in which the polynomial f has a root. O

Corollary 1. Let F be a field, and let f(z) be an irreducible monic polynomial with coefficients in F'. There
exists a field extension K in which f has a root. O

We can say a bit more. A monic polynomial f(z) splits completely in a field K if it is a product of linear
factors: f(z) = (z—a—1)---(z — ag) witha; € K.

Corollary 2. Let f(z) be a monic polynomial with coefficients in a field F'. There exists a field extension K
of F'in which f(z) splits completely.



proof If f splits completely in F', there is nothing to show. Otherwise, we choose an irreducible factor g(z) of
f(x), of degree > 1, and apply Corollary 1. There is field extension F; of F' in which g has a root . Then «
is also a root of f in F7, so f has more roots in F} than in F'. We replace F' by F} an repeat this construction.
d

Lemma 2. Let F' be a field. A polynomial f(x) in F[z] of degree d has at most d roots in F'.

proof We use induction on d. Let a be aroot of f in F. Then in Fz], f(x) = (z — a)g(z) for some g in F[z]
of degree d — 1. Any root of f other than o must be a root of g. By induction, we may suppose that g has at
most d — 1 roots. Then f has at most d roots. O

Proposition 1. Let K be a field. Every finite subgroup of the multiplicative group K* is a cyclic group.

proof We will use the Structure Theorem for abelian groups, which tells us that a finite abelian group is a direct
sum of cyclic groups of some orders dy,ds, ..., di, where d; divides do, etc. The theorem was proved using
additive notation for the law of composition, but it remains true when the law is written as multiplication. So
G =Cy, x Cg, X -+ x Cq, . We need the fact that d; |ds| - - - |d, here. It shows that any element of G has an
order that divides dj. Therefore the elements of G are roots of the polynomial z% — 1. Lemma 2 tells us that
the order of G cannot be greater than di. On the other hand, the order is the product dyds - - - di.. Therefore,
assuming we have eliminated the trivial groups C', there can be only one cyclic group: k = 1. O

about the derivative

The derivative of a polynomial f(z) = Y"1 a;z" is defined by the usual calculus rule f'(z) = Y ia;z"=",
in which the integer ¢ stands for 1 + 1 + - - - 4+ 1. The derivative satisfies the product rule (fg)' = f'g + fg'.
The next lemma gives the most important property of the derivative.

Lemma 3. An element « is a multiple root of a polyomial f, i.e., (z — «)? divides f, if and only if it is a
common root of f and of f.

proof Suppose that « is a root, so that f(z) = (z — a)g(z) for some polynomial g. Then by the product rule,
f'(xz) =g(x) + (z — a)g’(x), and f'(a) = g(). So awis aroot of f’ if and only if it is a root of ¢, and it is a
root of g if and only if it is a double root of f. [l

We go to finite fields now.

Let K be a finite field. We map the integers Z to K by the unique homomorphism: 7Z —5 K. Because K
is finite, the kernel of ¢ will be a nonzero ideal, generated by an irreducible element of Z — a prime integer p.
The image of ¢ will be isomorphic to the prime field Z/(p) = F,,.

o Every finite field K contains one of the fields F' = F,, as subfield.

Then K will be a field extension of F, and the degree [K : F] will be finite. Say that [K : F] = r. Then
K is an F'-vector space of dimension r. It has an F'-basis of r elements, so its order is p".

Letq=1p".
Lemma 4. The polynomial ¢ — = has no multiple root in any field K of characteristic p.

proof Let f(x) = 27—z, Then f’(z) = qz(9=Y — 1. Since ¢ is a power of p, it is zero in K, and f(z) = —1.
Then f’ has no root, and so f and f’ have no common root. (I

Lemma 5. Let K be a finite field of order ¢ = p”. The elements of K are roots of the polynomial 27 — z.

proof The multiplicative group K * is a finite group of order ¢ — 1, and Proposition 1 tells us that K * is a
cyclic group. All of its elements have orders that divide ¢ — 1. They are roots of the polynomial (9= — 1.
Since 0 is a root of the polynomial z, all elements of K are roots of (24~ — 1) = 27 — . ]

Lemma 6. Let R be a ring that contains the prime field F' = [, as a subring, and let ¢ = p". Then if a, b are
elemens of R, then (a + b)? = a? 4 b?.

proof The fact that (z + y)? = 2P + y” follows from the binomial expansion: (z + y)? = > (¥)a’y?~"
The binomial coefficients (’Z’) are divisible by p when ¢ = 1,..,p — 1. Therefore they are zero in F. Then
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(a+b)7 = ((a+b)P)?" " = (aP+bP)P" . By induction on , this is equal to (a?)?" " + (bP)P" " = a9+ be.
(]

Lemma 7. Let L be a field that contains F' = I, and let K be the set of roots of the polynomial ¢ — x in L,
where ¢ = p”. Then K is a subfield of L.

The roots are the elements a of L such that a? = a, or if a # 0, such that ale=D) =1,

proof We have to show that K contians 1, is closed under the operations +, —, X, and contains the inverses
of its nonzero elements. If a, b are in K, Lemma 6 shows that ¢ 4+ b is in K. A somewhat interesting point is
that if @ is in K, then —a is in K: If p is odd, then ¢ is odd, and (—a)? = —a¥. If ¢ is even, i.e., p = 2, then
(—a)? = a? = a. However, in this case, a = —a so (—a)? = —a as well. O

Lemma 8. Let k and r be integers such that k divides r, and let ¢ = p" and ¢’ = pF.

2@ =1 — 1 divides z(¢=1) — 1.

The polynomial

proof This is tricky. Say that r = ks. We substitute y = p* and n = s into the equation
Yy 1= - Yy Ty )

obtaining ¢ — 1 = (p¥)” — 1 = (p* — 1)(¢) = (¢’ — 1)(¥), where £ is an integer. So ¢’ — 1 divides ¢ — 1.
Next, we substitute y = 2(¢ =) and n = / into the same displayed equation: 24~ — 1 = (z(@~D)¢ 1 =
(27— — 1)p(x), for some polynomial ¢. So (¢ ~1) — 1 divides z(4—1 — 1. O

The main results about finite fields are the next theorems, in which p is a prime integer and ¢ = p".
Theorem 1. There exists a finite field of order ¢, and any two fields of order ¢ are isomorphic.

Theorem 2. Let K be a field of order ¢ = p", and let K’ be a field of order ¢/ = p¥. Then K contains a
subfield isomorphic to K if and only if k divides r.

Theorem 3. The polynomial x? — x is the product of the irreducible polynomials in F'[x] whose degrees divide
T.

In Theorem 3, each factor appears just once in the product because ¢ — x has no multiple root.
Examples 3. (i) (¢ = 22) In 5[], the polynomial z* — x is the product x(x + 1)(2? + 2 + 1).
(i) (¢g=3HInF3[z], 2° —z =@+ D(z- )22+ 1)(@?+z-1)(2? -z —1).

(iii) (¢ = 2) InFafz], 2® —z =2(z + 1)(23 + 2 + 1)(23 + 22 + 1).

(iv)(@g=2HYInFz], 26—z =z(xz+ @2+ 2+ 1)(* +2+)(* + 22 + D(@* + 22 + 22 + 2 + 1).
The factors of % — z appear here because 4 = 22 q= 24 and 2 divides 4.

proof of Theorem 1 We start with the prime field ' = IF,,. Corollary 2 tells us that there is a field extension L
of F' in which the polynomial ¢ — x splits completely. It has ¢ roots in L (Lemma 4). Lemma 7 tells us that
the set K of those roots is a field.

The fact that two fields K and K’ a of order ¢ = p” are isomorphic will follow from Theorem 2. If K and
K’ have the same order and K’ is isomorphic to a subfield of K, then that subfield is equal to K. (I

proof of Theorem 2 Here [K : F] = r and [K' : F] = k. If K’ is (or is isomorphic to) a subfield of K, then
r=[K:F|=[K:K'|[K':F|=[K: K']k,so k divides r.

Conversely, let k be an integer that divides r, and let ¢’ = p*. Let K and K’ be fields of orders ¢ and ¢/,
repsectively. We must show that K contains a subfield isomorphic to K’. The multiplicative group K'* is
cyclic of order ¢’ — 1. Let 3’ be a generator for that cyclic group. Then obviously, K’ = F[f’]. Let g(x) be
the irreducible polynomial in F'[z] with root 8. Since S’ is also a root of 2@ =1 — 1, g divides (¢~ — 1.
Lemma 8 tells us that (¢~ — 1 divides (4= — 1. So g divides (2~ — 1, which is a polynomial that
splits completely in K. Therefore g has a root 8 in K, and K’ = F[#’] is isomorphic to the subfield F[f] of
K. So K contains a subfield isomorphic to K. U



Example 4. In Example 2, F = F3 and K = Fla] = F[z]/(2? + 1) where « is the residue of x. The

multiplicative group K * hs order 8, and the element « isn’t a generator because o> = —1 and a* = 1. But
let 3=1+a. Then 32 =1 —a+ a® = —a. So B has order 8. The four elements of K distinct from
0,1, -1, a, —« all have order 8. O

proof of Theorem 3 Let K be a field of order ¢ = p", and let g(z) be an irreducible factor of £ — x in F[x],
say of degree k. Since x? — z splits completely in K, g has a root 8 in K. The subfield K’ = F[3] of K
generated by (3 has degree k over F. So k divides r.

Next, let g(x) be an irreducible polynomial in F'[z] whose degree k divides r. We are to show that g divides
29 — x or, if g isn’t the polynomial , that g divides 29~ — 1. Let 8’ be a root of g in a field extension of
F, and let K’ be the field F[3']. Tts degree over F'is [K’ : F] = k, and /' is also a root of (¢ =2 — 1. So ¢
divides (¢~ — 1. Since k divides 7, (¢~ — 1 divides (¢~ — 1 (Lemma 8). So ¢ divides z(¢=) — 1. O



