Summaries, April 21, 23, 26

Finite fields

We plan to describe all finite fields. Most of the work will be preliminary.

We give two examples first.

Let F be a field. If f(x) is an irreducible element of the polynomial ring F[x], then the principal ideal (f) it generates is a maximal ideal, so the quotient ring F[x]/(f) is a field. This gives us a way to construct field extensions.

Example 1. Let $F = \mathbb{F}_2$ be the field with two elements. We'll call the elements 0 and 1. There is just one irreducible polynomial of degree 2 in F[x], namely $f(x) = x^2 + x + 1$. The field K = F[x]/(f) has F-basis 1, α , where α denotes the residue of x, which is a root of the polynomial f. The elements of K are $0, 1, \alpha, 1 + \alpha$. To compute in K, one uses the two relations 1 + 1 = 0 and $\alpha^2 + \alpha + 1 = 0$. Since 1 + 1 = 0 in K, signs are irrelevant: a = -a.

The element $1 + \alpha$ is the second root of f:

$$(x + \alpha)(x + (1 + \alpha)) = x^2 + x + 1$$

Example 2. Here $F = \mathbb{F}_3$. The elements of F are 0, 1, -1 (= 2). The polynomial $x^2 + 1$ has no root in F. It is an irreducible element of F[x], and K = F[x]/(f) is a field with F-basis $1, \alpha$, where α is the residue of x. The elements of F are

$$0, 1, -1, \alpha, -\alpha, 1+\alpha, 1-\alpha, -1+\alpha, -1-\alpha$$

The six elements other than 0, 1, -1 are roots of irreducible quadrtic polynomials, so there must be at least three irreducible quadratic polynomials in F[x]. In fact, there are exactly three:

$$x^2 + 1$$
 $x^2 + x - 1$, $x^2 - x - 1$

For example, $1 + \alpha$ is a root of $x^2 + x - 1$.

Now for the preliminary work:

Lemma 1. Let F be a field, let f be a monic irreducible polynomial in F[x], and let K denote the field F[x]/(f). Also, let α denote the residue of x in K. Then

(i) K contains F as subfield.

(ii) α is a root of f(x) in K.

proof (i) This is almost obvious, but it can be a bit confusing. We consider the homomorphisms $F \subset F[x] \rightarrow F[x]/(f) = K$. The composed map $F \rightarrow K$ is injective because F is a field. (It has no proper ideals). So F is mapped isomorphically to a subfield of K that we identify with F.

(ii) Let's denote the residue in K of an element z of F[x] by \overline{z} . Then since we are identifying F with its image in $K, \overline{a} = a$ when $a \in F$.

Say that $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0$ with $a_i \in F$. In the homomorphism $F[x] \to F[x]/(f)$, the element f maps to zero: $\overline{f(x)} = 0$. Then

$$0 = \overline{f} = \overline{x}^d + \overline{a}_{d-1}\overline{x}^{d-1} + \dots + \overline{a}_0 = \overline{x}^d + a_{d-1}\overline{x}^{d-1} + \dots + a_0 = f(\alpha)$$

Thus F[x]/(f) is a field extension of F in which the polynomial f has a root.

Corollary 1. Let F be a field, and let f(x) be an irreducible monic polynomial with coefficients in F. There exists a field extension K in which f has a root.

We can say a bit more. A monic polynomial f(x) splits completely in a field K if it is a product of linear factors: $f(x) = (x - \alpha - 1) \cdots (x - \alpha_d)$ with $\alpha_i \in K$.

Corollary 2. Let f(x) be a monic polynomial with coefficients in a field F. There exists a field extension K of F in which f(x) splits completely.

proof If f splits completely in F, there is nothing to show. Otherwise, we choose an irreducible factor g(x) of f(x), of degree > 1, and apply Corollary 1. There is field extension F_1 of F in which g has a root α . Then α is also a root of f in F_1 , so f has more roots in F_1 than in F. We replace F by F_1 an repeat this construction.

Lemma 2. Let F be a field. A polynomial f(x) in F[x] of degree d has at most d roots in F.

proof We use induction on d. Let α be a root of f in F. Then in F[x], $f(x) = (x - \alpha)g(x)$ for some g in F[x] of degree d - 1. Any root of f other than α must be a root of g. By induction, we may suppose that g has at most d - 1 roots. Then f has at most d roots.

Proposition 1. Let K be a field. Every finite subgroup of the multiplicative group K^{\times} is a cyclic group.

proof We will use the Structure Theorem for abelian groups, which tells us that a finite abelian group is a direct sum of cyclic groups of some orders $d_1, d_2, ..., d_k$, where d_1 divides d_2 , etc. The theorem was proved using additive notation for the law of composition, but it remains true when the law is written as multiplication. So $G = C_{d_1} \times C_{d_2} \times \cdots \times C_{d_k}$. We need the fact that $d_1|d_2|\cdots|d_k$ here. It shows that any element of G has an order that divides d_k . Therefore the elements of G are roots of the polynomial $x^{d_k} - 1$. Lemma 2 tells us that the order of G cannot be greater than d_k . On the other hand, the order is the product $d_1d_2\cdots d_k$. Therefore, assuming we have eliminated the trivial groups C_1 , there can be only one cyclic group: k = 1.

about the derivative

The derivative of a polynomial $f(x) = \sum_{1}^{n} a_i x^i$ is defined by the usual calculus rule $f'(x) = \sum i a_i x^{i-1}$, in which the integer *i* stands for $1 + 1 + \dots + 1$. The derivative satisfies the product rule (fg)' = f'g + fg'.

The next lemma gives the most important property of the derivative.

Lemma 3. An element α is a multiple root of a polyomial f, i.e., $(x - \alpha)^2$ divides f, if and only if it is a common root of f and of f'.

proof Suppose that α is a root, so that $f(x) = (x - \alpha)g(x)$ for some polynomial g. Then by the product rule, $f'(x) = g(x) + (x - \alpha)g'(x)$, and $f'(\alpha) = g(\alpha)$. So α is a root of f' if and only if it is a root of g, and it is a root of g if and only if it is a double root of f.

We go to finite fields now.

Let K be a finite field. We map the integers \mathbb{Z} to K by the unique homomorphism: $\mathbb{Z} \xrightarrow{\varphi} K$. Because K is finite, the kernel of φ will be a nonzero ideal, generated by an irreducible element of \mathbb{Z} – a prime integer p. The image of φ will be isomorphic to the prime field $\mathbb{Z}/(p) = \mathbb{F}_p$.

• Every finite field K contains one of the fields $F = \mathbb{F}_p$ as subfield.

Then K will be a field extension of F, and the degree [K : F] will be finite. Say that [K : F] = r. Then K is an F-vector space of dimension r. It has an F-basis of r elements, so its order is p^r .

Let
$$q = p'$$
.

Lemma 4. The polynomial $x^q - x$ has no multiple root in any field K of characteristic p.

proof Let $f(x) = x^q - x$, Then $f'(x) = qx^{(q-1)} - 1$. Since q is a power of p, it is zero in K, and f'(x) = -1. Then f' has no root, and so f and f' have no common root.

Lemma 5. Let K be a finite field of order $q = p^r$. The elements of K are roots of the polynomial $x^q - x$.

proof The multiplicative group K^{\times} is a finite group of order q - 1, and Proposition 1 tells us that K^{\times} is a cyclic group. All of its elements have orders that divide q - 1. They are roots of the polynomial $x^{(q-1)} - 1$. Since 0 is a root of the polynomial x, all elements of K are roots of $x(x^{(q-1)} - 1) = x^q - x$.

Lemma 6. Let R be a ring that contains the prime field $F = \mathbb{F}_p$ as a subring, and let $q = p^r$. Then if a, b are elemens of R, then $(a + b)^q = a^q + b^q$.

proof The fact that $(x + y)^p = x^p + y^p$ follows from the binomial expansion: $(x + y)^p = \sum {p \choose i} x^i y^{p-i}$. The binomial coefficients ${p \choose i}$ are divisible by p when i = 1, ..., p - 1. Therefore they are zero in F. Then $(a+b)^q = ((a+b)^p)^{p^{r-1}} = (a^p + b^p)^{p^{r-1}}$. By induction on r, this is equal to $(a^p)^{p^{r-1}} + (b^p)^{p^{r-1}} = a^q + b^q$. \Box

Lemma 7. Let L be a field that contains $F = \mathbb{F}_p$, and let K be the set of roots of the polynomial $x^q - x$ in L, where $q = p^r$. Then K is a subfield of L.

The roots are the elements a of L such that $a^q = a$, or if $a \neq 0$, such that $a^{(q-1)} = 1$.

proof We have to show that K contians 1, is closed under the operations $+, -, \times$, and contains the inverses of its nonzero elements. If a, b are in K, Lemma 6 shows that a + b is in K. A somewhat interesting point is that if a is in K, then -a is in K: If p is odd, then q is odd, and $(-a)^q = -a^q$. If q is even, i.e., p = 2, then $(-a)^q = a^q = a$. However, in this case, a = -a so $(-a)^q = -a$ as well.

Lemma 8. Let k and r be integers such that k divides r, and let $q = p^r$ and $q' = p^k$. The polynomial $x^{(q'-1)} - 1$ divides $x^{(q-1)} - 1$.

proof This is tricky. Say that r = ks. We substitute $y = p^k$ and n = s into the equation

$$y^{n} - 1 = (y - 1)(y^{n-1} + y^{n-2} + \dots + y + 1)$$

obtaining $q-1 = (p^k)^s - 1 = (p^k - 1)(\ell) = (q'-1)(\ell)$, where ℓ is an integer. So q'-1 divides q-1. Next, we substitute $y = x^{(q'-1)}$ and $n = \ell$ into the same displayed equation: $x^{(q-1)} - 1 = (x^{(q'-1)})^\ell - 1 = (x^{(q'-1)} - 1)\varphi(x)$, for some polynomial φ . So $x^{(q'-1)} - 1$ divides $x^{(q-1)} - 1$.

The main results about finite fields are the next theorems, in which p is a prime integer and $q = p^r$.

Theorem 1. There exists a finite field of order q, and any two fields of order q are isomorphic.

Theorem 2. Let K be a field of order $q = p^r$, and let K' be a field of order $q' = p^k$. Then K contains a subfield isomorphic to K' if and only if k divides r.

Theorem 3. The polynomial $x^q - x$ is the product of the irreducible polynomials in F[x] whose degrees divide r.

In Theorem 3, each factor appears just once in the product because $x^q - x$ has no multiple root.

Examples 3. (i) $(q = 2^2)$ In $\mathbb{F}_2[x]$, the polynomial $x^4 - x$ is the product $x(x+1)(x^2+x+1)$.

(ii)
$$(q = 3^2)$$
 In $\mathbb{F}_3[x]$, $x^9 - x = x(x+1)(x-1)(x^2+1)(x^2+x-1)(x^2-x-1)$.

(iii) $(q = 2^2)$ In $\mathbb{F}_2[x]$, $x^8 - x = x(x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$.

(iv) $(q = 2^4)$ In $\mathbb{F}_2[x]$, $x^{16} - x = x(x+1)(x^2 + x + 1)(x^4 + x + !)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$. The factors of $x^4 - x$ appear here because $4 = 2^2$, $q = 2^4$, and 2 divides 4.

proof of Theorem 1 We start with the prime field $F = \mathbb{F}_p$. Corollary 2 tells us that there is a field extension L of F in which the polynomial $x^q - x$ splits completely. It has q roots in L (Lemma 4). Lemma 7 tells us that the set K of those roots is a field.

The fact that two fields K and K' a of order $q = p^r$ are isomorphic will follow from Theorem 2. If K and K' have the same order and K' is isomorphic to a subfield of K, then that subfield is equal to K.

proof of Theorem 2 Here [K : F] = r and [K' : F] = k. If K' is (or is isomorphic to) a subfield of K, then r = [K : F] = [K : K'][K' : F] = [K : K']k, so k divides r.

Conversely, let k be an integer that divides r, and let $q' = p^k$. Let K and K' be fields of orders q and q', repsectively. We must show that K contains a subfield isomorphic to K'. The multiplicative group K'^{\times} is cyclic of order q' - 1. Let β' be a generator for that cyclic group. Then obviously, $K' = F[\beta']$. Let g(x) be the irreducible polynomial in F[x] with root β' . Since β' is also a root of $x^{(q'-1)} - 1$, g divides $x^{(q'-1)} - 1$. Lemma 8 tells us that $x^{(q'-1)} - 1$ divides $x^{(q-1)} - 1$. So g divides $x^{(q-1)} - 1$, which is a polynomial that splits completely in K. Therefore g has a root β in K, and $K' = F[\beta']$ is isomorphic to the subfield $F[\beta]$ of K. So K contains a subfield isomorphic to K'.

Example 4. In Example 2, $F = \mathbb{F}_3$ and $K = F[\alpha] = F[x]/(x^2 + 1)$ where α is the residue of x. The multiplicative group K^{\times} hs order 8, and the element α isn't a generator because $\alpha^2 = -1$ and $\alpha^4 = 1$. But let $\beta = 1 + \alpha$. Then $\beta^2 = 1 - \alpha + \alpha^2 = -\alpha$. So β has order 8. The four elements of K distinct from $0, 1, -1, \alpha, -\alpha$ all have order 8.

proof of Theorem 3 Let K be a field of order $q = p^r$, and let g(x) be an irreducible factor of $x^q - x$ in F[x], say of degree k. Since $x^q - x$ splits completely in K, g has a root β in K. The subfield $K' = F[\beta]$ of K generated by β has degree k over F. So k divides r.

Next, let g(x) be an irreducible polynomial in F[x] whose degree k divides r. We are to show that g divides $x^q - x$ or, if g isn't the polynomial x, that g divides $x^{(q-1)} - 1$. Let β' be a root of g in a field extension of F, and let K' be the field $F[\beta']$. Its degree over F is [K':F] = k, and β' is also a root of $x^{(q'-1)} - 1$. So g divides $x^{(q'-1)} - 1$. Since k divides $r, x^{(q'-1)} - 1$ divides $x^{(q-1)} - 1$ (Lemma 8). So g divides $x^{(q-1)} - 1$. \Box