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Finite fields
We plan to describe all finite fields. Most of the work will be preliminary.

We give two examples first.

Let F be a field. If f(x) is an irreducible element of the polynomial ring F [x], then the principal ideal (f)
it generates is a maximal ideal, so the quotient ring F [x]/(f) is a field. This gives us a way to construct field
extensions.

Example 1. Let F = F2 be the field with two elements. We’ll call the elements 0 and 1. There is just
one irreducible polynomial of degree 2 in F [x], namely f(x) = x2 + x + 1. The field K = F [x]/(f) has
F -basis 1, α, where α denotes the residue of x, which is a root of the polynomial f . The elements of K are
0, 1, α, 1 + α. To compute in K, one uses the two relations 1 + 1 = 0 and α2 + α+ 1 = 0. Since 1 + 1 = 0
in K, signs are irrelevant: a = −a.

The element 1 + α is the second root of f :

(x+ α)(x+ (1 + α)) = x2 + x+ 1

Example 2. Here F = F3. The elements of F are 0, 1,−1 (= 2). The polynomial x2 + 1 has no root in F . It
is an irreducible element of F [x], and K = F [x]/(f) is a field with F -basis 1, α, where α is the residue of x.
The elements of F are

0, 1,−1, α,−α, 1 + α, 1− α,−1 + α,−1− α

The six elements other than 0, 1,−1 are roots of irreducible quadrtic polynomials, so there must be at least
three irreducible quadratic polynomials in F [x]. In fact, there are exactly three:

x2 + 1 x2 + x− 1, x2 − x− 1

For example, 1 + α is a root of x2 + x− 1.

Now for the preliminary work:

Lemma 1. Let F be a field, let f be a monic irreducible polynomial in F [x], and let K denote the field
F [x]/(f). Also, let α denote the residue of x in K. Then
(i) K contains F as subfield.
(ii) α is a root of f(x) in K.

proof (i) This is almost obvious, but it can be a bit confusing. We consider the homomorphisms F ⊂ F [x]→
F [x]/(f) = K. The composed map F → K is injective because F is a field. (It has no proper ideals). So F
is mapped isomorphically to a subfield of K that we identify with F .

(ii) Let’s denote the residue in K of an element z of F [x] by z. Then since we are identifying F with its image
in K, a = a when a ∈ F .

Say that f(x) = xd + ad−1x
d−1 + · · · + a0 with ai ∈ F . In the homomorphism F [x] → F [x]/(f), the

element f maps to zero: f(x) = 0. Then

0 = f = xd + ad−1x
d−1 + · · ·+ a0 = xd + ad−1x

d−1 + · · ·+ a0 = f(α)

Thus F [x]/(f) is a field extension of F in which the polynomial f has a root. �

Corollary 1. Let F be a field, and let f(x) be an irreducible monic polynomial with coefficients in F . There
exists a field extension K in which f has a root. �

We can say a bit more. A monic polynomial f(x) splits completely in a field K if it is a product of linear
factors: f(x) = (x− α− 1) · · · (x− αd) with αi ∈ K.

Corollary 2. Let f(x) be a monic polynomial with coefficients in a field F . There exists a field extension K
of F in which f(x) splits completely.
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proof If f splits completely in F , there is nothing to show. Otherwise, we choose an irreducible factor g(x) of
f(x), of degree > 1, and apply Corollary 1. There is field extension F1 of F in which g has a root α. Then α
is also a root of f in F1, so f has more roots in F1 than in F . We replace F by F1 an repeat this construction.
�

Lemma 2. Let F be a field. A polynomial f(x) in F [x] of degree d has at most d roots in F .

proof We use induction on d. Let α be a root of f in F . Then in F [x], f(x) = (x−α)g(x) for some g in F [x]
of degree d − 1. Any root of f other than α must be a root of g. By induction, we may suppose that g has at
most d− 1 roots. Then f has at most d roots. �

Proposition 1. Let K be a field. Every finite subgroup of the multiplicative group K× is a cyclic group.

proof We will use the Structure Theorem for abelian groups, which tells us that a finite abelian group is a direct
sum of cyclic groups of some orders d1, d2, ..., dk, where d1 divides d2, etc. The theorem was proved using
additive notation for the law of composition, but it remains true when the law is written as multiplication. So
G = Cd1

× Cd2
× · · · × Cdk

. We need the fact that d1|d2| · · · |dk here. It shows that any element of G has an
order that divides dk. Therefore the elements of G are roots of the polynomial xdk − 1. Lemma 2 tells us that
the order of G cannot be greater than dk. On the other hand, the order is the product d1d2 · · · dk. Therefore,
assuming we have eliminated the trivial groups C1, there can be only one cyclic group: k = 1. �

about the derivative

The derivative of a polynomial f(x) =
∑n

1 aix
i is defined by the usual calculus rule f ′(x) =

∑
iaix

i=1,
in which the integer i stands for 1 + 1 + · · ·+ 1. The derivative satisfies the product rule (fg)′ = f ′g + fg′.

The next lemma gives the most important property of the derivative.

Lemma 3. An element α is a multiple root of a polyomial f , i.e., (x − α)2 divides f , if and only if it is a
common root of f and of f ′.

proof Suppose that α is a root, so that f(x) = (x− α)g(x) for some polynomial g. Then by the product rule,
f ′(x) = g(x) + (x− α)g′(x), and f ′(α) = g(α). So α is a root of f ′ if and only if it is a root of g, and it is a
root of g if and only if it is a double root of f . �

We go to finite fields now.

Let K be a finite field. We map the integers Z to K by the unique homomorphism: Z ϕ−→ K. Because K
is finite, the kernel of ϕ will be a nonzero ideal, generated by an irreducible element of Z – a prime integer p.
The image of ϕ will be isomorphic to the prime field Z/(p) = Fp.

• Every finite field K contains one of the fields F = Fp as subfield.

Then K will be a field extension of F , and the degree [K : F ] will be finite. Say that [K : F ] = r. Then
K is an F -vector space of dimension r. It has an F -basis of r elements, so its order is pr.

Let q = pr.

Lemma 4. The polynomial xq − x has no multiple root in any field K of characteristic p.

proof Let f(x) = xq−x, Then f ′(x) = qx(q−1)−1. Since q is a power of p, it is zero in K, and f ′(x) = −1.
Then f ′ has no root, and so f and f ′ have no common root. �

Lemma 5. Let K be a finite field of order q = pr. The elements of K are roots of the polynomial xq − x.

proof The multiplicative group K× is a finite group of order q − 1, and Proposition 1 tells us that K× is a
cyclic group. All of its elements have orders that divide q − 1. They are roots of the polynomial x(q−1) − 1.
Since 0 is a root of the polynomial x, all elements of K are roots of x(x(q−1) − 1) = xq − x. �

Lemma 6. Let R be a ring that contains the prime field F = Fp as a subring, and let q = pr. Then if a, b are
elemens of R, then (a+ b)q = aq + bq .

proof The fact that (x + y)p = xp + yp follows from the binomial expansion: (x + y)p =
∑(

p
i

)
xiyp−i.

The binomial coefficients
(
p
i

)
are divisible by p when i = 1, .., p − 1. Therefore they are zero in F . Then
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(a+ b)q = ((a+ b)p)p
r−1

= (ap+ bp)p
r−1

. By induction on r, this is equal to (ap)p
r−1

+(bp)p
r−1

= aq + bq .
�

Lemma 7. Let L be a field that contains F = Fp, and let K be the set of roots of the polynomial xq − x in L,
where q = pr. Then K is a subfield of L.

The roots are the elements a of L such that aq = a, or if a 6= 0, such that a(q−1) = 1.

proof We have to show that K contians 1, is closed under the operations +,−,×, and contains the inverses
of its nonzero elements. If a, b are in K, Lemma 6 shows that a + b is in K. A somewhat interesting point is
that if a is in K, then −a is in K: If p is odd, then q is odd, and (−a)q = −aq . If q is even, i.e., p = 2, then
(−a)q = aq = a. However, in this case, a = −a so (−a)q = −a as well. �

Lemma 8. Let k and r be integers such that k divides r, and let q = pr and q′ = pk. The polynomial
x(q
′−1) − 1 divides x(q−1) − 1.

proof This is tricky. Say that r = ks. We substitute y = pk and n = s into the equation

yn − 1 = (y − 1)(yn−1 + yn−2 + · · ·+ y + 1)

obtaining q − 1 = (pk)
s − 1 = (pk − 1)(`) = (q′ − 1)(`), where ` is an integer. So q′ − 1 divides q − 1.

Next, we substitute y = x(q
′−1) and n = ` into the same displayed equation: x(q−1) − 1 = (x(q

′−1))` − 1 =
(x(q

′−1) − 1)ϕ(x), for some polynomial ϕ. So x(q
′−1) − 1 divides x(q−1) − 1. �

The main results about finite fields are the next theorems, in which p is a prime integer and q = pr.

Theorem 1. There exists a finite field of order q, and any two fields of order q are isomorphic.

Theorem 2. Let K be a field of order q = pr, and let K ′ be a field of order q′ = pk. Then K contains a
subfield isomorphic to K ′ if and only if k divides r.

Theorem 3. The polynomial xq−x is the product of the irreducible polynomials in F [x] whose degrees divide
r.

In Theorem 3, each factor appears just once in the product because xq − x has no multiple root.

Examples 3. (i) (q = 22) In F2[x], the polynomial x4 − x is the product x(x+ 1)(x2 + x+ 1).

(ii) (q = 32) In F3[x], x9 − x = x(x+ 1)(x− 1)(x2 + 1)(x2 + x− 1)(x2 − x− 1) .

(iii) (q = 22) In F2[x], x8 − x = x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

(iv) (q = 24) In F2[x], x16 − x = x(x + 1)(x2 + x + 1)(x4 + x+!)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1).
The factors of x4 − x appear here because 4 = 22, q = 24, and 2 divides 4.

proof of Theorem 1 We start with the prime field F = Fp. Corollary 2 tells us that there is a field extension L
of F in which the polynomial xq − x splits completely. It has q roots in L (Lemma 4). Lemma 7 tells us that
the set K of those roots is a field.

The fact that two fields K and K ′ a of order q = pr are isomorphic will follow from Theorem 2. If K and
K ′ have the same order and K ′ is isomorphic to a subfield of K, then that subfield is equal to K. �

proof of Theorem 2 Here [K : F ] = r and [K ′ : F ] = k. If K ′ is (or is isomorphic to) a subfield of K, then
r = [K : F ] = [K : K ′][K ′ : F ] = [K : K ′]k, so k divides r.

Conversely, let k be an integer that divides r, and let q′ = pk. Let K and K ′ be fields of orders q and q′,
repsectively. We must show that K contains a subfield isomorphic to K ′. The multiplicative group K ′× is
cyclic of order q′ − 1. Let β′ be a generator for that cyclic group. Then obviously, K ′ = F [β′]. Let g(x) be
the irreducible polynomial in F [x] with root β′. Since β′ is also a root of x(q

′−1) − 1, g divides x(q
′−1) − 1.

Lemma 8 tells us that x(q
′−1) − 1 divides x(q−1) − 1. So g divides x(q−1) − 1, which is a polynomial that

splits completely in K. Therefore g has a root β in K, and K ′ = F [β′] is isomorphic to the subfield F [β] of
K. So K contains a subfield isomorphic to K ′. �
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Example 4. In Example 2, F = F3 and K = F [α] = F [x]/(x2 + 1) where α is the residue of x. The
multiplicative group K× hs order 8, and the element α isn’t a generator because α2 = −1 and α4 = 1. But
let β = 1 + α. Then β2 = 1 − α + α2 = −α. So β has order 8. The four elements of K distinct from
0, 1,−1, α,−α all have order 8. �

proof of Theorem 3 Let K be a field of order q = pr, and let g(x) be an irreducible factor of xq − x in F [x],
say of degree k. Since xq − x splits completely in K, g has a root β in K. The subfield K ′ = F [β] of K
generated by β has degree k over F . So k divides r.

Next, let g(x) be an irreducible polynomial in F [x] whose degree k divides r. We are to show that g divides
xq − x or, if g isn’t the polynomial x, that g divides x(q−1) − 1. Let β′ be a root of g in a field extension of
F , and let K ′ be the field F [β′]. Its degree over F is [K ′ : F ] = k, and β′ is also a root of x(q

′−1) − 1. So g
divides x(q

′−1) − 1. Since k divides r, x(q
′−1) − 1 divides x(q−1) − 1 (Lemma 8). So g divides x(q−1) − 1. �
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