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Comments on Problem Set 4

1. Chapter 12, Exc. 2.8 (division with remainder in Z[i])

It is simplest to do the division in C, then take a nearby Gauss integer. For example,

4 + 36i

5 + i
=

(4 + 36i)(5− i)

26
=

56 + 176i

26
= (2 +

4

26
) + (7−

6

26
)i

So 4 + 36i = (2 + 7i)(5 + i) + r, where the remainder r is 4 + 36i− (2 + 7i)(5 + i) = 1 + 4i.

2. Chapter 11, Exc. 8.1 (principal ideals in Z[x] that are maximal)

The answer is that no maximal ideal of Z[x] is a principal ideal. You are expected to prove
this, of course.

3. Chapter 11, Exc. 9.12 (polynomials without common zeros)

I assigned this so that you would learn that the Nullstellensatz is useful. To write 1 as a
combination of f1, f2, f3, one can use repeated division with remainder, as in the Euclidean
algorithm.

For example, since f1 is monic in t, one can use it to divide f3. The remainder is
g = f3 − tf1 = 4tx2 + 2t + 1. Then one can divide g by f2, obtaining remainder h =
g − xf2 = 2t+ 4x+ 1. We replace f3 by 1

2
h, which is linear and monic in t. Then one can

use h to divide f1 and f2, etc.
However, substituting back at the end is a big pain. Sorry.

4. Chapter 11, Exc. 6.8 (Chinese Remainder Theorem)

(a) For any ideals I and J , it is true that IJ ⊂ I and IJ ⊂ J . So IJ ⊂ I ∩ J . Suppose
that I + J = R. Then we can write 1 = r + s with r ∈ I and s ∈ J . If x ∈ I ∩ J , rx is in
IJ and sx is in JI = IJ . Therefore x = xa+ xb is in IJ . So I ∩ J ⊂ IJ .

(b) Writing x = rx+ sx, wh ere r + s = 1, r ∈ I and s ∈ J , does the trick.

(c) Let R1 = R/I and R2 = R/J . The kernel of the map π = (π1, π2) : R → R1 ×R2 that
sends an element x to the pair (x1, x2) of its residues is I ∩ J , which is equal to IJ = 0.
Therefore π is injective. Let (a, b) be an element of R1 × R2, and let a, b be elements that
map to a, b. With 1 = r + s as above, (1, 1) = π(1) = π(s) + π(r) = (π1(s), 0) + (0, π2(r)).
So π(s) = (1, 0) and π(r) = (0, 1). Then π(sa+ rb) = (π1(a), 0) + (0, π2(b)) = (a, b).

(d) In R1 × R2, the idempotents that describe the product decomposition are (1, 0) and
(0, 1). The inverse images of these elements in R are the idempotents r and s.
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5. Chapter 11, Exc. M.3 (maximal ideals in a ring of sequences)

The map that sends a sequence a = (a1, a2, ...) to ai is a homomorphism R −→ R. Its
kernel mi, is the set of sequences a such that ai = 0. It is a maximal ideal. The only other
maximal ideal is M, the kernel of the homomorphism to R that sends a sequence a to its
limit.

Let M be any maximal ideal. If M 6= mi then because M is maximal, M 6⊂ mi. So there
is a sequence a in M with ai 6= 0. Let ei be the sequence that is identically zero except for
a 1 in position i. Then the sequence eia, which is in the ideal M , is zero except for position
i, its entry in that position is ai, and it is an element of M . Since we can multiply elements
of M by a−1

i
, ei is an element of M .

Using the elements ei, we can construct any element of R whose limit is zero. Thus M
contains the set of such sequences. They form the ideal M. So m1,m2, ... and M are the
only maximal ideals.

6. Chapter 12, Exc. M4. (ring generated by sinx and cosx)

There are various ways to do this, but it seems simplest to begin by allowing complex
coefficients, to study the ring C[cos t, sin t].

Let S denote the ring C[x, y]/(x2 + y2 − 1). When we change variables in S to u =
x + iy, v = x − iy, the equation x2 + y2 − 1 becomes uv = 1, or v = u−1. The ring S is
isomorphic to the Laurent Polynomial Ring C[u, u−1]. We identify S with that ring. The
corresponding change of variables in C[cos t, sin t] is eit = cos t+ i sin t, e−it = cos t− i sin t.
So C[cos t, sin t] = C[eit, e−it].

You will be able to check that the substitution u = eit defines an isomorphism S =
C[u, u−1] → C[eit, e−it]. Therefore the ideal of complex polynomial relations among cos t, sin t
is generated by eite−it − 1, which is equal to cos2 t+ sin2 −1. Then the same is true for the
real polynomial relations. This proves (a).

In S, every nonzero element of can be written uniquely in the form ukf(u), where k
can be positive or negative, and f(u) is a polynomial in u whose constant coefficient isn’t
zero. This makes it easy to prove that S is a principal ideal domain and therefore a unique
factorizaton domain, hence (c) is true.

(d) We write an element of S in the form s = ukf(u), as above. If s is a unit, its inverse
also has that form, say s−1 = uℓg(u), so that uk+ℓf(u)g(u) = 1. Since the polynomials f
and g aren’t divisible by u, neither is fg. Therefore fg = 1 and k + ℓ = 0. So f and g are
scalars. The units of S are cuk with c ∈ C not zero, and k ∈ Z.

The units in R = R[x, y]/(f) are units in S too. Since uk isn’t in R when k 6= 0, the
units of R are the nonzero real scalars.

(b) In R, we have the equation x2 = (y+1)(y− 1). When we show that x is an irreducible
element of R that doesn’t divide y + 1, it will follow that the two sides of the equation are
inequivalent factorizations.



3

In S, x = 1

2
(u+u−1) = 1

2
u−1(u2+1) = 1

2
u−1(u+i)(u−i), and y+1 = 1

2
(u − u−1)+1 =

1

2
u−1(u2+u+1). The term 1

2
u−1 is a unit that can be ignored. Since u+1 doesn’t divide

u2+u+1, x doesn’t divide y+1 in S or in R. The two factors u+i, u−i of x are irreducible
elements of C[u, u−1]. They can’t be made real by multiplying by a unit. So x is irreducible
in R.


