Comments on Problem Set 4

1. Chapter 12, Exc. 2.8 (division with remainder in $\mathbb{Z}[i]$)

It is simplest to do the division in \mathbb{C} , then take a nearby Gauss integer. For example,

$$\frac{4+36i}{5+i} = \frac{(4+36i)(5-i)}{26} = \frac{56+176i}{26} = (2+\frac{4}{26}) + (7-\frac{6}{26})i$$

So 4 + 36i = (2 + 7i)(5 + i) + r, where the remainder r is 4 + 36i - (2 + 7i)(5 + i) = 1 + 4i.

2. Chapter 11, Exc. 8.1 (principal ideals in $\mathbb{Z}[x]$ that are maximal)

The answer is that no maximal ideal of $\mathbb{Z}[x]$ is a principal ideal. You are expected to prove this, of course.

3. Chapter 11, Exc. 9.12 (polynomials without common zeros)

I assigned this so that you would learn that the Nullstellensatz is useful. To write 1 as a combination of f_1, f_2, f_3 , one can use repeated division with remainder, as in the Euclidean algorithm.

For example, since f_1 is monic in t, one can use it to divide f_3 . The remainder is $g = f_3 - tf_1 = 4tx^2 + 2t + 1$. Then one can divide g by f_2 , obtaining remainder $h = g - xf_2 = 2t + 4x + 1$. We replace f_3 by $\frac{1}{2}h$, which is linear and monic in t. Then one can use h to divide f_1 and f_2 , etc.

However, substituting back at the end is a big pain. Sorry.

4. Chapter 11, Exc. 6.8 (Chinese Remainder Theorem)

(a) For any ideals I and J, it is true that $IJ \subset I$ and $IJ \subset J$. So $IJ \subset I \cap J$. Suppose that I + J = R. Then we can write 1 = r + s with $r \in I$ and $s \in J$. If $x \in I \cap J$, rx is in IJ and sx is in JI = IJ. Therefore x = xa + xb is in IJ. So $I \cap J \subset IJ$.

(b) Writing x = rx + sx, where r + s = 1, $r \in I$ and $s \in J$, does the trick.

(c) Let $R_1 = R/I$ and $R_2 = R/J$. The kernel of the map $\pi = (\pi_1, \pi_2) : R \to R_1 \times R_2$ that sends an element x to the pair (x_1, x_2) of its residues is $I \cap J$, which is equal to IJ = 0. Therefore π is injective. Let $(\overline{a}, \overline{b})$ be an element of $R_1 \times R_2$, and let a, b be elements that map to $\overline{a}, \overline{b}$. With 1 = r + s as above, $(1, 1) = \pi(1) = \pi(s) + \pi(r) = (\pi_1(s), 0) + (0, \pi_2(r))$. So $\pi(s) = (1, 0)$ and $\pi(r) = (0, 1)$. Then $\pi(sa + rb) = (\pi_1(a), 0) + (0, \pi_2(b)) = (\overline{a}, \overline{b})$.

(d) In $R_1 \times R_2$, the idempotents that describe the product decomposition are (1,0) and (0,1). The inverse images of these elements in R are the idempotents r and s.

5. Chapter 11, Exc. M.3 (maximal ideals in a ring of sequences)

The map that sends a sequence $a = (a_1, a_2, ...)$ to a_i is a homomorphism $R \longrightarrow \mathbb{R}$. Its kernel \mathfrak{m}_i , is the set of sequences a such that $a_i = 0$. It is a maximal ideal. The only other maximal ideal is \mathfrak{M} , the kernel of the homomorphism to \mathbb{R} that sends a sequence a to its limit.

Let M be any maximal ideal. If $M \neq \mathfrak{m}_i$ then because M is maximal, $M \not\subset \mathfrak{m}_i$. So there is a sequence a in M with $a_i \neq 0$. Let e_i be the sequence that is identically zero except for a 1 in position i. Then the sequence $e_i a$, which is in the ideal M, is zero except for position i, its entry in that position is a_i , and it is an element of M. Since we can multiply elements of M by a_i^{-1} , e_i is an element of M.

Using the elements e_i , we can construct any element of R whose limit is zero. Thus M contains the set of such sequences. They form the ideal \mathfrak{M} . So $\mathfrak{m}_1, \mathfrak{m}_2, \ldots$ and \mathfrak{M} are the only maximal ideals.

6. Chapter 12, Exc. M4. (ring generated by $\sin x$ and $\cos x$)

There are various ways to do this, but it seems simplest to begin by allowing complex coefficients, to study the ring $\mathbb{C}[\cos t, \sin t]$.

Let S denote the ring $\mathbb{C}[x,y]/(x^2+y^2-1)$. When we change variables in S to u = x + iy, v = x - iy, the equation $x^2 + y^2 - 1$ becomes uv = 1, or $v = u^{-1}$. The ring S is isomorphic to the Laurent Polynomial Ring $\mathbb{C}[u, u^{-1}]$. We identify S with that ring. The corresponding change of variables in $\mathbb{C}[\cos t, \sin t]$ is $e^{it} = \cos t + i \sin t$, $e^{-it} = \cos t - i \sin t$. So $\mathbb{C}[\cos t, \sin t] = \mathbb{C}[e^{it}, e^{-it}]$.

You will be able to check that the substitution $u = e^{it}$ defines an isomorphism $S = \mathbb{C}[u, u^{-1}] \to \mathbb{C}[e^{it}, e^{-it}]$. Therefore the ideal of *complex* polynomial relations among $\cos t$, $\sin t$ is generated by $e^{it}e^{-it} - 1$, which is equal to $\cos^2 t + \sin^2 - 1$. Then the same is true for the real polynomial relations. This proves (a).

In S, every nonzero element of can be written uniquely in the form $u^k f(u)$, where k can be positive or negative, and f(u) is a polynomial in u whose constant coefficient isn't zero. This makes it easy to prove that S is a principal ideal domain and therefore a unique factorizaton domain, hence (c) is true.

(d) We write an element of S in the form $s = u^k f(u)$, as above. If s is a unit, its inverse also has that form, say $s^{-1} = u^{\ell}g(u)$, so that $u^{k+\ell}f(u)g(u) = 1$. Since the polynomials f and g aren't divisible by u, neither is fg. Therefore fg = 1 and $k + \ell = 0$. So f and g are scalars. The units of S are cu^k with $c \in \mathbb{C}$ not zero, and $k \in \mathbb{Z}$.

The units in $R = \mathbb{R}[x, y]/(f)$ are units in S too. Since u^k isn't in R when $k \neq 0$, the units of R are the nonzero real scalars.

(b) In R, we have the equation $x^2 = (y+1)(y-1)$. When we show that x is an irreducible element of R that doesn't divide y + 1, it will follow that the two sides of the equation are inequivalent factorizations.

In S, $x = \frac{1}{2}(u+u^{-1}) = \frac{1}{2}u^{-1}(u^2+1) = \frac{1}{2}u^{-1}(u+i)(u-i)$, and $y+1 = \frac{1}{2}(u-u^{-1})+1 = \frac{1}{2}u^{-1}(u^2+u+1)$. The term $\frac{1}{2}u^{-1}$ is a unit that can be ignored. Since u+1 doesn't divide u^2+u+1 , x doesn't divide y+1 in S or in R. The two factors u+i, u-i of x are irreducible elements of $\mathbb{C}[u, u^{-1}]$. They can't be made real by multiplying by a unit. So x is irreducible in R.