18.702 Comments on Problem Set 10

1. Chapter 15, Exercise 7.6. (factoring $x^{16} - x$)

The factors over \mathbb{F}_2 are the irreducible polynomials of degrees 1, 2, 4:

$$x^{16} - x = x(x+1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$$

The field \mathbb{F}_8 has degree 3 over \mathbb{F}_2 . Therefore none of the factors of degrees 2 or 4 have a root in \mathbb{F}_8 . Moveover, if one of the factors of degree 4 was a product of quadratic polynomials in \mathbb{F}_8 , then it would have a root in a quadratic extension of \mathbb{F}_8 , which would be a field of order $8^2 = 64$. The field \mathbb{F}_{16} isn't contained in \mathbb{F}_{64} , so this can't happen. The factorization above is also the irreducible factorization in \mathbb{F}_8 .

This leaves \mathbb{F}_4 . The field F_{16} has degree 2 over \mathbb{F}_4 . In \mathbb{F}_{16} , $x^{16} - x$ factors into linear factors. Therefore the irreducible degree four polynomials must be products of quadratic polynomials in \mathbb{F}_4 .

Let α be a root of $x^2 + x + 1$ in \mathbb{F}_4 . Then the elements of \mathbb{F}_4 are $0, 1, \alpha, \beta$, where $\beta = 1 + \alpha$. Experimenting with these elements, it isn't hard to find the factorizations. For example, $(x^2 + \alpha x + 1)(x^2 + \beta x + 1) = x^4 + (\alpha + \beta)x^3 + (\alpha \beta)x^2 + (\alpha + \beta) + 1$. Here $\alpha + \beta = \alpha + 1 + \alpha = 1$ and $\alpha\beta = \alpha + \alpha^2 = 1$. So this product is $x^4 + x^3 + x^2 + x + 1$.

2. Chapter 15, Exercise M4. (the irreducible polynomial for $\sqrt{2} + \sqrt{3}$)

(a),(b),(c) are easy. The irreducible polynomial for $\alpha + \beta$, $\alpha = \sqrt{2}$ and $\beta = \sqrt{3}$ is the one whose roots are $\pm(\alpha + \beta)$ and $\pm(\alpha - \beta)$.

(d) We note that $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$. The irreducible polynomial for $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} has degree 4. (It is $f(x) = x^4 - 10x^2 + 1$.) If either 2 or 3 is a square, f factors. If not, then 6 will be a square, etc.

3. Prove that, if an element of $GL_2(\mathbb{Z})$ has finite order, then its order is 1, 2, 3, 4 or 6. Do this by determining the possible characteristic polynomials that such an element could have.

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $GL_2(\mathbb{Z})$. We're supposed to knowthat if A has finite order, it is diagonalizable.

The characteristic polynomial of A is $t^2 - (a + d)t + (ad - bc)$, and since A is invertible in the integers, $ad - bc = \pm 1$, while a + d is some integer n. If A has finite order, its eigenvalues will be roots of unity. Let ζ be an eigenvalue. Substituting into the chracteristic polynomial, $\zeta^2 - n\zeta = \zeta(\zeta - n) = \pm 1$. Since ζ and ± 1 have absolute value 1, so does $\zeta - n$, which is difficult since ζ is on the unit circle. It implies that $|n| \leq 2$. There are five values of n to consider, and one can look at each one. For example, if n = 2, the only possibility is $\zeta = 1$. If n = 1, then ζ can be $e^{2\pi 1/6}$ or its inverse, etc.

There are other wasy to reason this out.